blob: 299961e100786cc8da1e26d0cb7ac3417feaad97 [file] [log] [blame] [edit]
//===- DialectLinalg.cpp - Nanobind module for Linalg dialect API support -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir-c/Dialect/Linalg.h"
#include "mlir-c/IR.h"
#include "mlir/Bindings/Python/IRAttributes.h"
#include "mlir/Bindings/Python/IRCore.h"
#include "mlir/Bindings/Python/Nanobind.h"
#include "mlir/Bindings/Python/NanobindAdaptors.h"
namespace nb = nanobind;
using namespace mlir::python::nanobind_adaptors;
namespace mlir {
namespace python {
namespace MLIR_BINDINGS_PYTHON_DOMAIN {
namespace linalg {
struct PyLinalgContractionDimensions : MlirLinalgContractionDimensions {
PyLinalgContractionDimensions(const MlirLinalgContractionDimensions &dims) {
batch = dims.batch;
m = dims.m;
n = dims.n;
k = dims.k;
}
};
struct PyLinalgConvolutionDimensions : MlirLinalgConvolutionDimensions {
PyLinalgConvolutionDimensions(const MlirLinalgConvolutionDimensions &dims) {
batch = dims.batch;
outputImage = dims.outputImage;
outputChannel = dims.outputChannel;
filterLoop = dims.filterLoop;
inputChannel = dims.inputChannel;
depth = dims.depth;
strides = dims.strides;
dilations = dims.dilations;
}
};
static std::optional<PyLinalgContractionDimensions>
InferContractionDimensions(PyOperationBase &op) {
MlirLinalgContractionDimensions dims =
mlirLinalgInferContractionDimensions(op.getOperation());
// Detect "empty" result. This occurs when `op` is not a contraction op,
// or when `linalg::inferContractionDims` fails.
if (mlirAttributeIsNull(dims.batch) && mlirAttributeIsNull(dims.m) &&
mlirAttributeIsNull(dims.n) && mlirAttributeIsNull(dims.k)) {
return std::nullopt;
}
return dims;
}
static std::optional<PyLinalgConvolutionDimensions>
InferConvolutionDimensions(PyOperationBase &op) {
MlirLinalgConvolutionDimensions dims =
mlirLinalgInferConvolutionDimensions(op.getOperation());
// Detect "empty" result. This occurs when `op` is not a convolution op,
// or when `linalg::inferConvolutionDims` fails.
if (mlirAttributeIsNull(dims.batch) &&
mlirAttributeIsNull(dims.outputImage) &&
mlirAttributeIsNull(dims.outputChannel) &&
mlirAttributeIsNull(dims.filterLoop) &&
mlirAttributeIsNull(dims.inputChannel) &&
mlirAttributeIsNull(dims.depth) && mlirAttributeIsNull(dims.strides) &&
mlirAttributeIsNull(dims.dilations)) {
return std::nullopt;
}
return dims;
}
static void populateDialectLinalgSubmodule(nb::module_ m) {
m.def(
"fill_builtin_region",
[](PyOperationBase &op) {
mlirLinalgFillBuiltinNamedOpRegion(op.getOperation());
},
nb::arg("op"),
"Fill the region for `op`, which is assumed to be a builtin named Linalg "
"op.");
m.def(
"isa_contraction_op",
[](PyOperationBase &op) {
return mlirLinalgIsAContractionOp(op.getOperation());
},
"Checks if the given operation is a Linalg contraction operation.",
nb::arg("op"));
nb::class_<PyLinalgContractionDimensions>(m, "ContractionDimensions")
.def_prop_ro(
"batch",
[](const PyLinalgContractionDimensions &self) { return self.batch; })
.def_prop_ro(
"m", [](const PyLinalgContractionDimensions &self) { return self.m; })
.def_prop_ro(
"n", [](const PyLinalgContractionDimensions &self) { return self.n; })
.def_prop_ro("k", [](const PyLinalgContractionDimensions &self) {
return self.k;
});
m.def("infer_contraction_dimensions", &InferContractionDimensions,
"Infers contraction dimensions (batch/m/n/k) for a Linalg contraction "
"op.",
nb::arg("op"));
m.def(
"infer_contraction_dimensions_from_maps",
[](std::vector<PyAffineMap> indexingMaps)
-> std::optional<PyLinalgContractionDimensions> {
if (indexingMaps.empty())
return std::nullopt;
std::vector<MlirAffineMap> indexingMaps_(indexingMaps.size());
std::copy(indexingMaps.begin(), indexingMaps.end(),
indexingMaps_.begin());
MlirLinalgContractionDimensions dims =
mlirLinalgInferContractionDimensionsFromMaps(indexingMaps_.data(),
indexingMaps_.size());
// Detect "empty" result from invalid input or failed inference.
if (mlirAttributeIsNull(dims.batch) && mlirAttributeIsNull(dims.m) &&
mlirAttributeIsNull(dims.n) && mlirAttributeIsNull(dims.k)) {
return std::nullopt;
}
return dims;
},
"Infers contraction dimensions (batch/m/n/k) from a list of affine "
"maps.",
nb::arg("indexing_maps"));
m.def(
"isa_convolution_op",
[](PyOperationBase &op) {
return mlirLinalgIsAConvolutionOp(op.getOperation());
},
"Checks if the given operation is a Linalg convolution operation.",
nb::arg("op"));
nb::class_<PyLinalgConvolutionDimensions>(m, "ConvolutionDimensions")
.def_prop_ro(
"batch",
[](const PyLinalgConvolutionDimensions &self) { return self.batch; })
.def_prop_ro("output_image",
[](const PyLinalgConvolutionDimensions &self) {
return self.outputImage;
})
.def_prop_ro("output_channel",
[](const PyLinalgConvolutionDimensions &self) {
return self.outputChannel;
})
.def_prop_ro("filter_loop",
[](const PyLinalgConvolutionDimensions &self) {
return self.filterLoop;
})
.def_prop_ro("input_channel",
[](const PyLinalgConvolutionDimensions &self) {
return self.inputChannel;
})
.def_prop_ro(
"depth",
[](const PyLinalgConvolutionDimensions &self) { return self.depth; })
.def_prop_ro("strides",
[](const PyLinalgConvolutionDimensions &self) {
return self.strides;
})
.def_prop_ro("dilations", [](const PyLinalgConvolutionDimensions &self) {
return self.dilations;
});
m.def("infer_convolution_dimensions", &InferConvolutionDimensions,
"Infers convolution dimensions", nb::arg("op"));
m.def(
"get_indexing_maps",
[](PyOperationBase &op) -> std::optional<PyArrayAttribute> {
MlirAttribute attr =
mlirLinalgGetIndexingMapsAttribute(op.getOperation());
if (mlirAttributeIsNull(attr))
return std::nullopt;
return PyArrayAttribute(op.getOperation().getContext(), attr);
},
"Returns the indexing_maps attribute for a linalg op.");
}
} // namespace linalg
} // namespace MLIR_BINDINGS_PYTHON_DOMAIN
} // namespace python
} // namespace mlir
NB_MODULE(_mlirDialectsLinalg, m) {
m.doc() = "MLIR Linalg dialect.";
mlir::python::MLIR_BINDINGS_PYTHON_DOMAIN::linalg::
populateDialectLinalgSubmodule(m);
}