| //===- IR2Vec.cpp - Implementation of IR2Vec -----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM |
| // Exceptions. See the LICENSE file for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file implements the IR2Vec algorithm. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/IR2Vec.h" |
| |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| |
| using namespace llvm; |
| using namespace ir2vec; |
| |
| #define DEBUG_TYPE "ir2vec" |
| |
| STATISTIC(VocabMissCounter, |
| "Number of lookups to entities not present in the vocabulary"); |
| |
| namespace llvm { |
| namespace ir2vec { |
| cl::OptionCategory IR2VecCategory("IR2Vec Options"); |
| |
| // FIXME: Use a default vocab when not specified |
| static cl::opt<std::string> |
| VocabFile("ir2vec-vocab-path", cl::Optional, |
| cl::desc("Path to the vocabulary file for IR2Vec"), cl::init(""), |
| cl::cat(IR2VecCategory)); |
| cl::opt<float> OpcWeight("ir2vec-opc-weight", cl::Optional, cl::init(1.0), |
| cl::desc("Weight for opcode embeddings"), |
| cl::cat(IR2VecCategory)); |
| cl::opt<float> TypeWeight("ir2vec-type-weight", cl::Optional, cl::init(0.5), |
| cl::desc("Weight for type embeddings"), |
| cl::cat(IR2VecCategory)); |
| cl::opt<float> ArgWeight("ir2vec-arg-weight", cl::Optional, cl::init(0.2), |
| cl::desc("Weight for argument embeddings"), |
| cl::cat(IR2VecCategory)); |
| cl::opt<IR2VecKind> IR2VecEmbeddingKind( |
| "ir2vec-kind", cl::Optional, |
| cl::values(clEnumValN(IR2VecKind::Symbolic, "symbolic", |
| "Generate symbolic embeddings"), |
| clEnumValN(IR2VecKind::FlowAware, "flow-aware", |
| "Generate flow-aware embeddings")), |
| cl::init(IR2VecKind::Symbolic), cl::desc("IR2Vec embedding kind"), |
| cl::cat(IR2VecCategory)); |
| |
| } // namespace ir2vec |
| } // namespace llvm |
| |
| AnalysisKey IR2VecVocabAnalysis::Key; |
| |
| // ==----------------------------------------------------------------------===// |
| // Local helper functions |
| //===----------------------------------------------------------------------===// |
| namespace llvm::json { |
| inline bool fromJSON(const llvm::json::Value &E, Embedding &Out, |
| llvm::json::Path P) { |
| std::vector<double> TempOut; |
| if (!llvm::json::fromJSON(E, TempOut, P)) |
| return false; |
| Out = Embedding(std::move(TempOut)); |
| return true; |
| } |
| } // namespace llvm::json |
| |
| // ==----------------------------------------------------------------------===// |
| // Embedding |
| //===----------------------------------------------------------------------===// |
| Embedding &Embedding::operator+=(const Embedding &RHS) { |
| assert(this->size() == RHS.size() && "Vectors must have the same dimension"); |
| std::transform(this->begin(), this->end(), RHS.begin(), this->begin(), |
| std::plus<double>()); |
| return *this; |
| } |
| |
| Embedding Embedding::operator+(const Embedding &RHS) const { |
| Embedding Result(*this); |
| Result += RHS; |
| return Result; |
| } |
| |
| Embedding &Embedding::operator-=(const Embedding &RHS) { |
| assert(this->size() == RHS.size() && "Vectors must have the same dimension"); |
| std::transform(this->begin(), this->end(), RHS.begin(), this->begin(), |
| std::minus<double>()); |
| return *this; |
| } |
| |
| Embedding Embedding::operator-(const Embedding &RHS) const { |
| Embedding Result(*this); |
| Result -= RHS; |
| return Result; |
| } |
| |
| Embedding &Embedding::operator*=(double Factor) { |
| std::transform(this->begin(), this->end(), this->begin(), |
| [Factor](double Elem) { return Elem * Factor; }); |
