blob: 2b649f79c59827c23c5116de1faceb54bb776276 [file] [log] [blame] [edit]
//===- Rewrite.cpp - Rewrite ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Rewrite.h"
#include "mlir-c/IR.h"
#include "mlir-c/Rewrite.h"
#include "mlir-c/Support.h"
#include "mlir/Bindings/Python/IRCore.h"
// clang-format off
#include "mlir/Bindings/Python/Nanobind.h"
#include "mlir-c/Bindings/Python/Interop.h" // This is expected after nanobind.
// clang-format on
#include "mlir/Config/mlir-config.h"
#include "nanobind/nanobind.h"
namespace nb = nanobind;
using namespace mlir;
using namespace nb::literals;
using namespace mlir::python::MLIR_BINDINGS_PYTHON_DOMAIN;
namespace mlir {
namespace python {
namespace MLIR_BINDINGS_PYTHON_DOMAIN {
class PyPatternRewriter {
public:
PyPatternRewriter(MlirPatternRewriter rewriter)
: base(mlirPatternRewriterAsBase(rewriter)),
ctx(PyMlirContext::forContext(mlirRewriterBaseGetContext(base))) {}
PyInsertionPoint getInsertionPoint() const {
MlirBlock block = mlirRewriterBaseGetInsertionBlock(base);
MlirOperation op = mlirRewriterBaseGetOperationAfterInsertion(base);
if (mlirOperationIsNull(op)) {
MlirOperation owner = mlirBlockGetParentOperation(block);
auto parent = PyOperation::forOperation(ctx, owner);
return PyInsertionPoint(PyBlock(parent, block));
}
return PyInsertionPoint(PyOperation::forOperation(ctx, op));
}
void replaceOp(MlirOperation op, MlirOperation newOp) {
mlirRewriterBaseReplaceOpWithOperation(base, op, newOp);
}
void replaceOp(MlirOperation op, const std::vector<MlirValue> &values) {
mlirRewriterBaseReplaceOpWithValues(base, op, values.size(), values.data());
}
void eraseOp(const PyOperation &op) { mlirRewriterBaseEraseOp(base, op); }
private:
MlirRewriterBase base;
PyMlirContextRef ctx;
};
struct PyMlirPDLResultList : MlirPDLResultList {};
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
static nb::object objectFromPDLValue(MlirPDLValue value) {
if (MlirValue v = mlirPDLValueAsValue(value); !mlirValueIsNull(v))
return nb::cast(v);
if (MlirOperation v = mlirPDLValueAsOperation(value); !mlirOperationIsNull(v))
return nb::cast(v);
if (MlirAttribute v = mlirPDLValueAsAttribute(value); !mlirAttributeIsNull(v))
return nb::cast(v);
if (MlirType v = mlirPDLValueAsType(value); !mlirTypeIsNull(v))
return nb::cast(v);
throw std::runtime_error("unsupported PDL value type");
}
static std::vector<nb::object> objectsFromPDLValues(size_t nValues,
MlirPDLValue *values) {
std::vector<nb::object> args;
args.reserve(nValues);
for (size_t i = 0; i < nValues; ++i)
args.push_back(objectFromPDLValue(values[i]));
return args;
}
// Convert the Python object to a boolean.
// If it evaluates to False, treat it as success;
// otherwise, treat it as failure.
// Note that None is considered success.
static MlirLogicalResult logicalResultFromObject(const nb::object &obj) {
if (obj.is_none())
return mlirLogicalResultSuccess();
return nb::cast<bool>(obj) ? mlirLogicalResultFailure()
: mlirLogicalResultSuccess();
}
/// Owning Wrapper around a PDLPatternModule.
