| //===- LocalAliasAnalysis.cpp - Local stateless alias Analysis for MLIR ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/AliasAnalysis/LocalAliasAnalysis.h" |
| |
| #include "mlir/Analysis/AliasAnalysis.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/Block.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/OpDefinition.h" |
| #include "mlir/IR/Operation.h" |
| #include "mlir/IR/Region.h" |
| #include "mlir/IR/Value.h" |
| #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| #include "mlir/Interfaces/FunctionInterfaces.h" |
| #include "mlir/Interfaces/SideEffectInterfaces.h" |
| #include "mlir/Interfaces/ViewLikeInterface.h" |
| #include "mlir/Support/LLVM.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/DebugLog.h" |
| #include <cassert> |
| #include <optional> |
| #include <utility> |
| |
| using namespace mlir; |
| |
| #define DEBUG_TYPE "local-alias-analysis" |
| |
| //===----------------------------------------------------------------------===// |
| // Underlying Address Computation |
| //===----------------------------------------------------------------------===// |
| |
| /// The maximum depth that will be searched when trying to find an underlying |
| /// value. |
| static constexpr unsigned maxUnderlyingValueSearchDepth = 10; |
| |
| /// Given a value, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(Value value, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output); |
| |
| /// Given a RegionBranchOpInterface operation (`branch`), a Value`inputValue` |
| /// which is an input for the provided successor (`initialSuccessor`), try to |
| /// find the possible sources for the value along the control flow edges. |
| static void collectUnderlyingAddressValues2( |
| RegionBranchOpInterface branch, RegionSuccessor initialSuccessor, |
| Value inputValue, unsigned inputIndex, unsigned maxDepth, |
| DenseSet<Value> &visited, SmallVectorImpl<Value> &output) { |
| LDBG() << "collectUnderlyingAddressValues2: " |
| << OpWithFlags(branch.getOperation(), OpPrintingFlags().skipRegions()); |
| LDBG() << " with initialSuccessor " << initialSuccessor; |
| LDBG() << " inputValue: " << inputValue; |
| LDBG() << " inputIndex: " << inputIndex; |
| LDBG() << " maxDepth: " << maxDepth; |
| ValueRange inputs = branch.getSuccessorInputs(initialSuccessor); |
| if (inputs.empty()) { |
| LDBG() << " input is empty, enqueue value"; |
| output.push_back(inputValue); |
| return; |
| } |
| unsigned firstInputIndex, lastInputIndex; |
| if (isa<BlockArgument>(inputs[0])) { |
| firstInputIndex = cast<BlockArgument>(inputs[0]).getArgNumber(); |
| lastInputIndex = cast<BlockArgument>(inputs.back()).getArgNumber(); |
| } else { |
| firstInputIndex = cast<OpResult>(inputs[0]).getResultNumber(); |
| lastInputIndex = cast<OpResult>(inputs.back()).getResultNumber(); |
| } |
| if (firstInputIndex > inputIndex || lastInputIndex < inputIndex) { |
| LDBG() << " !! Input index " << inputIndex << " out of range " |
| << firstInputIndex << " to " << lastInputIndex |
| << ", adding input value to output"; |
| output.push_back(inputValue); |
| return; |
| } |
| SmallVector<Value> predecessorValues; |
| branch.getPredecessorValues(initialSuccessor, inputIndex - firstInputIndex, |
| predecessorValues); |
| LDBG() << " Found " << predecessorValues.size() << " predecessor values"; |
| for (Value predecessorValue : predecessorValues) { |
| LDBG() << " Processing predecessor value: " << predecessorValue; |
| collectUnderlyingAddressValues(predecessorValue, maxDepth, visited, output); |
| } |
| } |
| |
| /// Given a result, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(OpResult result, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output) { |