| return *this; |
| } |
| |
| Embedding Embedding::operator*(double Factor) const { |
| Embedding Result(*this); |
| Result *= Factor; |
| return Result; |
| } |
| |
| Embedding &Embedding::scaleAndAdd(const Embedding &Src, float Factor) { |
| assert(this->size() == Src.size() && "Vectors must have the same dimension"); |
| for (size_t Itr = 0; Itr < this->size(); ++Itr) |
| (*this)[Itr] += Src[Itr] * Factor; |
| return *this; |
| } |
| |
| bool Embedding::approximatelyEquals(const Embedding &RHS, |
| double Tolerance) const { |
| assert(this->size() == RHS.size() && "Vectors must have the same dimension"); |
| for (size_t Itr = 0; Itr < this->size(); ++Itr) |
| if (std::abs((*this)[Itr] - RHS[Itr]) > Tolerance) { |
| LLVM_DEBUG(errs() << "Embedding mismatch at index " << Itr << ": " |
| << (*this)[Itr] << " vs " << RHS[Itr] |
| << "; Tolerance: " << Tolerance << "\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| void Embedding::print(raw_ostream &OS) const { |
| OS << " ["; |
| for (const auto &Elem : Data) |
| OS << " " << format("%.2f", Elem) << " "; |
| OS << "]\n"; |
| } |
| |
| // ==----------------------------------------------------------------------===// |
| // Embedder and its subclasses |
| //===----------------------------------------------------------------------===// |
| |
| std::unique_ptr<Embedder> Embedder::create(IR2VecKind Mode, const Function &F, |
| const Vocabulary &Vocab) { |
| switch (Mode) { |
| case IR2VecKind::Symbolic: |
| return std::make_unique<SymbolicEmbedder>(F, Vocab); |
| case IR2VecKind::FlowAware: |
| return std::make_unique<FlowAwareEmbedder>(F, Vocab); |
| } |
| return nullptr; |
| } |
| |
| Embedding Embedder::computeEmbeddings() const { |
| Embedding FuncVector(Dimension, 0.0); |
| |
| if (F.isDeclaration()) |
| return FuncVector; |
| |
| // Consider only the basic blocks that are reachable from entry |
| for (const BasicBlock *BB : depth_first(&F)) |
| FuncVector += computeEmbeddings(*BB); |
| return FuncVector; |
| } |
| |
| Embedding Embedder::computeEmbeddings(const BasicBlock &BB) const { |
| Embedding BBVector(Dimension, 0); |
| |
| // We consider only the non-debug and non-pseudo instructions |
| for (const auto &I : BB.instructionsWithoutDebug()) |
| BBVector += computeEmbeddings(I); |
| return BBVector; |
| } |
| |
| Embedding SymbolicEmbedder::computeEmbeddings(const Instruction &I) const { |
| // Currently, we always (re)compute the embeddings for symbolic embedder. |
| // This is cheaper than caching the vectors. |
| Embedding ArgEmb(Dimension, 0); |
| for (const auto &Op : I.operands()) |
| ArgEmb += Vocab[*Op]; |
| auto InstVector = |
| Vocab[I.getOpcode()] + Vocab[I.getType()->getTypeID()] + ArgEmb; |
| if (const auto *IC = dyn_cast<CmpInst>(&I)) |
| InstVector += Vocab[IC->getPredicate()]; |
| return InstVector; |
| } |
| |
| Embedding FlowAwareEmbedder::computeEmbeddings(const Instruction &I) const { |
| // If we have already computed the embedding for this instruction, return it |
| auto It = InstVecMap.find(&I); |
| if (It != InstVecMap.end()) |
| return It->second; |
| |
| // TODO: Handle call instructions differently. |
| // For now, we treat them like other instructions |
| Embedding ArgEmb(Dimension, 0); |
| for (const auto &Op : I.operands()) { |
| // If the operand is defined elsewhere, we use its embedding |
| if (const auto *DefInst = dyn_cast<Instruction>(Op)) { |
| auto DefIt = InstVecMap.find(DefInst); |
| // Fixme (#159171): Ideally we should never miss an instruction |
| // embedding here. |