class PyPDLPatternModule {
public:
PyPDLPatternModule(MlirPDLPatternModule module) : module(module) {}
PyPDLPatternModule(PyPDLPatternModule &&other) noexcept
: module(other.module) {
other.module.ptr = nullptr;
}
~PyPDLPatternModule() {
if (module.ptr != nullptr)
mlirPDLPatternModuleDestroy(module);
}
MlirPDLPatternModule get() { return module; }
void registerRewriteFunction(const std::string &name,
const nb::callable &fn) {
mlirPDLPatternModuleRegisterRewriteFunction(
get(), mlirStringRefCreate(name.data(), name.size()),
[](MlirPatternRewriter rewriter, MlirPDLResultList results,
size_t nValues, MlirPDLValue *values,
void *userData) -> MlirLogicalResult {
nb::handle f = nb::handle(static_cast<PyObject *>(userData));
return logicalResultFromObject(
f(PyPatternRewriter(rewriter), PyMlirPDLResultList{results.ptr},
objectsFromPDLValues(nValues, values)));
},
fn.ptr());
}
void registerConstraintFunction(const std::string &name,
const nb::callable &fn) {
mlirPDLPatternModuleRegisterConstraintFunction(
get(), mlirStringRefCreate(name.data(), name.size()),
[](MlirPatternRewriter rewriter, MlirPDLResultList results,
size_t nValues, MlirPDLValue *values,
void *userData) -> MlirLogicalResult {
nb::handle f = nb::handle(static_cast<PyObject *>(userData));
return logicalResultFromObject(
f(PyPatternRewriter(rewriter), PyMlirPDLResultList{results.ptr},
objectsFromPDLValues(nValues, values)));
},
fn.ptr());
}
private:
MlirPDLPatternModule module;
};
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
/// Owning Wrapper around a FrozenRewritePatternSet.
class PyFrozenRewritePatternSet {
public:
PyFrozenRewritePatternSet(MlirFrozenRewritePatternSet set) : set(set) {}
PyFrozenRewritePatternSet(PyFrozenRewritePatternSet &&other) noexcept
: set(other.set) {
other.set.ptr = nullptr;
}
~PyFrozenRewritePatternSet() {
if (set.ptr != nullptr)
mlirFrozenRewritePatternSetDestroy(set);
}
MlirFrozenRewritePatternSet get() { return set; }
nb::object getCapsule() {
return nb::steal<nb::object>(
mlirPythonFrozenRewritePatternSetToCapsule(get()));
}
static nb::object createFromCapsule(const nb::object &capsule) {
MlirFrozenRewritePatternSet rawPm =
mlirPythonCapsuleToFrozenRewritePatternSet(capsule.ptr());
if (rawPm.ptr == nullptr)
throw nb::python_error();
return nb::cast(PyFrozenRewritePatternSet(rawPm), nb::rv_policy::move);
}
private:
MlirFrozenRewritePatternSet set;
};
class PyRewritePatternSet {
public:
PyRewritePatternSet(MlirContext ctx)
: set(mlirRewritePatternSetCreate(ctx)), ctx(ctx) {}
~PyRewritePatternSet() {
if (set.ptr)
mlirRewritePatternSetDestroy(set);
}
void add(MlirStringRef rootName, unsigned benefit,
const nb::callable &matchAndRewrite) {
MlirRewritePatternCallbacks callbacks;
callbacks.construct = [](void *userData) {
nb::handle(static_cast<PyObject *>(userData)).inc_ref();
};
callbacks.destruct = [](void *userData) {
nb::handle(static_cast<PyObject *>(userData)).dec_ref();
};
callbacks.matchAndRewrite = [](MlirRewritePattern, MlirOperation op,
MlirPatternRewriter rewriter,
void *userData) -> MlirLogicalResult {
nb::handle f(static_cast<PyObject *>(userData));
PyMlirContextRef ctx =
PyMlirContext::forContext(mlirOperationGetContext(op));
nb::object opView = PyOperation::forOperation(ctx, op)->createOpView();
nb::object res = f(opView, PyPatternRewriter(rewriter));
return logicalResultFromObject(res);
};
MlirRewritePattern pattern = mlirOpRewritePatternCreate(
rootName, benefit, ctx, callbacks, matchAndRewrite.ptr(),
/* nGeneratedNames */ 0,
/* generatedNames */ nullptr);
mlirRewritePatternSetAdd(set, pattern);
}
PyFrozenRewritePatternSet freeze() {
MlirRewritePatternSet s = set;
set.ptr = nullptr;
return mlirFreezeRewritePattern(s);
}
private:
MlirRewritePatternSet set;
MlirContext ctx;
};
enum class PyGreedyRewriteStrictness : std::underlying_type_t<
MlirGreedyRewriteStrictness> {
ANY_OP = MLIR_GREEDY_REWRITE_STRICTNESS_ANY_OP,
EXISTING_AND_NEW_OPS = MLIR_GREEDY_REWRITE_STRICTNESS_EXISTING_AND_NEW_OPS,
EXISTING_OPS = MLIR_GREEDY_REWRITE_STRICTNESS_EXISTING_OPS,
};
enum class PyGreedySimplifyRegionLevel : std::underlying_type_t<
MlirGreedySimplifyRegionLevel> {
DISABLED = MLIR_GREEDY_SIMPLIFY_REGION_LEVEL_DISABLED,
NORMAL = MLIR_GREEDY_SIMPLIFY_REGION_LEVEL_NORMAL,
AGGRESSIVE = MLIR_GREEDY_SIMPLIFY_REGION_LEVEL_AGGRESSIVE
};
/// Owning Wrapper around a GreedyRewriteDriverConfig.