| LDBG() << "collectUnderlyingAddressValues (OpResult): " << result; |
| LDBG() << " maxDepth: " << maxDepth; |
| |
| Operation *op = result.getOwner(); |
| |
| // If this is a view, unwrap to the source. |
| if (ViewLikeOpInterface view = dyn_cast<ViewLikeOpInterface>(op)) { |
| if (result == view.getViewDest()) { |
| LDBG() << " Unwrapping view to source: " << view.getViewSource(); |
| return collectUnderlyingAddressValues(view.getViewSource(), maxDepth, |
| visited, output); |
| } |
| } |
| // Check to see if we can reason about the control flow of this op. |
| if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) { |
| LDBG() << " Processing region branch operation"; |
| return collectUnderlyingAddressValues2(branch, RegionSuccessor::parent(), |
| result, result.getResultNumber(), |
| maxDepth, visited, output); |
| } |
| |
| LDBG() << " Adding result to output: " << result; |
| output.push_back(result); |
| } |
| |
| /// Given a block argument, collect all of the underlying values being |
| /// addressed. |
| static void collectUnderlyingAddressValues(BlockArgument arg, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output) { |
| LDBG() << "collectUnderlyingAddressValues (BlockArgument): " << arg; |
| LDBG() << " maxDepth: " << maxDepth; |
| LDBG() << " argNumber: " << arg.getArgNumber(); |
| LDBG() << " isEntryBlock: " << arg.getOwner()->isEntryBlock(); |
| |
| Block *block = arg.getOwner(); |
| unsigned argNumber = arg.getArgNumber(); |
| |
| // Handle the case of a non-entry block. |
| if (!block->isEntryBlock()) { |
| LDBG() << " Processing non-entry block with " |
| << std::distance(block->pred_begin(), block->pred_end()) |
| << " predecessors"; |
| for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) { |
| auto branch = dyn_cast<BranchOpInterface>((*it)->getTerminator()); |
| if (!branch) { |
| LDBG() << " Cannot analyze control flow, adding argument to output"; |
| // We can't analyze the control flow, so bail out early. |
| output.push_back(arg); |
| return; |
| } |
| |
| // Try to get the operand passed for this argument. |
| unsigned index = it.getSuccessorIndex(); |
| Value operand = branch.getSuccessorOperands(index)[argNumber]; |
| if (!operand) { |
| LDBG() << " No operand found for argument, adding to output"; |
| // We can't analyze the control flow, so bail out early. |
| output.push_back(arg); |
| return; |
| } |
| LDBG() << " Processing operand from predecessor: " << operand; |
| collectUnderlyingAddressValues(operand, maxDepth, visited, output); |
| } |
| return; |
| } |
| |
| // Otherwise, check to see if we can reason about the control flow of this op. |
| Region *region = block->getParent(); |
| Operation *op = region->getParentOp(); |
| if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) { |
| LDBG() << " Processing region branch operation for entry block"; |
| // We have to find the successor matching the region, so that the input |
| // arguments are correctly set. |
| // TODO: this isn't comprehensive: the successor may not be reachable from |
| // the entry block. |
| SmallVector<RegionSuccessor> successors; |
| branch.getSuccessorRegions(RegionBranchPoint::parent(), successors); |
| for (RegionSuccessor &successor : successors) { |
| if (successor.getSuccessor() == region) { |
| LDBG() << " Found matching region successor: " << successor; |
| return collectUnderlyingAddressValues2( |
| branch, successor, arg, argNumber, maxDepth, visited, output); |
| } |
| } |
| LDBG() << " No matching region successor found, adding argument to output"; |
| output.push_back(arg); |
| return; |
| } |
| |