| // But when we have cyclic dependencies (e.g., phi |
| // nodes), we might miss the embedding. In such cases, we fall back to |
| // using the vocabulary embedding. This can be fixed by iterating to a |
| // fixed-point, or by using a simple solver for the set of simultaneous |
| // equations. |
| // Another case when we might miss an instruction embedding is when |
| // the operand instruction is in a different basic block that has not |
| // been processed yet. This can be fixed by processing the basic blocks |
| // in a topological order. |
| if (DefIt != InstVecMap.end()) |
| ArgEmb += DefIt->second; |
| else |
| ArgEmb += Vocab[*Op]; |
| } |
| // If the operand is not defined by an instruction, we use the |
| // vocabulary |
| else { |
| LLVM_DEBUG(errs() << "Using embedding from vocabulary for operand: " |
| << *Op << "=" << Vocab[*Op][0] << "\n"); |
| ArgEmb += Vocab[*Op]; |
| } |
| } |
| // Create the instruction vector by combining opcode, type, and arguments |
| // embeddings |
| auto InstVector = |
| Vocab[I.getOpcode()] + Vocab[I.getType()->getTypeID()] + ArgEmb; |
| if (const auto *IC = dyn_cast<CmpInst>(&I)) |
| InstVector += Vocab[IC->getPredicate()]; |
| InstVecMap[&I] = InstVector; |
| return InstVector; |
| } |
| |
| // ==----------------------------------------------------------------------===// |
| // VocabStorage |
| //===----------------------------------------------------------------------===// |
| |
| VocabStorage::VocabStorage(std::vector<std::vector<Embedding>> &&SectionData) |
| : Sections(std::move(SectionData)), TotalSize([&] { |
| assert(!Sections.empty() && "Vocabulary has no sections"); |
| // Compute total size across all sections |
| size_t Size = 0; |
| for (const auto &Section : Sections) { |
| assert(!Section.empty() && "Vocabulary section is empty"); |
| Size += Section.size(); |
| } |
| return Size; |
| }()), |
| Dimension([&] { |
| // Get dimension from the first embedding in the first section - all |
| // embeddings must have the same dimension |
| assert(!Sections.empty() && "Vocabulary has no sections"); |
| assert(!Sections[0].empty() && "First section of vocabulary is empty"); |
| unsigned ExpectedDim = static_cast<unsigned>(Sections[0][0].size()); |
| |
| // Verify that all embeddings across all sections have the same |
| // dimension |
| [[maybe_unused]] auto allSameDim = |
| [ExpectedDim](const std::vector<Embedding> &Section) { |
| return std::all_of(Section.begin(), Section.end(), |
| [ExpectedDim](const Embedding &Emb) { |
| return Emb.size() == ExpectedDim; |
| }); |
| }; |
| assert(std::all_of(Sections.begin(), Sections.end(), allSameDim) && |
| "All embeddings must have the same dimension"); |
| |
| return ExpectedDim; |
| }()) {} |
| |
| const Embedding &VocabStorage::const_iterator::operator*() const { |
| assert(SectionId < Storage->Sections.size() && "Invalid section ID"); |
| assert(LocalIndex < Storage->Sections[SectionId].size() && |
| "Local index out of range"); |
| return Storage->Sections[SectionId][LocalIndex]; |
| } |
| |
| VocabStorage::const_iterator &VocabStorage::const_iterator::operator++() { |
| ++LocalIndex; |
| // Check if we need to move to the next section |
| if (SectionId < Storage->getNumSections() && |
| LocalIndex >= Storage->Sections[SectionId].size()) { |
| assert(LocalIndex == Storage->Sections[SectionId].size() && |
| "Local index should be at the end of the current section"); |
| LocalIndex = 0; |
| ++SectionId; |
| } |
| return *this; |
| } |
| |
| bool VocabStorage::const_iterator::operator==( |