class PyGreedyRewriteConfig {
public:
PyGreedyRewriteConfig()
: config(mlirGreedyRewriteDriverConfigCreate().ptr,
PyGreedyRewriteConfig::customDeleter) {}
PyGreedyRewriteConfig(PyGreedyRewriteConfig &&other) noexcept
: config(std::move(other.config)) {}
PyGreedyRewriteConfig(const PyGreedyRewriteConfig &other) noexcept
: config(other.config) {}
MlirGreedyRewriteDriverConfig get() {
return MlirGreedyRewriteDriverConfig{config.get()};
}
void setMaxIterations(int64_t maxIterations) {
mlirGreedyRewriteDriverConfigSetMaxIterations(get(), maxIterations);
}
void setMaxNumRewrites(int64_t maxNumRewrites) {
mlirGreedyRewriteDriverConfigSetMaxNumRewrites(get(), maxNumRewrites);
}
void setUseTopDownTraversal(bool useTopDownTraversal) {
mlirGreedyRewriteDriverConfigSetUseTopDownTraversal(get(),
useTopDownTraversal);
}
void enableFolding(bool enable) {
mlirGreedyRewriteDriverConfigEnableFolding(get(), enable);
}
void setStrictness(PyGreedyRewriteStrictness strictness) {
mlirGreedyRewriteDriverConfigSetStrictness(
get(), static_cast<MlirGreedyRewriteStrictness>(strictness));
}
void setRegionSimplificationLevel(PyGreedySimplifyRegionLevel level) {
mlirGreedyRewriteDriverConfigSetRegionSimplificationLevel(
get(), static_cast<MlirGreedySimplifyRegionLevel>(level));
}
void enableConstantCSE(bool enable) {
mlirGreedyRewriteDriverConfigEnableConstantCSE(get(), enable);
}
int64_t getMaxIterations() {
return mlirGreedyRewriteDriverConfigGetMaxIterations(get());
}
int64_t getMaxNumRewrites() {
return mlirGreedyRewriteDriverConfigGetMaxNumRewrites(get());
}
bool getUseTopDownTraversal() {
return mlirGreedyRewriteDriverConfigGetUseTopDownTraversal(get());
}
bool isFoldingEnabled() {
return mlirGreedyRewriteDriverConfigIsFoldingEnabled(get());
}
PyGreedyRewriteStrictness getStrictness() {
return static_cast<PyGreedyRewriteStrictness>(
mlirGreedyRewriteDriverConfigGetStrictness(get()));
}
PyGreedySimplifyRegionLevel getRegionSimplificationLevel() {
return static_cast<PyGreedySimplifyRegionLevel>(
mlirGreedyRewriteDriverConfigGetRegionSimplificationLevel(get()));
}
bool isConstantCSEEnabled() {
return mlirGreedyRewriteDriverConfigIsConstantCSEEnabled(get());
}
private:
std::shared_ptr<void> config;
static void customDeleter(void *c) {
mlirGreedyRewriteDriverConfigDestroy(MlirGreedyRewriteDriverConfig{c});
}
};
/// Create the `mlir.rewrite` here.
void populateRewriteSubmodule(nb::module_ &m) {
// Enum definitions
nb::enum_<PyGreedyRewriteStrictness>(m, "GreedyRewriteStrictness")
.value("ANY_OP", PyGreedyRewriteStrictness::ANY_OP)
.value("EXISTING_AND_NEW_OPS",
PyGreedyRewriteStrictness::EXISTING_AND_NEW_OPS)
.value("EXISTING_OPS", PyGreedyRewriteStrictness::EXISTING_OPS);
nb::enum_<PyGreedySimplifyRegionLevel>(m, "GreedySimplifyRegionLevel")
.value("DISABLED", PyGreedySimplifyRegionLevel::DISABLED)
.value("NORMAL", PyGreedySimplifyRegionLevel::NORMAL)
.value("AGGRESSIVE", PyGreedySimplifyRegionLevel::AGGRESSIVE);
//----------------------------------------------------------------------------
// Mapping of the PatternRewriter
//----------------------------------------------------------------------------
nb::class_<PyPatternRewriter>(m, "PatternRewriter")
.def_prop_ro("ip", &PyPatternRewriter::getInsertionPoint,
"The current insertion point of the PatternRewriter.")
