| //===-- Half-precision asinpif16(x) function ------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/asinpif16.h" |
| #include "hdr/errno_macros.h" |
| #include "hdr/fenv_macros.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/cast.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/sqrt.h" |
| #include "src/__support/macros/optimization.h" |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| LLVM_LIBC_FUNCTION(float16, asinpif16, (float16 x)) { |
| using FPBits = fputil::FPBits<float16>; |
| |
| FPBits xbits(x); |
| bool is_neg = xbits.is_neg(); |
| double x_abs = fputil::cast<double>(xbits.abs().get_val()); |
| |
| auto signed_result = [is_neg](auto r) -> auto { return is_neg ? -r : r; }; |
| |
| if (LIBC_UNLIKELY(x_abs > 1.0)) { |
| // aspinf16(NaN) = NaN |
| if (xbits.is_nan()) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| return x; |
| } |
| |
| // 1 < |x| <= +/-inf |
| fputil::raise_except_if_required(FE_INVALID); |
| fputil::set_errno_if_required(EDOM); |
| |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| // the coefficients for the polynomial approximation of asin(x)/pi in the |
| // range [0, 0.5] extracted using python-sympy |
| // |
| // Python code to generate the coefficients: |
| // > from sympy import * |
| // > import math |
| // > x = symbols('x') |
| // > print(series(asin(x)/math.pi, x, 0, 21)) |
| // |
| // OUTPUT: |
| // |
| // 0.318309886183791*x + 0.0530516476972984*x**3 + 0.0238732414637843*x**5 + |
| // 0.0142102627760621*x**7 + 0.00967087327815336*x**9 + |
| // 0.00712127941391293*x**11 + 0.00552355646848375*x**13 + |
| // 0.00444514782463692*x**15 + 0.00367705242846804*x**17 + |
| // 0.00310721681820837*x**19 + O(x**21) |
| // |
| // it's very accurate in the range [0, 0.5] and has a maximum error of |
| // 0.0000000000000001 in the range [0, 0.5]. |
| constexpr double POLY_COEFFS[] = { |
| 0x1.45f306dc9c889p-2, // x^1 |
| 0x1.b2995e7b7b5fdp-5, // x^3 |
| 0x1.8723a1d588a36p-6, // x^5 |
| 0x1.d1a452f20430dp-7, // x^7 |
| 0x1.3ce52a3a09f61p-7, // x^9 |
| 0x1.d2b33e303d375p-8, // x^11 |
| 0x1.69fde663c674fp-8, // x^13 |
| 0x1.235134885f19bp-8, // x^15 |
| }; |
| // polynomial evaluation using horner's method |
| // work only for |x| in [0, 0.5] |
| auto asinpi_polyeval = [](double x) -> double { |
| return x * fputil::polyeval(x * x, POLY_COEFFS[0], POLY_COEFFS[1], |
| POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4], |
| POLY_COEFFS[5], POLY_COEFFS[6], POLY_COEFFS[7]); |
| }; |
| |
| // if |x| <= 0.5: |
| if (LIBC_UNLIKELY(x_abs <= 0.5)) { |
| // Use polynomial approximation of asin(x)/pi in the range [0, 0.5] |
| double result = asinpi_polyeval(fputil::cast<double>(x)); |
| return fputil::cast<float16>(result); |
| } |
| |
| // If |x| > 0.5, we need to use the range reduction method: |
| // y = asin(x) => x = sin(y) |
| // because: sin(a) = cos(pi/2 - a) |
| // therefore: |
| // x = cos(pi/2 - y) |
| // let z = pi/2 - y, |
| // x = cos(z) |
| // because: cos(2a) = 1 - 2 * sin^2(a), z = 2a, a = z/2 |
| // therefore: |
| // cos(z) = 1 - 2 * sin^2(z/2) |
| // sin(z/2) = sqrt((1 - cos(z))/2) |
| // sin(z/2) = sqrt((1 - x)/2) |
| // let u = (1 - x)/2 |
| // then: |
| // sin(z/2) = sqrt(u) |
| // z/2 = asin(sqrt(u)) |
| // z = 2 * asin(sqrt(u)) |
| // pi/2 - y = 2 * asin(sqrt(u)) |
| // y = pi/2 - 2 * asin(sqrt(u)) |
| // y/pi = 1/2 - 2 * asin(sqrt(u))/pi |
| // |
| // Finally, we can write: |
| // asinpi(x) = 1/2 - 2 * asinpi(sqrt(u)) |
| // where u = (1 - x) /2 |
| // = 0.5 - 0.5 * x |
| // = multiply_add(-0.5, x, 0.5) |
| |
| double u = fputil::multiply_add(-0.5, x_abs, 0.5); |
| double asinpi_sqrt_u = asinpi_polyeval(fputil::sqrt<double>(u)); |
| double result = fputil::multiply_add(-2.0, asinpi_sqrt_u, 0.5); |
| |
| return fputil::cast<float16>(signed_result(result)); |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |