| //===- DialectLinalg.cpp - Nanobind module for Linalg dialect API support -===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir-c/Dialect/Linalg.h" |
| #include "mlir-c/IR.h" |
| #include "mlir/Bindings/Python/IRAttributes.h" |
| #include "mlir/Bindings/Python/IRCore.h" |
| #include "mlir/Bindings/Python/Nanobind.h" |
| #include "mlir/Bindings/Python/NanobindAdaptors.h" |
| |
| namespace nb = nanobind; |
| using namespace mlir::python::nanobind_adaptors; |
| namespace mlir { |
| namespace python { |
| namespace MLIR_BINDINGS_PYTHON_DOMAIN { |
| namespace linalg { |
| |
| struct PyLinalgContractionDimensions : MlirLinalgContractionDimensions { |
| PyLinalgContractionDimensions(const MlirLinalgContractionDimensions &dims) { |
| batch = dims.batch; |
| m = dims.m; |
| n = dims.n; |
| k = dims.k; |
| } |
| }; |
| |
| struct PyLinalgConvolutionDimensions : MlirLinalgConvolutionDimensions { |
| PyLinalgConvolutionDimensions(const MlirLinalgConvolutionDimensions &dims) { |
| batch = dims.batch; |
| outputImage = dims.outputImage; |
| outputChannel = dims.outputChannel; |
| filterLoop = dims.filterLoop; |
| inputChannel = dims.inputChannel; |
| depth = dims.depth; |
| strides = dims.strides; |
| dilations = dims.dilations; |
| } |
| }; |
| |
| static std::optional<PyLinalgContractionDimensions> |
| InferContractionDimensions(PyOperationBase &op) { |
| MlirLinalgContractionDimensions dims = |
| mlirLinalgInferContractionDimensions(op.getOperation()); |
| |
| // Detect "empty" result. This occurs when `op` is not a contraction op, |
| // or when `linalg::inferContractionDims` fails. |
| if (mlirAttributeIsNull(dims.batch) && mlirAttributeIsNull(dims.m) && |
| mlirAttributeIsNull(dims.n) && mlirAttributeIsNull(dims.k)) { |
| return std::nullopt; |
| } |
| return dims; |
| } |
| |
| static std::optional<PyLinalgConvolutionDimensions> |
| InferConvolutionDimensions(PyOperationBase &op) { |
| MlirLinalgConvolutionDimensions dims = |
| mlirLinalgInferConvolutionDimensions(op.getOperation()); |
| |
| // Detect "empty" result. This occurs when `op` is not a convolution op, |
| // or when `linalg::inferConvolutionDims` fails. |
| if (mlirAttributeIsNull(dims.batch) && |
| mlirAttributeIsNull(dims.outputImage) && |
| mlirAttributeIsNull(dims.outputChannel) && |
| mlirAttributeIsNull(dims.filterLoop) && |
| mlirAttributeIsNull(dims.inputChannel) && |
| mlirAttributeIsNull(dims.depth) && mlirAttributeIsNull(dims.strides) && |
| mlirAttributeIsNull(dims.dilations)) { |
| return std::nullopt; |
| } |
| |
| return dims; |
| } |
| |
| static void populateDialectLinalgSubmodule(nb::module_ m) { |
| m.def( |
| "fill_builtin_region", |
| [](PyOperationBase &op) { |
| mlirLinalgFillBuiltinNamedOpRegion(op.getOperation()); |
| }, |
| nb::arg("op"), |
| "Fill the region for `op`, which is assumed to be a builtin named Linalg " |
| "op."); |
| |
| m.def( |
| "isa_contraction_op", |
| [](PyOperationBase &op) { |
| return mlirLinalgIsAContractionOp(op.getOperation()); |
| }, |
| "Checks if the given operation is a Linalg contraction operation.", |
| nb::arg("op")); |
| |
| nb::class_<PyLinalgContractionDimensions>(m, "ContractionDimensions") |
| .def_prop_ro( |
| "batch", |
| [](const PyLinalgContractionDimensions &self) { return self.batch; }) |
| .def_prop_ro( |
| "m", [](const PyLinalgContractionDimensions &self) { return self.m; }) |