| const const_iterator &Other) const { |
| return Storage == Other.Storage && SectionId == Other.SectionId && |
| LocalIndex == Other.LocalIndex; |
| } |
| |
| bool VocabStorage::const_iterator::operator!=( |
| const const_iterator &Other) const { |
| return !(*this == Other); |
| } |
| |
| Error VocabStorage::parseVocabSection(StringRef Key, |
| const json::Value &ParsedVocabValue, |
| VocabMap &TargetVocab, unsigned &Dim) { |
| json::Path::Root Path(""); |
| const json::Object *RootObj = ParsedVocabValue.getAsObject(); |
| if (!RootObj) |
| return createStringError(errc::invalid_argument, |
| "JSON root is not an object"); |
| |
| const json::Value *SectionValue = RootObj->get(Key); |
| if (!SectionValue) |
| return createStringError(errc::invalid_argument, |
| "Missing '" + std::string(Key) + |
| "' section in vocabulary file"); |
| if (!json::fromJSON(*SectionValue, TargetVocab, Path)) |
| return createStringError(errc::illegal_byte_sequence, |
| "Unable to parse '" + std::string(Key) + |
| "' section from vocabulary"); |
| |
| Dim = TargetVocab.begin()->second.size(); |
| if (Dim == 0) |
| return createStringError(errc::illegal_byte_sequence, |
| "Dimension of '" + std::string(Key) + |
| "' section of the vocabulary is zero"); |
| |
| if (!std::all_of(TargetVocab.begin(), TargetVocab.end(), |
| [Dim](const std::pair<StringRef, Embedding> &Entry) { |
| return Entry.second.size() == Dim; |
| })) |
| return createStringError( |
| errc::illegal_byte_sequence, |
| "All vectors in the '" + std::string(Key) + |
| "' section of the vocabulary are not of the same dimension"); |
| |
| return Error::success(); |
| } |
| |
| // ==----------------------------------------------------------------------===// |
| // Vocabulary |
| //===----------------------------------------------------------------------===// |
| |
| StringRef Vocabulary::getVocabKeyForOpcode(unsigned Opcode) { |
| assert(Opcode >= 1 && Opcode <= MaxOpcodes && "Invalid opcode"); |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \ |
| if (Opcode == NUM) { \ |
| return #OPCODE; \ |
| } |
| #include "llvm/IR/Instruction.def" |
| #undef HANDLE_INST |
| return "UnknownOpcode"; |
| } |
| |
| // Helper function to classify an operand into OperandKind |
| Vocabulary::OperandKind Vocabulary::getOperandKind(const Value *Op) { |
| if (isa<Function>(Op)) |
| return OperandKind::FunctionID; |
| if (isa<PointerType>(Op->getType())) |
| return OperandKind::PointerID; |
| if (isa<Constant>(Op)) |
| return OperandKind::ConstantID; |
| return OperandKind::VariableID; |
| } |
| |
| unsigned Vocabulary::getPredicateLocalIndex(CmpInst::Predicate P) { |
| if (P >= CmpInst::FIRST_FCMP_PREDICATE && P <= CmpInst::LAST_FCMP_PREDICATE) |
| return P - CmpInst::FIRST_FCMP_PREDICATE; |
| else |
| return P - CmpInst::FIRST_ICMP_PREDICATE + |
| (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE + 1); |
| } |
| |
| CmpInst::Predicate Vocabulary::getPredicateFromLocalIndex(unsigned LocalIndex) { |
| unsigned fcmpRange = |
| CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE + 1; |
| if (LocalIndex < fcmpRange) |
| return static_cast<CmpInst::Predicate>(CmpInst::FIRST_FCMP_PREDICATE + |
| LocalIndex); |
| else |
| return static_cast<CmpInst::Predicate>(CmpInst::FIRST_ICMP_PREDICATE + |
| LocalIndex - fcmpRange); |
| } |
| |
| StringRef Vocabulary::getVocabKeyForPredicate(CmpInst::Predicate Pred) { |
| static SmallString<16> PredNameBuffer; |
| if (Pred < CmpInst::FIRST_ICMP_PREDICATE) |
| PredNameBuffer = "FCMP_"; |
| else |