| LDBG() |
| << " Cannot reason about underlying address, adding argument to output"; |
| // We can't reason about the underlying address of this argument. |
| output.push_back(arg); |
| } |
| |
| /// Given a value, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(Value value, unsigned maxDepth, |
| DenseSet<Value> &visited, |
| SmallVectorImpl<Value> &output) { |
| LDBG() << "collectUnderlyingAddressValues: " << value; |
| LDBG() << " maxDepth: " << maxDepth; |
| |
| // Check that we don't infinitely recurse. |
| if (!visited.insert(value).second) { |
| LDBG() << " Value already visited, skipping"; |
| return; |
| } |
| if (maxDepth == 0) { |
| LDBG() << " Max depth reached, adding value to output"; |
| output.push_back(value); |
| return; |
| } |
| --maxDepth; |
| |
| if (BlockArgument arg = dyn_cast<BlockArgument>(value)) { |
| LDBG() << " Processing as BlockArgument"; |
| return collectUnderlyingAddressValues(arg, maxDepth, visited, output); |
| } |
| LDBG() << " Processing as OpResult"; |
| collectUnderlyingAddressValues(cast<OpResult>(value), maxDepth, visited, |
| output); |
| } |
| |
| /// Given a value, collect all of the underlying values being addressed. |
| static void collectUnderlyingAddressValues(Value value, |
| SmallVectorImpl<Value> &output) { |
| LDBG() << "collectUnderlyingAddressValues: " << value; |
| DenseSet<Value> visited; |
| collectUnderlyingAddressValues(value, maxUnderlyingValueSearchDepth, visited, |
| output); |
| LDBG() << " Collected " << output.size() << " underlying values"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LocalAliasAnalysis: alias |
| //===----------------------------------------------------------------------===// |
| |
| /// Given a value, try to get an allocation effect attached to it. If |
| /// successful, `allocEffect` is populated with the effect. If an effect was |
| /// found, `allocScopeOp` is also specified if a parent operation of `value` |
| /// could be identified that bounds the scope of the allocated value; i.e. if |
| /// non-null it specifies the parent operation that the allocation does not |
| /// escape. If no scope is found, `allocScopeOp` is set to nullptr. |
| static LogicalResult |
| getAllocEffectFor(Value value, |
| std::optional<MemoryEffects::EffectInstance> &effect, |
| Operation *&allocScopeOp) { |
| LDBG() << "getAllocEffectFor: " << value; |
| |
| // Try to get a memory effect interface for the parent operation. |
| Operation *op; |
| if (BlockArgument arg = dyn_cast<BlockArgument>(value)) { |
| op = arg.getOwner()->getParentOp(); |
| LDBG() << " BlockArgument, parent op: " |
| << OpWithFlags(op, OpPrintingFlags().skipRegions()); |
| } else { |
| op = cast<OpResult>(value).getOwner(); |
| LDBG() << " OpResult, owner op: " |
| << OpWithFlags(op, OpPrintingFlags().skipRegions()); |
| } |
| |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) { |
| LDBG() << " No memory effect interface found"; |
| return failure(); |
| } |
| |
| // Try to find an allocation effect on the resource. |
| if (!(effect = interface.getEffectOnValue<MemoryEffects::Allocate>(value))) { |
| LDBG() << " No allocation effect found on value"; |
| return failure(); |
| } |
| |
| LDBG() << " Found allocation effect"; |
| |
| // If we found an allocation effect, try to find a scope for the allocation. |
| // If the resource of this allocation is automatically scoped, find the parent |
| // operation that bounds the allocation scope. |
| if (llvm::isa<SideEffects::AutomaticAllocationScopeResource>( |
| effect->getResource())) { |
| allocScopeOp = op->getParentWithTrait<OpTrait::AutomaticAllocationScope>(); |
| if (allocScopeOp) { |
