|  | //===- ExprClassification.cpp - Expression AST Node Implementation --------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements Expr::classify. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExprObjC.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | using Cl = Expr::Classification; | 
|  |  | 
|  | static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E); | 
|  | static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D); | 
|  | static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T); | 
|  | static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E); | 
|  | static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E); | 
|  | static Cl::Kinds ClassifyConditional(ASTContext &Ctx, | 
|  | const Expr *trueExpr, | 
|  | const Expr *falseExpr); | 
|  | static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, | 
|  | Cl::Kinds Kind, SourceLocation &Loc); | 
|  |  | 
|  | Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const { | 
|  | assert(!TR->isReferenceType() && "Expressions can't have reference type."); | 
|  |  | 
|  | Cl::Kinds kind = ClassifyInternal(Ctx, this); | 
|  | // C99 6.3.2.1: An lvalue is an expression with an object type or an | 
|  | //   incomplete type other than void. | 
|  | if (!Ctx.getLangOpts().CPlusPlus) { | 
|  | // Thus, no functions. | 
|  | if (TR->isFunctionType() || TR == Ctx.OverloadTy) | 
|  | kind = Cl::CL_Function; | 
|  | // No void either, but qualified void is OK because it is "other than void". | 
|  | // Void "lvalues" are classified as addressable void values, which are void | 
|  | // expressions whose address can be taken. | 
|  | else if (TR->isVoidType() && !TR.hasQualifiers()) | 
|  | kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void); | 
|  | } | 
|  |  | 
|  | // Enable this assertion for testing. | 
|  | switch (kind) { | 
|  | case Cl::CL_LValue: | 
|  | assert(isLValue()); | 
|  | break; | 
|  | case Cl::CL_XValue: | 
|  | assert(isXValue()); | 
|  | break; | 
|  | case Cl::CL_Function: | 
|  | case Cl::CL_Void: | 
|  | case Cl::CL_AddressableVoid: | 
|  | case Cl::CL_DuplicateVectorComponents: | 
|  | case Cl::CL_MemberFunction: | 
|  | case Cl::CL_SubObjCPropertySetting: | 
|  | case Cl::CL_ClassTemporary: | 
|  | case Cl::CL_ArrayTemporary: | 
|  | case Cl::CL_ObjCMessageRValue: | 
|  | case Cl::CL_PRValue: | 
|  | assert(isPRValue()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Cl::ModifiableType modifiable = Cl::CM_Untested; | 
|  | if (Loc) | 
|  | modifiable = IsModifiable(Ctx, this, kind, *Loc); | 
|  | return Classification(kind, modifiable); | 
|  | } | 
|  |  | 
|  | /// Classify an expression which creates a temporary, based on its type. | 
|  | static Cl::Kinds ClassifyTemporary(QualType T) { | 
|  | if (T->isRecordType()) | 
|  | return Cl::CL_ClassTemporary; | 
|  | if (T->isArrayType()) | 
|  | return Cl::CL_ArrayTemporary; | 
|  |  | 
|  | // No special classification: these don't behave differently from normal | 
|  | // prvalues. | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang, | 
|  | const Expr *E, | 
|  | ExprValueKind Kind) { | 
|  | switch (Kind) { | 
|  | case VK_PRValue: | 
|  | return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue; | 
|  | case VK_LValue: | 
|  | return Cl::CL_LValue; | 
|  | case VK_XValue: | 
|  | return Cl::CL_XValue; | 
|  | } | 
|  | llvm_unreachable("Invalid value category of implicit cast."); | 
|  | } | 
|  |  | 
|  | static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) { | 
|  | // This function takes the first stab at classifying expressions. | 
|  | const LangOptions &Lang = Ctx.getLangOpts(); | 
|  |  | 
|  | switch (E->getStmtClass()) { | 
|  | case Stmt::NoStmtClass: | 
|  | #define ABSTRACT_STMT(Kind) | 
|  | #define STMT(Kind, Base) case Expr::Kind##Class: | 
|  | #define EXPR(Kind, Base) | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | llvm_unreachable("cannot classify a statement"); | 
|  |  | 
|  | // First come the expressions that are always lvalues, unconditionally. | 