.def(
"replace_op",
[](PyPatternRewriter &self, PyOperationBase &op,
PyOperationBase &newOp) {
self.replaceOp(op.getOperation(), newOp.getOperation());
},
"Replace an operation with a new operation.", nb::arg("op"),
nb::arg("new_op"))
.def(
"replace_op",
[](PyPatternRewriter &self, PyOperationBase &op,
const std::vector<PyValue> &values) {
std::vector<MlirValue> values_(values.size());
std::copy(values.begin(), values.end(), values_.begin());
self.replaceOp(op.getOperation(), values_);
},
"Replace an operation with a list of values.", nb::arg("op"),
nb::arg("values"))
.def("erase_op", &PyPatternRewriter::eraseOp, "Erase an operation.",
nb::arg("op"));
//----------------------------------------------------------------------------
// Mapping of the RewritePatternSet
//----------------------------------------------------------------------------
nb::class_<PyRewritePatternSet>(m, "RewritePatternSet")
.def(
"__init__",
[](PyRewritePatternSet &self, DefaultingPyMlirContext context) {
new (&self) PyRewritePatternSet(context.get()->get());
},
"context"_a = nb::none())
.def(
"add",
[](PyRewritePatternSet &self, nb::handle root, const nb::callable &fn,
unsigned benefit) {
std::string opName;
if (root.is_type()) {
opName = nb::cast<std::string>(root.attr("OPERATION_NAME"));
} else if (nb::isinstance<nb::str>(root)) {
opName = nb::cast<std::string>(root);
} else {
throw nb::type_error(
"the root argument must be a type or a string");
}
self.add(mlirStringRefCreate(opName.data(), opName.size()), benefit,
fn);
},
"root"_a, "fn"_a, "benefit"_a = 1,
// clang-format off
nb::sig("def add(self, root: type | str, fn: typing.Callable[[" MAKE_MLIR_PYTHON_QUALNAME("ir.Operation") ", PatternRewriter], typing.Any], benefit: int = 1) -> None"),
// clang-format on
R"(
Add a new rewrite pattern on the specified root operation, using the provided callable
for matching and rewriting, and assign it the given benefit.
Args:
root: The root operation to which this pattern applies.
This may be either an OpView subclass (e.g., ``arith.AddIOp``) or
an operation name string (e.g., ``"arith.addi"``).
fn: The callable to use for matching and rewriting,
which takes an operation and a pattern rewriter as arguments.
The match is considered successful iff the callable returns
a value where ``bool(value)`` is ``False`` (e.g. ``None``).
If possible, the operation is cast to its corresponding OpView subclass
before being passed to the callable.
benefit: The benefit of the pattern, defaulting to 1.)")
.def("freeze", &PyRewritePatternSet::freeze,
"Freeze the pattern set into a frozen one.");
//----------------------------------------------------------------------------
// Mapping of the PDLResultList and PDLModule
//----------------------------------------------------------------------------
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
nb::class_<PyMlirPDLResultList>(m, "PDLResultList")
.def("append",
[](PyMlirPDLResultList results, const PyValue &value) {
mlirPDLResultListPushBackValue(results, value);
})
.def("append",
[](PyMlirPDLResultList results, const PyOperation &op) {
mlirPDLResultListPushBackOperation(results, op);
})
.def("append",
[](PyMlirPDLResultList results, const PyType &type) {
mlirPDLResultListPushBackType(results, type);
})
.def("append", [](PyMlirPDLResultList results, const PyAttribute &attr) {
mlirPDLResultListPushBackAttribute(results, attr);
});
nb::class_<PyPDLPatternModule>(m, "PDLModule")
.def(
"__init__",
[](PyPDLPatternModule &self, PyModule &module) {
new (&self) PyPDLPatternModule(
mlirPDLPatternModuleFromModule(module.get()));
},
"module"_a, "Create a PDL module from the given module.")
.def(
"__init__",
[](PyPDLPatternModule &self, PyModule &module) {
new (&self) PyPDLPatternModule(
mlirPDLPatternModuleFromModule(module.get()));
},
"module"_a, "Create a PDL module from the given module.")