| LDBG() << " Automatic allocation scope found: " |
| << OpWithFlags(allocScopeOp, OpPrintingFlags().skipRegions()); |
| } else { |
| LDBG() << " Automatic allocation scope found: null"; |
| } |
| return success(); |
| } |
| |
| // TODO: Here we could look at the users to see if the resource is either |
| // freed on all paths within the region, or is just not captured by anything. |
| // For now assume allocation scope to the function scope (we don't care if |
| // pointer escape outside function). |
| allocScopeOp = op->getParentOfType<FunctionOpInterface>(); |
| if (allocScopeOp) { |
| LDBG() << " Function scope found: " |
| << OpWithFlags(allocScopeOp, OpPrintingFlags().skipRegions()); |
| } else { |
| LDBG() << " Function scope found: null"; |
| } |
| return success(); |
| } |
| |
| static Operation *isDistinctObjectsOp(Operation *op) { |
| if (op && op->hasTrait<OpTrait::DistinctObjectsTrait>()) |
| return op; |
| |
| return nullptr; |
| } |
| |
| static Value getDistinctObjectsOperand(Operation *op, Value value) { |
| unsigned argNumber = cast<OpResult>(value).getResultNumber(); |
| return op->getOperand(argNumber); |
| } |
| |
| static std::optional<AliasResult> checkDistinctObjects(Value lhs, Value rhs) { |
| // We should already checked that lhs and rhs are different. |
| assert(lhs != rhs && "lhs and rhs must be different"); |
| |
| // Result and corresponding operand must alias. |
| auto lhsOp = isDistinctObjectsOp(lhs.getDefiningOp()); |
| if (lhsOp && getDistinctObjectsOperand(lhsOp, lhs) == rhs) |
| return AliasResult::MustAlias; |
| |
| auto rhsOp = isDistinctObjectsOp(rhs.getDefiningOp()); |
| if (rhsOp && getDistinctObjectsOperand(rhsOp, rhs) == lhs) |
| return AliasResult::MustAlias; |
| |
| // If two different values come from the same `DistinctObjects` operation, |
| // they don't alias. |
| if (lhsOp && lhsOp == rhsOp) |
| return AliasResult::NoAlias; |
| |
| return std::nullopt; |
| } |
| |
| /// Given the two values, return their aliasing behavior. |
| AliasResult LocalAliasAnalysis::aliasImpl(Value lhs, Value rhs) { |
| LDBG() << "aliasImpl: " << lhs << " vs " << rhs; |
| |
| if (lhs == rhs) { |
| LDBG() << " Same value, must alias"; |
| return AliasResult::MustAlias; |
| } |
| |
| Operation *lhsAllocScope = nullptr, *rhsAllocScope = nullptr; |
| std::optional<MemoryEffects::EffectInstance> lhsAlloc, rhsAlloc; |
| |
| // Handle the case where lhs is a constant. |
| Attribute lhsAttr, rhsAttr; |
| if (matchPattern(lhs, m_Constant(&lhsAttr))) { |
| LDBG() << " lhs is constant"; |
| // TODO: This is overly conservative. Two matching constants don't |
| // necessarily map to the same address. For example, if the two values |
| // correspond to different symbols that both represent a definition. |
| if (matchPattern(rhs, m_Constant(&rhsAttr))) { |
| LDBG() << " rhs is also constant, may alias"; |
| return AliasResult::MayAlias; |
| } |
| |
| // Try to find an alloc effect on rhs. If an effect was found we can't |
| // alias, otherwise we might. |
| bool rhsHasAlloc = |
| succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope)); |
| LDBG() << " rhs has alloc effect: " << rhsHasAlloc; |
| return rhsHasAlloc ? AliasResult::NoAlias : AliasResult::MayAlias; |
| } |
| // Handle the case where rhs is a constant. |
| if (matchPattern(rhs, m_Constant(&rhsAttr))) { |
| LDBG() << " rhs is constant"; |
| // Try to find an alloc effect on lhs. If an effect was found we can't |
| // alias, otherwise we might. |
| bool lhsHasAlloc = |
| succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope)); |
| LDBG() << " lhs has alloc effect: " << lhsHasAlloc; |