|  | case Expr::ObjCIsaExprClass: | 
|  | // C++ [expr.prim.general]p1: A string literal is an lvalue. | 
|  | case Expr::StringLiteralClass: | 
|  | // @encode is equivalent to its string | 
|  | case Expr::ObjCEncodeExprClass: | 
|  | // __func__ and friends are too. | 
|  | case Expr::PredefinedExprClass: | 
|  | // Property references are lvalues | 
|  | case Expr::ObjCSubscriptRefExprClass: | 
|  | case Expr::ObjCPropertyRefExprClass: | 
|  | // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of... | 
|  | case Expr::CXXTypeidExprClass: | 
|  | case Expr::CXXUuidofExprClass: | 
|  | // Unresolved lookups and uncorrected typos get classified as lvalues. | 
|  | // FIXME: Is this wise? Should they get their own kind? | 
|  | case Expr::UnresolvedLookupExprClass: | 
|  | case Expr::UnresolvedMemberExprClass: | 
|  | case Expr::TypoExprClass: | 
|  | case Expr::DependentCoawaitExprClass: | 
|  | case Expr::CXXDependentScopeMemberExprClass: | 
|  | case Expr::DependentScopeDeclRefExprClass: | 
|  | // ObjC instance variables are lvalues | 
|  | // FIXME: ObjC++0x might have different rules | 
|  | case Expr::ObjCIvarRefExprClass: | 
|  | case Expr::FunctionParmPackExprClass: | 
|  | case Expr::MSPropertyRefExprClass: | 
|  | case Expr::MSPropertySubscriptExprClass: | 
|  | case Expr::ArraySectionExprClass: | 
|  | case Expr::OMPArrayShapingExprClass: | 
|  | case Expr::OMPIteratorExprClass: | 
|  | return Cl::CL_LValue; | 
|  |  | 
|  | // C99 6.5.2.5p5 says that compound literals are lvalues. | 
|  | // In C++, they're prvalue temporaries, except for file-scope arrays. | 
|  | case Expr::CompoundLiteralExprClass: | 
|  | return !E->isLValue() ? ClassifyTemporary(E->getType()) : Cl::CL_LValue; | 
|  |  | 
|  | // Expressions that are prvalues. | 
|  | case Expr::CXXBoolLiteralExprClass: | 
|  | case Expr::CXXPseudoDestructorExprClass: | 
|  | case Expr::UnaryExprOrTypeTraitExprClass: | 
|  | case Expr::CXXNewExprClass: | 
|  | case Expr::CXXNullPtrLiteralExprClass: | 
|  | case Expr::ImaginaryLiteralClass: | 
|  | case Expr::GNUNullExprClass: | 
|  | case Expr::OffsetOfExprClass: | 
|  | case Expr::CXXThrowExprClass: | 
|  | case Expr::ShuffleVectorExprClass: | 
|  | case Expr::ConvertVectorExprClass: | 
|  | case Expr::IntegerLiteralClass: | 
|  | case Expr::FixedPointLiteralClass: | 
|  | case Expr::CharacterLiteralClass: | 
|  | case Expr::AddrLabelExprClass: | 
|  | case Expr::CXXDeleteExprClass: | 
|  | case Expr::ImplicitValueInitExprClass: | 
|  | case Expr::BlockExprClass: | 
|  | case Expr::FloatingLiteralClass: | 
|  | case Expr::CXXNoexceptExprClass: | 
|  | case Expr::CXXScalarValueInitExprClass: | 
|  | case Expr::TypeTraitExprClass: | 
|  | case Expr::ArrayTypeTraitExprClass: | 
|  | case Expr::ExpressionTraitExprClass: | 
|  | case Expr::ObjCSelectorExprClass: | 
|  | case Expr::ObjCProtocolExprClass: | 
|  | case Expr::ObjCStringLiteralClass: | 
|  | case Expr::ObjCBoxedExprClass: | 
|  | case Expr::ObjCArrayLiteralClass: | 
|  | case Expr::ObjCDictionaryLiteralClass: | 
|  | case Expr::ObjCBoolLiteralExprClass: | 
|  | case Expr::ObjCAvailabilityCheckExprClass: | 
|  | case Expr::ParenListExprClass: | 
|  | case Expr::SizeOfPackExprClass: | 
|  | case Expr::SubstNonTypeTemplateParmPackExprClass: | 
|  | case Expr::AsTypeExprClass: | 
|  | case Expr::ObjCIndirectCopyRestoreExprClass: | 
|  | case Expr::AtomicExprClass: | 
|  | case Expr::CXXFoldExprClass: | 
|  | case Expr::ArrayInitLoopExprClass: | 
|  | case Expr::ArrayInitIndexExprClass: | 
|  | case Expr::NoInitExprClass: | 
|  | case Expr::DesignatedInitUpdateExprClass: | 
|  | case Expr::SourceLocExprClass: | 
|  | case Expr::ConceptSpecializationExprClass: | 
|  | case Expr::RequiresExprClass: | 
|  | return Cl::CL_PRValue; | 
|  |  | 
|  | // Make HLSL this reference-like | 
|  | case Expr::CXXThisExprClass: | 
|  | return Lang.HLSL ? Cl::CL_LValue : Cl::CL_PRValue; | 
|  |  | 
|  | case Expr::ConstantExprClass: | 
|  | return ClassifyInternal(Ctx, cast<ConstantExpr>(E)->getSubExpr()); | 
