| //===- AArch64SRLTDefineSuperRegs.cpp -------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // When SubRegister Liveness Tracking (SRLT) is enabled, this pass adds |
| // extra implicit-def's to instructions that define the low N bits of |
| // a GPR/FPR register to also define the top bits, because all AArch64 |
| // instructions that write the low bits of a GPR/FPR also implicitly zero |
| // the top bits. For example, 'mov w0, w1' writes zeroes to the top 32-bits of |
| // x0, so this pass adds a `implicit-def $x0` after register allocation. |
| // |
| // These semantics are originally represented in the MIR using `SUBREG_TO_REG` |
| // which expresses that the top bits have been defined by the preceding |
| // instructions, but during register coalescing this information is lost and in |
| // contrast to when SRTL is disabled, when rewriting virtual -> physical |
| // registers the implicit-defs are not added to the instruction. |
| // |
| // There have been several attempts to fix this in the coalescer [1], but each |
| // iteration has exposed new bugs and the patch had to be reverted. |
| // Additionally, the concept of adding 'implicit-def' of a virtual register is |
| // particularly fragile and many places don't expect it (for example in |
| // `X86::commuteInstructionImpl` the code only looks at specific operands and |
| // does not consider implicit-defs. Similar in `SplitEditor::addDeadDef` where |
| // it traverses operand 'defs' rather than 'all_defs'). |
| // |
| // We want a temporary solution that doesn't impact other targets and is simpler |
| // and less intrusive than the patch proposed for the register coalescer [1], so |
| // that we can enable SRLT for AArch64. |
| // |
| // The approach here is to just add the 'implicit-def' manually after rewriting |
| // virtual regs -> phsyical regs. This still means that during the register |
| // allocation process the dependences are not accurately represented in the MIR |
| // and LiveIntervals, but there are several reasons why we believe this isn't a |
| // problem in practice: |
| // (A) The register allocator only spills entire virtual registers. |
| // This is additionally guarded by code in |
| // AArch64InstrInfo::storeRegToStackSlot/loadRegFromStackSlot |
| // where it checks if a register matches the expected register class. |
| // (B) Rematerialization only happens when the instruction writes the full |
| // register. |
| // (C) The high bits of the AArch64 register cannot be written independently. |
| // (D) Instructions that write only part of a register always take that same |
| // register as a tied input operand, to indicate it's a merging operation. |
| // |
| // (A) means that for two virtual registers of regclass GPR32 and GPR64, if the |
| // GPR32 register is coalesced into the GPR64 vreg then the full GPR64 would |
| // be spilled/filled even if only the low 32-bits would be required for the |
| // given liverange. (B) means that the top bits of a GPR64 would never be |
| // overwritten by rematerialising a GPR32 sub-register for a given liverange. |
| // (C-D) means that we can assume that the MIR as input to the register |
| // allocator correctly expresses the instruction behaviour and dependences |
| // between values, so unless the register allocator would violate (A) or (B), |
| // the MIR is otherwise sound. |
| // |
| // Alternative approaches have also been considered, such as: |
| // (1) Changing the AArch64 instruction definitions to write all bits and |
| // extract the low N bits for the result. |
| // (2) Disabling coalescing of SUBREG_TO_REG and using regalloc hints to tell |
| // the register allocator to favour the same register for the input/output. |
| // (3) Adding a new coalescer guard node with a tied-operand constraint, such |
| // that when the SUBREG_TO_REG is removed, something still represents that |
| // the top bits are defined. The node would get removed before rewriting |
| // virtregs. |
| // (4) Using an explicit INSERT_SUBREG into a zero value and try to optimize |
| // away the INSERT_SUBREG (this is a more explicit variant of (2) and (3)) |
| // (5) Adding a new MachineOperand flag that represents the top bits would be |
| // defined, but are not read nor undef. |
| // |
| // (1) would be the best approach but would be a significant effort as it |
| // requires rewriting most/all instruction definitions and fixing MIR passes |
| // that rely on the current definitions, whereas (2-4) result in sub-optimal |
| // code that can't really be avoided because the explicit nodes would stop |
| // rematerialization. (5) might be a way to mitigate the |
| // fragility of implicit-def's of virtual registers if we want to pursue |
| // landing [1], but then we'd rather choose approach (1) to avoid using |
| // SUBREG_TO_REG entirely. |
| // |
| // [1] https://github.com/llvm/llvm-project/pull/168353 |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64InstrInfo.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-srlt-define-superregs" |
| #define PASS_NAME "AArch64 SRLT Define Super-Regs Pass" |
| |
| namespace { |
| |
| struct AArch64SRLTDefineSuperRegs : public MachineFunctionPass { |