| .def_prop_ro( |
| "n", [](const PyLinalgContractionDimensions &self) { return self.n; }) |
| .def_prop_ro("k", [](const PyLinalgContractionDimensions &self) { |
| return self.k; |
| }); |
| |
| m.def("infer_contraction_dimensions", &InferContractionDimensions, |
| "Infers contraction dimensions (batch/m/n/k) for a Linalg contraction " |
| "op.", |
| nb::arg("op")); |
| |
| m.def( |
| "infer_contraction_dimensions_from_maps", |
| [](std::vector<PyAffineMap> indexingMaps) |
| -> std::optional<PyLinalgContractionDimensions> { |
| if (indexingMaps.empty()) |
| return std::nullopt; |
| |
| std::vector<MlirAffineMap> indexingMaps_(indexingMaps.size()); |
| std::copy(indexingMaps.begin(), indexingMaps.end(), |
| indexingMaps_.begin()); |
| MlirLinalgContractionDimensions dims = |
| mlirLinalgInferContractionDimensionsFromMaps(indexingMaps_.data(), |
| indexingMaps_.size()); |
| |
| // Detect "empty" result from invalid input or failed inference. |
| if (mlirAttributeIsNull(dims.batch) && mlirAttributeIsNull(dims.m) && |
| mlirAttributeIsNull(dims.n) && mlirAttributeIsNull(dims.k)) { |
| return std::nullopt; |
| } |
| return dims; |
| }, |
| "Infers contraction dimensions (batch/m/n/k) from a list of affine " |
| "maps.", |
| nb::arg("indexing_maps")); |
| |
| m.def( |
| "isa_convolution_op", |
| [](PyOperationBase &op) { |
| return mlirLinalgIsAConvolutionOp(op.getOperation()); |
| }, |
| "Checks if the given operation is a Linalg convolution operation.", |
| nb::arg("op")); |
| |
| nb::class_<PyLinalgConvolutionDimensions>(m, "ConvolutionDimensions") |
| .def_prop_ro( |
| "batch", |
| [](const PyLinalgConvolutionDimensions &self) { return self.batch; }) |
| .def_prop_ro("output_image", |
| [](const PyLinalgConvolutionDimensions &self) { |
| return self.outputImage; |
| }) |
| .def_prop_ro("output_channel", |
| [](const PyLinalgConvolutionDimensions &self) { |
| return self.outputChannel; |
| }) |
| .def_prop_ro("filter_loop", |
| [](const PyLinalgConvolutionDimensions &self) { |
| return self.filterLoop; |
| }) |
| .def_prop_ro("input_channel", |
| [](const PyLinalgConvolutionDimensions &self) { |
| return self.inputChannel; |
| }) |
| .def_prop_ro( |
| "depth", |
| [](const PyLinalgConvolutionDimensions &self) { return self.depth; }) |
| .def_prop_ro("strides", |
| [](const PyLinalgConvolutionDimensions &self) { |
| return self.strides; |
| }) |
| .def_prop_ro("dilations", [](const PyLinalgConvolutionDimensions &self) { |
| return self.dilations; |
| }); |
| |
| m.def("infer_convolution_dimensions", &InferConvolutionDimensions, |
| "Infers convolution dimensions", nb::arg("op")); |
| |
| m.def( |
| "get_indexing_maps", |
| [](PyOperationBase &op) -> std::optional<PyArrayAttribute> { |
| MlirAttribute attr = |
| mlirLinalgGetIndexingMapsAttribute(op.getOperation()); |
| if (mlirAttributeIsNull(attr)) |
| return std::nullopt; |
| return PyArrayAttribute(op.getOperation().getContext(), attr); |
| }, |
| "Returns the indexing_maps attribute for a linalg op."); |
| } |
| } // namespace linalg |
| } // namespace MLIR_BINDINGS_PYTHON_DOMAIN |
| } // namespace python |
| } // namespace mlir |
| |
| NB_MODULE(_mlirDialectsLinalg, m) { |
| m.doc() = "MLIR Linalg dialect."; |
| |
| mlir::python::MLIR_BINDINGS_PYTHON_DOMAIN::linalg:: |
| populateDialectLinalgSubmodule(m); |
| } |