|  |  | 
|  | // Next come the complicated cases. | 
|  | case Expr::SubstNonTypeTemplateParmExprClass: | 
|  | return ClassifyInternal(Ctx, | 
|  | cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); | 
|  |  | 
|  | case Expr::PackIndexingExprClass: { | 
|  | // A pack-index-expression always expands to an id-expression. | 
|  | // Consider it as an LValue expression. | 
|  | if (cast<PackIndexingExpr>(E)->isInstantiationDependent()) | 
|  | return Cl::CL_LValue; | 
|  | return ClassifyInternal(Ctx, cast<PackIndexingExpr>(E)->getSelectedExpr()); | 
|  | } | 
|  |  | 
|  | // C, C++98 [expr.sub]p1: The result is an lvalue of type "T". | 
|  | // C++11 (DR1213): in the case of an array operand, the result is an lvalue | 
|  | //                 if that operand is an lvalue and an xvalue otherwise. | 
|  | // Subscripting vector types is more like member access. | 
|  | case Expr::ArraySubscriptExprClass: | 
|  | if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType()) | 
|  | return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase()); | 
|  | if (Lang.CPlusPlus11) { | 
|  | // Step over the array-to-pointer decay if present, but not over the | 
|  | // temporary materialization. | 
|  | auto *Base = cast<ArraySubscriptExpr>(E)->getBase()->IgnoreImpCasts(); | 
|  | if (Base->getType()->isArrayType()) | 
|  | return ClassifyInternal(Ctx, Base); | 
|  | } | 
|  | return Cl::CL_LValue; | 
|  |  | 
|  | // Subscripting matrix types behaves like member accesses. | 
|  | case Expr::MatrixSubscriptExprClass: | 
|  | return ClassifyInternal(Ctx, cast<MatrixSubscriptExpr>(E)->getBase()); | 
|  |  | 
|  | // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a | 
|  | //   function or variable and a prvalue otherwise. | 
|  | case Expr::DeclRefExprClass: | 
|  | if (E->getType() == Ctx.UnknownAnyTy) | 
|  | return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl()) | 
|  | ? Cl::CL_PRValue : Cl::CL_LValue; | 
|  | return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl()); | 
|  |  | 
|  | // Member access is complex. | 
|  | case Expr::MemberExprClass: | 
|  | return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E)); | 
|  |  | 
|  | case Expr::UnaryOperatorClass: | 
|  | switch (cast<UnaryOperator>(E)->getOpcode()) { | 
|  | // C++ [expr.unary.op]p1: The unary * operator performs indirection: | 
|  | //   [...] the result is an lvalue referring to the object or function | 
|  | //   to which the expression points. | 
|  | case UO_Deref: | 
|  | return Cl::CL_LValue; | 
|  |  | 
|  | // GNU extensions, simply look through them. | 
|  | case UO_Extension: | 
|  | return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr()); | 
|  |  | 
|  | // Treat _Real and _Imag basically as if they were member | 
|  | // expressions:  l-value only if the operand is a true l-value. | 
|  | case UO_Real: | 
|  | case UO_Imag: { | 
|  | const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); | 
|  | Cl::Kinds K = ClassifyInternal(Ctx, Op); | 
|  | if (K != Cl::CL_LValue) return K; | 
|  |  | 
|  | if (isa<ObjCPropertyRefExpr>(Op)) | 
|  | return Cl::CL_SubObjCPropertySetting; | 
|  | return Cl::CL_LValue; | 
|  | } | 
|  |  | 
|  | // C++ [expr.pre.incr]p1: The result is the updated operand; it is an | 
|  | //   lvalue, [...] | 
|  | // Not so in C. | 
|  | case UO_PreInc: | 
|  | case UO_PreDec: | 
|  | return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue; | 
|  |  | 
|  | default: | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | case Expr::RecoveryExprClass: | 
|  | case Expr::OpaqueValueExprClass: | 
|  | return ClassifyExprValueKind(Lang, E, E->getValueKind()); | 
|  |  | 
|  | // Pseudo-object expressions can produce l-values with reference magic. | 
|  | case Expr::PseudoObjectExprClass: | 
|  | return ClassifyExprValueKind(Lang, E, | 
|  | cast<PseudoObjectExpr>(E)->getValueKind()); | 
|  |  | 
|  | // Implicit casts are lvalues if they're lvalue casts. Other than that, we | 
|  | // only specifically record class temporaries. | 