| inline static char ID = 0; |
| |
| AArch64SRLTDefineSuperRegs() : MachineFunctionPass(ID) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| Register getWidestSuperReg(Register R, const BitVector &RequiredBaseRegUnits, |
| const BitVector &QHiRegUnits); |
| |
| StringRef getPassName() const override { return PASS_NAME; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addPreservedID(MachineLoopInfoID); |
| AU.addPreservedID(MachineDominatorsID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| MachineFunction *MF = nullptr; |
| const AArch64Subtarget *Subtarget = nullptr; |
| const AArch64RegisterInfo *TRI = nullptr; |
| }; |
| |
| } // end anonymous namespace |
| |
| INITIALIZE_PASS(AArch64SRLTDefineSuperRegs, DEBUG_TYPE, PASS_NAME, false, false) |
| |
| // Returns the widest super-reg for a given reg, or NoRegister if no suitable |
| // wider super-reg has been found. For example: |
| // W0 -> X0 |
| // B1 -> Q1 (without SVE) |
| // -> Z1 (with SVE) |
| // W1_W2 -> X1_X2 |
| // D0_D1 -> Q0_Q1 (without SVE) |
| // -> Z0_Z1 (with SVE) |
| Register AArch64SRLTDefineSuperRegs::getWidestSuperReg( |
| Register R, const BitVector &RequiredBaseRegUnits, |
| const BitVector &QHiRegUnits) { |
| assert(R.isPhysical() && |
| "Expected to be run straight after virtregrewriter!"); |
| |
| BitVector Units(TRI->getNumRegUnits()); |
| for (MCRegUnit U : TRI->regunits(R)) |
| Units.set((unsigned)U); |
| |
| auto IsSuitableSuperReg = [&](Register SR) { |
| for (MCRegUnit U : TRI->regunits(SR)) { |
| // Avoid choosing z1 as super-reg of d1 if SVE is not available. |
| // Q*_HI registers are only set for SVE registers, as those consist |
| // of the Q* register for the low 128 bits and the Q*_HI (artificial) |
| // register for the top (vscale-1) * 128 bits. |
| if (QHiRegUnits.test((unsigned)U) && |
| !Subtarget->isSVEorStreamingSVEAvailable()) |
| return false; |
| // We consider a super-reg as unsuitable if any of its reg units is not |
| // artificial and not shared, as that would imply that U is a unit for a |
| // different register, which means the candidate super-reg is likely |
| // a register tuple. |
| if (!TRI->isArtificialRegUnit(U) && |
| (!Units.test((unsigned)U) || !RequiredBaseRegUnits.test((unsigned)U))) |
| return false; |
| } |
| return true; |
| }; |
| |
| Register LargestSuperReg = AArch64::NoRegister; |
| for (Register SR : TRI->superregs(R)) |
| if (IsSuitableSuperReg(SR) && (LargestSuperReg == AArch64::NoRegister || |
| TRI->isSuperRegister(LargestSuperReg, SR))) |
| LargestSuperReg = SR; |
| |
| return LargestSuperReg; |
| } |
| |
| bool AArch64SRLTDefineSuperRegs::runOnMachineFunction(MachineFunction &MF) { |
| this->MF = &MF; |
| Subtarget = &MF.getSubtarget<AArch64Subtarget>(); |
| TRI = Subtarget->getRegisterInfo(); |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| |
| if (!MRI->subRegLivenessEnabled()) |
| return false; |
| |
| assert(!MRI->isSSA() && "Expected to be run after breaking down SSA form!"); |
| |
| auto XRegs = seq_inclusive<unsigned>(AArch64::X0, AArch64::X28); |
| auto ZRegs = seq_inclusive<unsigned>(AArch64::Z0, AArch64::Z31); |
| constexpr unsigned FixedRegs[] = {AArch64::FP, AArch64::LR, AArch64::SP}; |
| |
| BitVector RequiredBaseRegUnits(TRI->getNumRegUnits()); |
| for (Register R : concat<unsigned>(XRegs, ZRegs, FixedRegs)) |
| for (MCRegUnit U : TRI->regunits(R)) |
| RequiredBaseRegUnits.set((unsigned)U); |
| |
| BitVector QHiRegUnits(TRI->getNumRegUnits()); |
| for (Register R : seq_inclusive<unsigned>(AArch64::Q0_HI, AArch64::Q31_HI)) |
| for (MCRegUnit U : TRI->regunits(R)) |
| QHiRegUnits.set((unsigned)U); |
| |
| bool Changed = false; |
| for (MachineBasicBlock &MBB : MF) { |
| for (MachineInstr &MI : MBB) { |
| // PATCHPOINT may have a 'def' that's not a register, avoid this. |
| if (MI.getOpcode() == TargetOpcode::PATCHPOINT) |
| continue; |
| // For each partial register write, also add an implicit-def for top bits |
| // of the register (e.g. for w0 add a def of x0). |
| SmallSet<Register, 8> SuperRegs; |
| for (const MachineOperand &DefOp : MI.defs()) |
| if (Register R = getWidestSuperReg(DefOp.getReg(), RequiredBaseRegUnits, |
| QHiRegUnits); |
| R != AArch64::NoRegister) |
| SuperRegs.insert(R); |
| |
| if (!SuperRegs.size()) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Adding implicit-defs to: " << MI); |
| for (Register R : SuperRegs) { |
| LLVM_DEBUG(dbgs() << " " << printReg(R, TRI) << "\n"); |
| bool IsRenamable = any_of(MI.defs(), [&](const MachineOperand &MO) { |
| return MO.isRenamable() && TRI->regsOverlap(MO.getReg(), R); |
| }); |
| bool IsDead = any_of(MI.defs(), [&](const MachineOperand &MO) { |
| return MO.isDead() && TRI->regsOverlap(MO.getReg(), R); |
| }); |
| MachineOperand DefOp = MachineOperand::CreateReg( |
| R, /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, |
| /*isDead=*/IsDead, /*isUndef=*/false, /*isEarlyClobber=*/false, |
| /*SubReg=*/0, /*isDebug=*/false, /*isInternalRead=*/false, |
| /*isRenamable=*/IsRenamable); |
| MI.addOperand(DefOp); |
| } |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| FunctionPass *llvm::createAArch64SRLTDefineSuperRegsPass() { |
| return new AArch64SRLTDefineSuperRegs(); |
| } |