| return lhsHasAlloc ? AliasResult::NoAlias : AliasResult::MayAlias; |
| } |
| |
| if (std::optional<AliasResult> result = checkDistinctObjects(lhs, rhs)) |
| return *result; |
| |
| // Otherwise, neither of the values are constant so check to see if either has |
| // an allocation effect. |
| bool lhsHasAlloc = succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope)); |
| bool rhsHasAlloc = succeeded(getAllocEffectFor(rhs, rhsAlloc, rhsAllocScope)); |
| LDBG() << " lhs has alloc effect: " << lhsHasAlloc; |
| LDBG() << " rhs has alloc effect: " << rhsHasAlloc; |
| |
| if (lhsHasAlloc == rhsHasAlloc) { |
| // If both values have an allocation effect we know they don't alias, and if |
| // neither have an effect we can't make an assumptions. |
| LDBG() << " Both have same alloc status: " |
| << (lhsHasAlloc ? "NoAlias" : "MayAlias"); |
| return lhsHasAlloc ? AliasResult::NoAlias : AliasResult::MayAlias; |
| } |
| |
| // When we reach this point we have one value with a known allocation effect, |
| // and one without. Move the one with the effect to the lhs to make the next |
| // checks simpler. |
| if (rhsHasAlloc) { |
| LDBG() << " Swapping lhs and rhs to put alloc effect on lhs"; |
| std::swap(lhs, rhs); |
| lhsAlloc = rhsAlloc; |
| lhsAllocScope = rhsAllocScope; |
| } |
| |
| // If the effect has a scoped allocation region, check to see if the |
| // non-effect value is defined above that scope. |
| if (lhsAllocScope) { |
| LDBG() << " Checking allocation scope: " |
| << OpWithFlags(lhsAllocScope, OpPrintingFlags().skipRegions()); |
| // If the parent operation of rhs is an ancestor of the allocation scope, or |
| // if rhs is an entry block argument of the allocation scope we know the two |
| // values can't alias. |
| Operation *rhsParentOp = rhs.getParentRegion()->getParentOp(); |
| if (rhsParentOp->isProperAncestor(lhsAllocScope)) { |
| LDBG() << " rhs parent is ancestor of alloc scope, no alias"; |
| return AliasResult::NoAlias; |
| } |
| if (rhsParentOp == lhsAllocScope) { |
| BlockArgument rhsArg = dyn_cast<BlockArgument>(rhs); |
| if (rhsArg && rhs.getParentBlock()->isEntryBlock()) { |
| LDBG() << " rhs is entry block arg of alloc scope, no alias"; |
| return AliasResult::NoAlias; |
| } |
| } |
| } |
| |
| // If we couldn't reason about the relationship between the two values, |
| // conservatively assume they might alias. |
| LDBG() << " Cannot reason about relationship, may alias"; |
| return AliasResult::MayAlias; |
| } |
| |
| /// Given the two values, return their aliasing behavior. |
| AliasResult LocalAliasAnalysis::alias(Value lhs, Value rhs) { |
| LDBG() << "alias: " << lhs << " vs " << rhs; |
| |
| if (lhs == rhs) { |
| LDBG() << " Same value, must alias"; |
| return AliasResult::MustAlias; |
| } |
| |
| // Get the underlying values being addressed. |
| SmallVector<Value, 8> lhsValues, rhsValues; |
| collectUnderlyingAddressValues(lhs, lhsValues); |
| collectUnderlyingAddressValues(rhs, rhsValues); |
| |
| LDBG() << " lhs underlying values: " << lhsValues.size(); |
| LDBG() << " rhs underlying values: " << rhsValues.size(); |
| |
| // If we failed to collect for either of the values somehow, conservatively |
| // assume they may alias. |
| if (lhsValues.empty() || rhsValues.empty()) { |
| LDBG() << " Failed to collect underlying values, may alias"; |
| return AliasResult::MayAlias; |
| } |
| |
| // Check the alias results against each of the underlying values. |
| std::optional<AliasResult> result; |
| for (Value lhsVal : lhsValues) { |
| for (Value rhsVal : rhsValues) { |
| LDBG() << " Checking underlying values: " << lhsVal << " vs " << rhsVal; |
| AliasResult nextResult = aliasImpl(lhsVal, rhsVal); |