|  | case Expr::ImplicitCastExprClass: | 
|  | return ClassifyExprValueKind(Lang, E, E->getValueKind()); | 
|  |  | 
|  | // C++ [expr.prim.general]p4: The presence of parentheses does not affect | 
|  | //   whether the expression is an lvalue. | 
|  | case Expr::ParenExprClass: | 
|  | return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr()); | 
|  |  | 
|  | // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator, | 
|  | // or a void expression if its result expression is, respectively, an | 
|  | // lvalue, a function designator, or a void expression. | 
|  | case Expr::GenericSelectionExprClass: | 
|  | if (cast<GenericSelectionExpr>(E)->isResultDependent()) | 
|  | return Cl::CL_PRValue; | 
|  | return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr()); | 
|  |  | 
|  | case Expr::BinaryOperatorClass: | 
|  | case Expr::CompoundAssignOperatorClass: | 
|  | // C doesn't have any binary expressions that are lvalues. | 
|  | if (Lang.CPlusPlus) | 
|  | return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E)); | 
|  | return Cl::CL_PRValue; | 
|  |  | 
|  | case Expr::CallExprClass: | 
|  | case Expr::CXXOperatorCallExprClass: | 
|  | case Expr::CXXMemberCallExprClass: | 
|  | case Expr::UserDefinedLiteralClass: | 
|  | case Expr::CUDAKernelCallExprClass: | 
|  | return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType(Ctx)); | 
|  |  | 
|  | case Expr::CXXRewrittenBinaryOperatorClass: | 
|  | return ClassifyInternal( | 
|  | Ctx, cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); | 
|  |  | 
|  | // __builtin_choose_expr is equivalent to the chosen expression. | 
|  | case Expr::ChooseExprClass: | 
|  | return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr()); | 
|  |  | 
|  | // Extended vector element access is an lvalue unless there are duplicates | 
|  | // in the shuffle expression. | 
|  | case Expr::ExtVectorElementExprClass: | 
|  | if (cast<ExtVectorElementExpr>(E)->containsDuplicateElements()) | 
|  | return Cl::CL_DuplicateVectorComponents; | 
|  | if (cast<ExtVectorElementExpr>(E)->isArrow()) | 
|  | return Cl::CL_LValue; | 
|  | return ClassifyInternal(Ctx, cast<ExtVectorElementExpr>(E)->getBase()); | 
|  |  | 
|  | // Simply look at the actual default argument. | 
|  | case Expr::CXXDefaultArgExprClass: | 
|  | return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr()); | 
|  |  | 
|  | // Same idea for default initializers. | 
|  | case Expr::CXXDefaultInitExprClass: | 
|  | return ClassifyInternal(Ctx, cast<CXXDefaultInitExpr>(E)->getExpr()); | 
|  |  | 
|  | // Same idea for temporary binding. | 
|  | case Expr::CXXBindTemporaryExprClass: | 
|  | return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr()); | 
|  |  | 
|  | // And the cleanups guard. | 
|  | case Expr::ExprWithCleanupsClass: | 
|  | return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr()); | 
|  |  | 
|  | // Casts depend completely on the target type. All casts work the same. | 
|  | case Expr::CStyleCastExprClass: | 
|  | case Expr::CXXFunctionalCastExprClass: | 
|  | case Expr::CXXStaticCastExprClass: | 
|  | case Expr::CXXDynamicCastExprClass: | 
|  | case Expr::CXXReinterpretCastExprClass: | 
|  | case Expr::CXXConstCastExprClass: | 
|  | case Expr::CXXAddrspaceCastExprClass: | 
|  | case Expr::ObjCBridgedCastExprClass: | 
|  | case Expr::BuiltinBitCastExprClass: | 
|  | // Only in C++ can casts be interesting at all. | 
|  | if (!Lang.CPlusPlus) return Cl::CL_PRValue; | 
|  | return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten()); | 
|  |  | 
|  | case Expr::CXXUnresolvedConstructExprClass: | 
|  | return ClassifyUnnamed(Ctx, | 
|  | cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten()); | 
|  |  | 
|  | case Expr::BinaryConditionalOperatorClass: { | 
|  | if (!Lang.CPlusPlus) return Cl::CL_PRValue; | 
|  | const auto *co = cast<BinaryConditionalOperator>(E); | 
|  | return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); | 
|  | } | 
|  |  | 
|  | case Expr::ConditionalOperatorClass: { | 