| PredNameBuffer = "ICMP_"; |
| PredNameBuffer += CmpInst::getPredicateName(Pred); |
| return PredNameBuffer; |
| } |
| |
| StringRef Vocabulary::getStringKey(unsigned Pos) { |
| assert(Pos < NumCanonicalEntries && "Position out of bounds in vocabulary"); |
| // Opcode |
| if (Pos < MaxOpcodes) |
| return getVocabKeyForOpcode(Pos + 1); |
| // Type |
| if (Pos < OperandBaseOffset) |
| return getVocabKeyForCanonicalTypeID( |
| static_cast<CanonicalTypeID>(Pos - MaxOpcodes)); |
| // Operand |
| if (Pos < PredicateBaseOffset) |
| return getVocabKeyForOperandKind( |
| static_cast<OperandKind>(Pos - OperandBaseOffset)); |
| // Predicates |
| return getVocabKeyForPredicate(getPredicate(Pos - PredicateBaseOffset)); |
| } |
| |
| // For now, assume vocabulary is stable unless explicitly invalidated. |
| bool Vocabulary::invalidate(Module &M, const PreservedAnalyses &PA, |
| ModuleAnalysisManager::Invalidator &Inv) const { |
| auto PAC = PA.getChecker<IR2VecVocabAnalysis>(); |
| return !(PAC.preservedWhenStateless()); |
| } |
| |
| VocabStorage Vocabulary::createDummyVocabForTest(unsigned Dim) { |
| float DummyVal = 0.1f; |
| |
| // Create sections for opcodes, types, operands, and predicates |
| // Order must match Vocabulary::Section enum |
| std::vector<std::vector<Embedding>> Sections; |
| Sections.reserve(4); |
| |
| // Opcodes section |
| std::vector<Embedding> OpcodeSec; |
| OpcodeSec.reserve(MaxOpcodes); |
| for (unsigned I = 0; I < MaxOpcodes; ++I) { |
| OpcodeSec.emplace_back(Dim, DummyVal); |
| DummyVal += 0.1f; |
| } |
| Sections.push_back(std::move(OpcodeSec)); |
| |
| // Types section |
| std::vector<Embedding> TypeSec; |
| TypeSec.reserve(MaxCanonicalTypeIDs); |
| for (unsigned I = 0; I < MaxCanonicalTypeIDs; ++I) { |
| TypeSec.emplace_back(Dim, DummyVal); |
| DummyVal += 0.1f; |
| } |
| Sections.push_back(std::move(TypeSec)); |
| |
| // Operands section |
| std::vector<Embedding> OperandSec; |
| OperandSec.reserve(MaxOperandKinds); |
| for (unsigned I = 0; I < MaxOperandKinds; ++I) { |
| OperandSec.emplace_back(Dim, DummyVal); |
| DummyVal += 0.1f; |
| } |
| Sections.push_back(std::move(OperandSec)); |
| |
| // Predicates section |
| std::vector<Embedding> PredicateSec; |
| PredicateSec.reserve(MaxPredicateKinds); |
| for (unsigned I = 0; I < MaxPredicateKinds; ++I) { |
| PredicateSec.emplace_back(Dim, DummyVal); |
| DummyVal += 0.1f; |
| } |
| Sections.push_back(std::move(PredicateSec)); |
| |
| return VocabStorage(std::move(Sections)); |
| } |
| |
| // ==----------------------------------------------------------------------===// |
| // IR2VecVocabAnalysis |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: Make this optional. We can avoid file reads |
| // by auto-generating a default vocabulary during the build time. |
| Error IR2VecVocabAnalysis::readVocabulary(VocabMap &OpcVocab, |
| VocabMap &TypeVocab, |
| VocabMap &ArgVocab) { |
| auto BufOrError = MemoryBuffer::getFileOrSTDIN(VocabFile, /*IsText=*/true); |
| if (!BufOrError) |
| return createFileError(VocabFile, BufOrError.getError()); |
| |
| auto Content = BufOrError.get()->getBuffer(); |
| |
| Expected<json::Value> ParsedVocabValue = json::parse(Content); |
| if (!ParsedVocabValue) |
| return ParsedVocabValue.takeError(); |
| |
| unsigned OpcodeDim = 0, TypeDim = 0, ArgDim = 0; |
| if (auto Err = VocabStorage::parseVocabSection("Opcodes", *ParsedVocabValue, |
| OpcVocab, OpcodeDim)) |
| return Err; |
| |
| if (auto Err = VocabStorage::parseVocabSection("Types", *ParsedVocabValue, |
| TypeVocab, TypeDim)) |