| LDBG() << " Result: " |
| << (nextResult == AliasResult::MustAlias ? "MustAlias" |
| : nextResult == AliasResult::NoAlias ? "NoAlias" |
| : "MayAlias"); |
| result = result ? result->merge(nextResult) : nextResult; |
| } |
| } |
| |
| // We should always have a valid result here. |
| LDBG() << " Final result: " |
| << (result->isMust() ? "MustAlias" |
| : result->isNo() ? "NoAlias" |
| : "MayAlias"); |
| return *result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LocalAliasAnalysis: getModRef |
| //===----------------------------------------------------------------------===// |
| |
| ModRefResult LocalAliasAnalysis::getModRef(Operation *op, Value location) { |
| LDBG() << "getModRef: " << OpWithFlags(op, OpPrintingFlags().skipRegions()) |
| << " on location " << location; |
| |
| // Check to see if this operation relies on nested side effects. |
| if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) { |
| LDBG() << " Operation has recursive memory effects, returning ModAndRef"; |
| // TODO: To check recursive operations we need to check all of the nested |
| // operations, which can result in a quadratic number of queries. We should |
| // introduce some caching of some kind to help alleviate this, especially as |
| // this caching could be used in other areas of the codebase (e.g. when |
| // checking `wouldOpBeTriviallyDead`). |
| return ModRefResult::getModAndRef(); |
| } |
| |
| // Otherwise, check to see if this operation has a memory effect interface. |
| MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op); |
| if (!interface) { |
| LDBG() << " No memory effect interface, returning ModAndRef"; |
| return ModRefResult::getModAndRef(); |
| } |
| |
| // Build a ModRefResult by merging the behavior of the effects of this |
| // operation. |
| SmallVector<MemoryEffects::EffectInstance> effects; |
| interface.getEffects(effects); |
| LDBG() << " Found " << effects.size() << " memory effects"; |
| |
| ModRefResult result = ModRefResult::getNoModRef(); |
| for (const MemoryEffects::EffectInstance &effect : effects) { |
| if (isa<MemoryEffects::Allocate, MemoryEffects::Free>(effect.getEffect())) { |
| LDBG() << " Skipping alloc/free effect"; |
| continue; |
| } |
| |
| // Check for an alias between the effect and our memory location. |
| // TODO: Add support for checking an alias with a symbol reference. |
| AliasResult aliasResult = AliasResult::MayAlias; |
| if (Value effectValue = effect.getValue()) { |
| LDBG() << " Checking alias between effect value " << effectValue |
| << " and location " << location; |
| aliasResult = alias(effectValue, location); |
| LDBG() << " Alias result: " |
| << (aliasResult.isMust() ? "MustAlias" |
| : aliasResult.isNo() ? "NoAlias" |
| : "MayAlias"); |
| } else { |
| LDBG() << " No effect value, assuming MayAlias"; |
| } |
| |
| // If we don't alias, ignore this effect. |
| if (aliasResult.isNo()) { |
| LDBG() << " No alias, ignoring effect"; |
| continue; |
| } |
| |
| // Merge in the corresponding mod or ref for this effect. |
| if (isa<MemoryEffects::Read>(effect.getEffect())) { |
| LDBG() << " Adding Ref to result"; |
| result = result.merge(ModRefResult::getRef()); |
| } else { |
| assert(isa<MemoryEffects::Write>(effect.getEffect())); |
| LDBG() << " Adding Mod to result"; |
| result = result.merge(ModRefResult::getMod()); |
| } |
| if (result.isModAndRef()) { |
| LDBG() << " Result is now ModAndRef, breaking"; |
| break; |
| } |
| } |
| |
| LDBG() << " Final ModRef result: " |
| << (result.isModAndRef() ? "ModAndRef" |
| : result.isMod() ? "Mod" |
| : result.isRef() ? "Ref" |
| : "NoModRef"); |
| return result; |
| } |