|  | // Once again, only C++ is interesting. | 
|  | if (!Lang.CPlusPlus) return Cl::CL_PRValue; | 
|  | const auto *co = cast<ConditionalOperator>(E); | 
|  | return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); | 
|  | } | 
|  |  | 
|  | // ObjC message sends are effectively function calls, if the target function | 
|  | // is known. | 
|  | case Expr::ObjCMessageExprClass: | 
|  | if (const ObjCMethodDecl *Method = | 
|  | cast<ObjCMessageExpr>(E)->getMethodDecl()) { | 
|  | Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getReturnType()); | 
|  | return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind; | 
|  | } | 
|  | return Cl::CL_PRValue; | 
|  |  | 
|  | // Some C++ expressions are always class temporaries. | 
|  | case Expr::CXXConstructExprClass: | 
|  | case Expr::CXXInheritedCtorInitExprClass: | 
|  | case Expr::CXXTemporaryObjectExprClass: | 
|  | case Expr::LambdaExprClass: | 
|  | case Expr::CXXStdInitializerListExprClass: | 
|  | return Cl::CL_ClassTemporary; | 
|  |  | 
|  | case Expr::VAArgExprClass: | 
|  | return ClassifyUnnamed(Ctx, E->getType()); | 
|  |  | 
|  | case Expr::DesignatedInitExprClass: | 
|  | return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit()); | 
|  |  | 
|  | case Expr::StmtExprClass: { | 
|  | const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt(); | 
|  | if (const auto *LastExpr = dyn_cast_or_null<Expr>(S->body_back())) | 
|  | return ClassifyUnnamed(Ctx, LastExpr->getType()); | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | case Expr::PackExpansionExprClass: | 
|  | return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern()); | 
|  |  | 
|  | case Expr::MaterializeTemporaryExprClass: | 
|  | return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference() | 
|  | ? Cl::CL_LValue | 
|  | : Cl::CL_XValue; | 
|  |  | 
|  | case Expr::InitListExprClass: | 
|  | // An init list can be an lvalue if it is bound to a reference and | 
|  | // contains only one element. In that case, we look at that element | 
|  | // for an exact classification. Init list creation takes care of the | 
|  | // value kind for us, so we only need to fine-tune. | 
|  | if (E->isPRValue()) | 
|  | return ClassifyExprValueKind(Lang, E, E->getValueKind()); | 
|  | assert(cast<InitListExpr>(E)->getNumInits() == 1 && | 
|  | "Only 1-element init lists can be glvalues."); | 
|  | return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0)); | 
|  |  | 
|  | case Expr::CoawaitExprClass: | 
|  | case Expr::CoyieldExprClass: | 
|  | return ClassifyInternal(Ctx, cast<CoroutineSuspendExpr>(E)->getResumeExpr()); | 
|  | case Expr::SYCLUniqueStableNameExprClass: | 
|  | return Cl::CL_PRValue; | 
|  | break; | 
|  |  | 
|  | case Expr::CXXParenListInitExprClass: | 
|  | if (isa<ArrayType>(E->getType())) | 
|  | return Cl::CL_ArrayTemporary; | 
|  | return Cl::CL_ClassTemporary; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unhandled expression kind in classification"); | 
|  | } | 
|  |  | 
|  | /// ClassifyDecl - Return the classification of an expression referencing the | 
|  | /// given declaration. | 
|  | static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) { | 
|  | // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a | 
|  | //   function, variable, or data member and a prvalue otherwise. | 
|  | // In C, functions are not lvalues. | 
|  | // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an | 
|  | // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to | 
|  | // special-case this. | 
|  |  | 
|  | if (const auto *M = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (M->isImplicitObjectMemberFunction()) | 
|  | return Cl::CL_MemberFunction; | 
|  | if (M->isStatic()) | 
|  | return Cl::CL_LValue; | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | bool islvalue; | 
|  | if (const auto *NTTParm = dyn_cast<NonTypeTemplateParmDecl>(D)) | 
|  | islvalue = NTTParm->getType()->isReferenceType() || | 
|  | NTTParm->getType()->isRecordType(); | 
|  | else | 