| return Err; |
| |
| if (auto Err = VocabStorage::parseVocabSection("Arguments", *ParsedVocabValue, |
| ArgVocab, ArgDim)) |
| return Err; |
| |
| if (!(OpcodeDim == TypeDim && TypeDim == ArgDim)) |
| return createStringError(errc::illegal_byte_sequence, |
| "Vocabulary sections have different dimensions"); |
| |
| return Error::success(); |
| } |
| |
| void IR2VecVocabAnalysis::generateVocabStorage(VocabMap &OpcVocab, |
| VocabMap &TypeVocab, |
| VocabMap &ArgVocab) { |
| |
| // Helper for handling missing entities in the vocabulary. |
| // Currently, we use a zero vector. In the future, we will throw an error to |
| // ensure that *all* known entities are present in the vocabulary. |
| auto handleMissingEntity = [](const std::string &Val) { |
| LLVM_DEBUG(errs() << Val |
| << " is not in vocabulary, using zero vector; This " |
| "would result in an error in future.\n"); |
| ++VocabMissCounter; |
| }; |
| |
| unsigned Dim = OpcVocab.begin()->second.size(); |
| assert(Dim > 0 && "Vocabulary dimension must be greater than zero"); |
| |
| // Handle Opcodes |
| std::vector<Embedding> NumericOpcodeEmbeddings(Vocabulary::MaxOpcodes, |
| Embedding(Dim)); |
| for (unsigned Opcode : seq(0u, Vocabulary::MaxOpcodes)) { |
| StringRef VocabKey = Vocabulary::getVocabKeyForOpcode(Opcode + 1); |
| auto It = OpcVocab.find(VocabKey.str()); |
| if (It != OpcVocab.end()) |
| NumericOpcodeEmbeddings[Opcode] = It->second; |
| else |
| handleMissingEntity(VocabKey.str()); |
| } |
| |
| // Handle Types - only canonical types are present in vocabulary |
| std::vector<Embedding> NumericTypeEmbeddings(Vocabulary::MaxCanonicalTypeIDs, |
| Embedding(Dim)); |
| for (unsigned CTypeID : seq(0u, Vocabulary::MaxCanonicalTypeIDs)) { |
| StringRef VocabKey = Vocabulary::getVocabKeyForCanonicalTypeID( |
| static_cast<Vocabulary::CanonicalTypeID>(CTypeID)); |
| if (auto It = TypeVocab.find(VocabKey.str()); It != TypeVocab.end()) { |
| NumericTypeEmbeddings[CTypeID] = It->second; |
| continue; |
| } |
| handleMissingEntity(VocabKey.str()); |
| } |
| |
| // Handle Arguments/Operands |
| std::vector<Embedding> NumericArgEmbeddings(Vocabulary::MaxOperandKinds, |
| Embedding(Dim)); |
| for (unsigned OpKind : seq(0u, Vocabulary::MaxOperandKinds)) { |
| Vocabulary::OperandKind Kind = static_cast<Vocabulary::OperandKind>(OpKind); |
| StringRef VocabKey = Vocabulary::getVocabKeyForOperandKind(Kind); |
| auto It = ArgVocab.find(VocabKey.str()); |
| if (It != ArgVocab.end()) { |
| NumericArgEmbeddings[OpKind] = It->second; |
| continue; |
| } |
| handleMissingEntity(VocabKey.str()); |
| } |
| |
| // Handle Predicates: part of Operands section. We look up predicate keys |
| // in ArgVocab. |
| std::vector<Embedding> NumericPredEmbeddings(Vocabulary::MaxPredicateKinds, |
| Embedding(Dim, 0)); |
| for (unsigned PK : seq(0u, Vocabulary::MaxPredicateKinds)) { |
| StringRef VocabKey = |
| Vocabulary::getVocabKeyForPredicate(Vocabulary::getPredicate(PK)); |
| auto It = ArgVocab.find(VocabKey.str()); |
| if (It != ArgVocab.end()) { |
| NumericPredEmbeddings[PK] = It->second; |
| continue; |
| } |
| handleMissingEntity(VocabKey.str()); |
| } |
| |
| // Create section-based storage instead of flat vocabulary |
| // Order must match Vocabulary::Section enum |
| std::vector<std::vector<Embedding>> Sections(4); |
| Sections[static_cast<unsigned>(Vocabulary::Section::Opcodes)] = |
| std::move(NumericOpcodeEmbeddings); // Section::Opcodes |
| Sections[static_cast<unsigned>(Vocabulary::Section::CanonicalTypes)] = |