.def(
"freeze",
[](PyPDLPatternModule &self) {
return PyFrozenRewritePatternSet(mlirFreezeRewritePattern(
mlirRewritePatternSetFromPDLPatternModule(self.get())));
},
nb::keep_alive<0, 1>())
.def(
"register_rewrite_function",
[](PyPDLPatternModule &self, const std::string &name,
const nb::callable &fn) {
self.registerRewriteFunction(name, fn);
},
nb::keep_alive<1, 3>())
.def(
"register_constraint_function",
[](PyPDLPatternModule &self, const std::string &name,
const nb::callable &fn) {
self.registerConstraintFunction(name, fn);
},
nb::keep_alive<1, 3>());
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
nb::class_<PyGreedyRewriteConfig>(m, "GreedyRewriteConfig")
.def(nb::init<>(), "Create a greedy rewrite driver config with defaults")
.def_prop_rw("max_iterations", &PyGreedyRewriteConfig::getMaxIterations,
&PyGreedyRewriteConfig::setMaxIterations,
"Maximum number of iterations")
.def_prop_rw("max_num_rewrites",
&PyGreedyRewriteConfig::getMaxNumRewrites,
&PyGreedyRewriteConfig::setMaxNumRewrites,
"Maximum number of rewrites per iteration")
.def_prop_rw("use_top_down_traversal",
&PyGreedyRewriteConfig::getUseTopDownTraversal,
&PyGreedyRewriteConfig::setUseTopDownTraversal,
"Whether to use top-down traversal")
.def_prop_rw("enable_folding", &PyGreedyRewriteConfig::isFoldingEnabled,
&PyGreedyRewriteConfig::enableFolding,
"Enable or disable folding")
.def_prop_rw("strictness", &PyGreedyRewriteConfig::getStrictness,
&PyGreedyRewriteConfig::setStrictness,
"Rewrite strictness level")
.def_prop_rw("region_simplification_level",
&PyGreedyRewriteConfig::getRegionSimplificationLevel,
&PyGreedyRewriteConfig::setRegionSimplificationLevel,
"Region simplification level")
.def_prop_rw("enable_constant_cse",
&PyGreedyRewriteConfig::isConstantCSEEnabled,
&PyGreedyRewriteConfig::enableConstantCSE,
"Enable or disable constant CSE");
nb::class_<PyFrozenRewritePatternSet>(m, "FrozenRewritePatternSet")
.def_prop_ro(MLIR_PYTHON_CAPI_PTR_ATTR,
&PyFrozenRewritePatternSet::getCapsule)
.def(MLIR_PYTHON_CAPI_FACTORY_ATTR,
&PyFrozenRewritePatternSet::createFromCapsule);
m.def(
"apply_patterns_and_fold_greedily",
[](PyModule &module, PyFrozenRewritePatternSet &set,
std::optional<PyGreedyRewriteConfig> config) {
MlirLogicalResult status = mlirApplyPatternsAndFoldGreedily(
module.get(), set.get(),
config.has_value() ? config->get()
: mlirGreedyRewriteDriverConfigCreate());
if (mlirLogicalResultIsFailure(status))
throw std::runtime_error("pattern application failed to converge");
},
"module"_a, "set"_a, "config"_a = nb::none(),
"Applys the given patterns to the given module greedily while folding "
"results.")
.def(
"apply_patterns_and_fold_greedily",
[](PyOperationBase &op, PyFrozenRewritePatternSet &set,
std::optional<PyGreedyRewriteConfig> config) {
MlirLogicalResult status = mlirApplyPatternsAndFoldGreedilyWithOp(
op.getOperation(), set.get(),
config.has_value() ? config->get()
: mlirGreedyRewriteDriverConfigCreate());
if (mlirLogicalResultIsFailure(status))
throw std::runtime_error(
"pattern application failed to converge");
},
"op"_a, "set"_a, "config"_a = nb::none(),
"Applys the given patterns to the given op greedily while folding "
"results.")
.def(
"walk_and_apply_patterns",
[](PyOperationBase &op, PyFrozenRewritePatternSet &set) {
mlirWalkAndApplyPatterns(op.getOperation(), set.get());
},
"op"_a, "set"_a,
"Applies the given patterns to the given op by a fast walk-based "
"driver.");
}
} // namespace MLIR_BINDINGS_PYTHON_DOMAIN
} // namespace python
} // namespace mlir