|  | islvalue = | 
|  | isa<VarDecl, FieldDecl, IndirectFieldDecl, BindingDecl, MSGuidDecl, | 
|  | UnnamedGlobalConstantDecl, TemplateParamObjectDecl>(D) || | 
|  | (Ctx.getLangOpts().CPlusPlus && | 
|  | (isa<FunctionDecl, MSPropertyDecl, FunctionTemplateDecl>(D))); | 
|  |  | 
|  | return islvalue ? Cl::CL_LValue : Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | /// ClassifyUnnamed - Return the classification of an expression yielding an | 
|  | /// unnamed value of the given type. This applies in particular to function | 
|  | /// calls and casts. | 
|  | static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) { | 
|  | // In C, function calls are always rvalues. | 
|  | if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue; | 
|  |  | 
|  | // C++ [expr.call]p10: A function call is an lvalue if the result type is an | 
|  | //   lvalue reference type or an rvalue reference to function type, an xvalue | 
|  | //   if the result type is an rvalue reference to object type, and a prvalue | 
|  | //   otherwise. | 
|  | if (T->isLValueReferenceType()) | 
|  | return Cl::CL_LValue; | 
|  | const auto *RV = T->getAs<RValueReferenceType>(); | 
|  | if (!RV) // Could still be a class temporary, though. | 
|  | return ClassifyTemporary(T); | 
|  |  | 
|  | return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue; | 
|  | } | 
|  |  | 
|  | static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) { | 
|  | if (E->getType() == Ctx.UnknownAnyTy) | 
|  | return (isa<FunctionDecl>(E->getMemberDecl()) | 
|  | ? Cl::CL_PRValue : Cl::CL_LValue); | 
|  |  | 
|  | // Handle C first, it's easier. | 
|  | if (!Ctx.getLangOpts().CPlusPlus) { | 
|  | // C99 6.5.2.3p3 | 
|  | // For dot access, the expression is an lvalue if the first part is. For | 
|  | // arrow access, it always is an lvalue. | 
|  | if (E->isArrow()) | 
|  | return Cl::CL_LValue; | 
|  | // ObjC property accesses are not lvalues, but get special treatment. | 
|  | Expr *Base = E->getBase()->IgnoreParens(); | 
|  | if (isa<ObjCPropertyRefExpr>(Base)) | 
|  | return Cl::CL_SubObjCPropertySetting; | 
|  | return ClassifyInternal(Ctx, Base); | 
|  | } | 
|  |  | 
|  | NamedDecl *Member = E->getMemberDecl(); | 
|  | // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2. | 
|  | // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then | 
|  | //   E1.E2 is an lvalue. | 
|  | if (const auto *Value = dyn_cast<ValueDecl>(Member)) | 
|  | if (Value->getType()->isReferenceType()) | 
|  | return Cl::CL_LValue; | 
|  |  | 
|  | //   Otherwise, one of the following rules applies. | 
|  | //   -- If E2 is a static member [...] then E1.E2 is an lvalue. | 
|  | if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) | 
|  | return Cl::CL_LValue; | 
|  |  | 
|  | //   -- If E2 is a non-static data member [...]. If E1 is an lvalue, then | 
|  | //      E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; | 
|  | //      otherwise, it is a prvalue. | 
|  | if (isa<FieldDecl>(Member)) { | 
|  | // *E1 is an lvalue | 
|  | if (E->isArrow()) | 
|  | return Cl::CL_LValue; | 
|  | Expr *Base = E->getBase()->IgnoreParenImpCasts(); | 
|  | if (isa<ObjCPropertyRefExpr>(Base)) | 
|  | return Cl::CL_SubObjCPropertySetting; | 
|  | return ClassifyInternal(Ctx, E->getBase()); | 
|  | } | 
|  |  | 
|  | //   -- If E2 is a [...] member function, [...] | 
|  | //      -- If it refers to a static member function [...], then E1.E2 is an | 
|  | //         lvalue; [...] | 
|  | //      -- Otherwise [...] E1.E2 is a prvalue. | 
|  | if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) { | 
|  | if (Method->isStatic()) | 
|  | return Cl::CL_LValue; | 
|  | if (Method->isImplicitObjectMemberFunction()) | 
|  | return Cl::CL_MemberFunction; | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | //   -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue. | 
|  | // So is everything else we haven't handled yet. | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) { | 
|  | assert(Ctx.getLangOpts().CPlusPlus && | 