| std::move(NumericTypeEmbeddings); // Section::CanonicalTypes |
| Sections[static_cast<unsigned>(Vocabulary::Section::Operands)] = |
| std::move(NumericArgEmbeddings); // Section::Operands |
| Sections[static_cast<unsigned>(Vocabulary::Section::Predicates)] = |
| std::move(NumericPredEmbeddings); // Section::Predicates |
| |
| // Create VocabStorage from organized sections |
| Vocab.emplace(std::move(Sections)); |
| } |
| |
| void IR2VecVocabAnalysis::emitError(Error Err, LLVMContext &Ctx) { |
| handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) { |
| Ctx.emitError("Error reading vocabulary: " + EI.message()); |
| }); |
| } |
| |
| IR2VecVocabAnalysis::Result |
| IR2VecVocabAnalysis::run(Module &M, ModuleAnalysisManager &AM) { |
| auto Ctx = &M.getContext(); |
| // If vocabulary is already populated by the constructor, use it. |
| if (Vocab.has_value()) |
| return Vocabulary(std::move(Vocab.value())); |
| |
| // Otherwise, try to read from the vocabulary file. |
| if (VocabFile.empty()) { |
| // FIXME: Use default vocabulary |
| Ctx->emitError("IR2Vec vocabulary file path not specified; You may need to " |
| "set it using --ir2vec-vocab-path"); |
| return Vocabulary(); // Return invalid result |
| } |
| |
| VocabMap OpcVocab, TypeVocab, ArgVocab; |
| if (auto Err = readVocabulary(OpcVocab, TypeVocab, ArgVocab)) { |
| emitError(std::move(Err), *Ctx); |
| return Vocabulary(); |
| } |
| |
| // Scale the vocabulary sections based on the provided weights |
| auto scaleVocabSection = [](VocabMap &Vocab, double Weight) { |
| for (auto &Entry : Vocab) |
| Entry.second *= Weight; |
| }; |
| scaleVocabSection(OpcVocab, OpcWeight); |
| scaleVocabSection(TypeVocab, TypeWeight); |
| scaleVocabSection(ArgVocab, ArgWeight); |
| |
| // Generate the numeric lookup vocabulary |
| generateVocabStorage(OpcVocab, TypeVocab, ArgVocab); |
| |
| return Vocabulary(std::move(Vocab.value())); |
| } |
| |
| // ==----------------------------------------------------------------------===// |
| // Printer Passes |
| //===----------------------------------------------------------------------===// |
| |
| PreservedAnalyses IR2VecPrinterPass::run(Module &M, |
| ModuleAnalysisManager &MAM) { |
| auto &Vocabulary = MAM.getResult<IR2VecVocabAnalysis>(M); |
| assert(Vocabulary.isValid() && "IR2Vec Vocabulary is invalid"); |
| |
| for (Function &F : M) { |
| auto Emb = Embedder::create(IR2VecEmbeddingKind, F, Vocabulary); |
| if (!Emb) { |
| OS << "Error creating IR2Vec embeddings \n"; |
| continue; |
| } |
| |
| OS << "IR2Vec embeddings for function " << F.getName() << ":\n"; |
| OS << "Function vector: "; |
| Emb->getFunctionVector().print(OS); |
| |
| OS << "Basic block vectors:\n"; |
| for (const BasicBlock &BB : F) { |
| OS << "Basic block: " << BB.getName() << ":\n"; |
| Emb->getBBVector(BB).print(OS); |
| } |
| |
| OS << "Instruction vectors:\n"; |
| for (const BasicBlock &BB : F) { |
| for (const Instruction &I : BB) { |
| OS << "Instruction: "; |
| I.print(OS); |
| Emb->getInstVector(I).print(OS); |
| } |
| } |
| } |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses IR2VecVocabPrinterPass::run(Module &M, |
| ModuleAnalysisManager &MAM) { |
| auto &IR2VecVocabulary = MAM.getResult<IR2VecVocabAnalysis>(M); |
| assert(IR2VecVocabulary.isValid() && "IR2Vec Vocabulary is invalid"); |
| |
| // Print each entry |
| unsigned Pos = 0; |
| for (const auto &Entry : IR2VecVocabulary) { |
| OS << "Key: " << IR2VecVocabulary.getStringKey(Pos++) << ": "; |
| Entry.print(OS); |
| } |
| return PreservedAnalyses::all(); |
| } |