|  | "This is only relevant for C++."); | 
|  | // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand. | 
|  | // Except we override this for writes to ObjC properties. | 
|  | if (E->isAssignmentOp()) | 
|  | return (E->getLHS()->getObjectKind() == OK_ObjCProperty | 
|  | ? Cl::CL_PRValue : Cl::CL_LValue); | 
|  |  | 
|  | // C++ [expr.comma]p1: the result is of the same value category as its right | 
|  | //   operand, [...]. | 
|  | if (E->getOpcode() == BO_Comma) | 
|  | return ClassifyInternal(Ctx, E->getRHS()); | 
|  |  | 
|  | // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand | 
|  | //   is a pointer to a data member is of the same value category as its first | 
|  | //   operand. | 
|  | if (E->getOpcode() == BO_PtrMemD) | 
|  | return (E->getType()->isFunctionType() || | 
|  | E->hasPlaceholderType(BuiltinType::BoundMember)) | 
|  | ? Cl::CL_MemberFunction | 
|  | : ClassifyInternal(Ctx, E->getLHS()); | 
|  |  | 
|  | // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its | 
|  | //   second operand is a pointer to data member and a prvalue otherwise. | 
|  | if (E->getOpcode() == BO_PtrMemI) | 
|  | return (E->getType()->isFunctionType() || | 
|  | E->hasPlaceholderType(BuiltinType::BoundMember)) | 
|  | ? Cl::CL_MemberFunction | 
|  | : Cl::CL_LValue; | 
|  |  | 
|  | // All other binary operations are prvalues. | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True, | 
|  | const Expr *False) { | 
|  | assert(Ctx.getLangOpts().CPlusPlus && | 
|  | "This is only relevant for C++."); | 
|  |  | 
|  | // C++ [expr.cond]p2 | 
|  | //   If either the second or the third operand has type (cv) void, | 
|  | //   one of the following shall hold: | 
|  | if (True->getType()->isVoidType() || False->getType()->isVoidType()) { | 
|  | // The second or the third operand (but not both) is a (possibly | 
|  | // parenthesized) throw-expression; the result is of the [...] value | 
|  | // category of the other. | 
|  | bool TrueIsThrow = isa<CXXThrowExpr>(True->IgnoreParenImpCasts()); | 
|  | bool FalseIsThrow = isa<CXXThrowExpr>(False->IgnoreParenImpCasts()); | 
|  | if (const Expr *NonThrow = TrueIsThrow ? (FalseIsThrow ? nullptr : False) | 
|  | : (FalseIsThrow ? True : nullptr)) | 
|  | return ClassifyInternal(Ctx, NonThrow); | 
|  |  | 
|  | //   [Otherwise] the result [...] is a prvalue. | 
|  | return Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | // Note that at this point, we have already performed all conversions | 
|  | // according to [expr.cond]p3. | 
|  | // C++ [expr.cond]p4: If the second and third operands are glvalues of the | 
|  | //   same value category [...], the result is of that [...] value category. | 
|  | // C++ [expr.cond]p5: Otherwise, the result is a prvalue. | 
|  | Cl::Kinds LCl = ClassifyInternal(Ctx, True), | 
|  | RCl = ClassifyInternal(Ctx, False); | 
|  | return LCl == RCl ? LCl : Cl::CL_PRValue; | 
|  | } | 
|  |  | 
|  | static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, | 
|  | Cl::Kinds Kind, SourceLocation &Loc) { | 
|  | // As a general rule, we only care about lvalues. But there are some rvalues | 
|  | // for which we want to generate special results. | 
|  | if (Kind == Cl::CL_PRValue) { | 
|  | // For the sake of better diagnostics, we want to specifically recognize | 
|  | // use of the GCC cast-as-lvalue extension. | 
|  | if (const auto *CE = dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) { | 
|  | if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) { | 
|  | Loc = CE->getExprLoc(); | 
|  | return Cl::CM_LValueCast; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Kind != Cl::CL_LValue) | 
|  | return Cl::CM_RValue; | 
|  |  | 
|  | // This is the lvalue case. | 
|  | // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6) | 
|  | if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType()) | 
|  | return Cl::CM_Function; | 
|  |  | 
|  | // Assignment to a property in ObjC is an implicit setter access. But a | 
|  | // setter might not exist. | 
|  | if (const auto *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) { | 
|  | if (Expr->isImplicitProperty() && | 
|  | Expr->getImplicitPropertySetter() == nullptr) | 
|  | return Cl::CM_NoSetterProperty; | 
|  | } | 
|  |  | 
|  | CanQualType CT = Ctx.getCanonicalType(E->getType()); | 
|  | // Const stuff is obviously not modifiable. | 
|  | if (CT.isConstQualified()) | 
|  | return Cl::CM_ConstQualified; | 
|  | if (Ctx.getLangOpts().OpenCL && | 
|  | CT.getQualifiers().getAddressSpace() == LangAS::opencl_constant) | 
|  | return Cl::CM_ConstAddrSpace; | 
|  |  | 
|  | // Arrays are not modifiable, only their elements are. | 
|  | if (CT->isArrayType()) | 
|  | return Cl::CM_ArrayType; | 
|  | // Incomplete types are not modifiable. | 
|  | if (CT->isIncompleteType()) | 
|  | return Cl::CM_IncompleteType; | 
|  |  | 
|  | // Records with any const fields (recursively) are not modifiable. | 
|  | if (const RecordType *R = CT->getAs<RecordType>()) | 
|  | if (R->hasConstFields()) | 
|  | return Cl::CM_ConstQualifiedField; | 
|  |  | 
|  | return Cl::CM_Modifiable; | 
|  | } | 
|  |  | 
|  | Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const { | 
|  | Classification VC = Classify(Ctx); | 
|  | switch (VC.getKind()) { | 
|  | case Cl::CL_LValue: return LV_Valid; | 
|  | case Cl::CL_XValue: return LV_InvalidExpression; | 
|  | case Cl::CL_Function: return LV_NotObjectType; | 
|  | case Cl::CL_Void: return LV_InvalidExpression; | 
|  | case Cl::CL_AddressableVoid: return LV_IncompleteVoidType; | 
|  | case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents; | 
|  | case Cl::CL_MemberFunction: return LV_MemberFunction; | 
|  | case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting; | 
|  | case Cl::CL_ClassTemporary: return LV_ClassTemporary; | 
|  | case Cl::CL_ArrayTemporary: return LV_ArrayTemporary; | 
|  | case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression; | 
|  | case Cl::CL_PRValue: return LV_InvalidExpression; | 
|  | } | 
|  | llvm_unreachable("Unhandled kind"); | 
|  | } | 
|  |  | 
|  | Expr::isModifiableLvalueResult | 
|  | Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { | 
|  | SourceLocation dummy; | 
|  | Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy); | 
|  | switch (VC.getKind()) { | 
|  | case Cl::CL_LValue: break; | 
|  | case Cl::CL_XValue: return MLV_InvalidExpression; | 
|  | case Cl::CL_Function: return MLV_NotObjectType; | 
|  | case Cl::CL_Void: return MLV_InvalidExpression; | 
|  | case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType; | 
|  | case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; | 
|  | case Cl::CL_MemberFunction: return MLV_MemberFunction; | 
|  | case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; | 
|  | case Cl::CL_ClassTemporary: return MLV_ClassTemporary; | 
|  | case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary; | 
|  | case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression; | 
|  | case Cl::CL_PRValue: | 
|  | return VC.getModifiable() == Cl::CM_LValueCast ? | 
|  | MLV_LValueCast : MLV_InvalidExpression; | 
|  | } | 
|  | assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind"); | 
|  | switch (VC.getModifiable()) { | 
|  | case Cl::CM_Untested: llvm_unreachable("Did not test modifiability"); | 
|  | case Cl::CM_Modifiable: return MLV_Valid; | 
|  | case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match"); | 
|  | case Cl::CM_Function: return MLV_NotObjectType; | 
|  | case Cl::CM_LValueCast: | 
|  | llvm_unreachable("CM_LValueCast and CL_LValue don't match"); | 
|  | case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty; | 
|  | case Cl::CM_ConstQualified: return MLV_ConstQualified; | 
|  | case Cl::CM_ConstQualifiedField: return MLV_ConstQualifiedField; | 
|  | case Cl::CM_ConstAddrSpace: return MLV_ConstAddrSpace; | 
|  | case Cl::CM_ArrayType: return MLV_ArrayType; | 
|  | case Cl::CM_IncompleteType: return MLV_IncompleteType; | 
|  | } | 
|  | llvm_unreachable("Unhandled modifiable type"); | 
|  | } |