| //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Implementation of the abstract lowering for the Swift calling convention. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/CodeGen/SwiftCallingConv.h" | 
 | #include "ABIInfo.h" | 
 | #include "CodeGenModule.h" | 
 | #include "TargetInfo.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 | using namespace swiftcall; | 
 |  | 
 | static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { | 
 |   return CGM.getTargetCodeGenInfo().getSwiftABIInfo(); | 
 | } | 
 |  | 
 | static bool isPowerOf2(unsigned n) { | 
 |   return n == (n & -n); | 
 | } | 
 |  | 
 | /// Given two types with the same size, try to find a common type. | 
 | static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { | 
 |   assert(first != second); | 
 |  | 
 |   // Allow pointers to merge with integers, but prefer the integer type. | 
 |   if (first->isIntegerTy()) { | 
 |     if (second->isPointerTy()) return first; | 
 |   } else if (first->isPointerTy()) { | 
 |     if (second->isIntegerTy()) return second; | 
 |     if (second->isPointerTy()) return first; | 
 |  | 
 |   // Allow two vectors to be merged (given that they have the same size). | 
 |   // This assumes that we never have two different vector register sets. | 
 |   } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { | 
 |     if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { | 
 |       if (auto commonTy = getCommonType(firstVecTy->getElementType(), | 
 |                                         secondVecTy->getElementType())) { | 
 |         return (commonTy == firstVecTy->getElementType() ? first : second); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { | 
 |   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); | 
 | } | 
 |  | 
 | static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) { | 
 |   return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type)); | 
 | } | 
 |  | 
 | void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { | 
 |   // Deal with various aggregate types as special cases: | 
 |  | 
 |   // Record types. | 
 |   if (auto recType = type->getAsCanonical<RecordType>()) { | 
 |     addTypedData(recType->getDecl(), begin); | 
 |  | 
 |     // Array types. | 
 |   } else if (type->isArrayType()) { | 
 |     // Incomplete array types (flexible array members?) don't provide | 
 |     // data to lay out, and the other cases shouldn't be possible. | 
 |     auto arrayType = CGM.getContext().getAsConstantArrayType(type); | 
 |     if (!arrayType) return; | 
 |  | 
 |     QualType eltType = arrayType->getElementType(); | 
 |     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); | 
 |     for (uint64_t i = 0, e = arrayType->getZExtSize(); i != e; ++i) { | 
 |       addTypedData(eltType, begin + i * eltSize); | 
 |     } | 
 |  | 
 |   // Complex types. | 
 |   } else if (auto complexType = type->getAs<ComplexType>()) { | 
 |     auto eltType = complexType->getElementType(); | 
 |     auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); | 
 |     auto eltLLVMType = CGM.getTypes().ConvertType(eltType); | 
 |     addTypedData(eltLLVMType, begin, begin + eltSize); | 
 |     addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); | 
 |  | 
 |   // Member pointer types. | 
 |   } else if (type->getAs<MemberPointerType>()) { | 
 |     // Just add it all as opaque. | 
 |     addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); | 
 |  | 
 |     // Atomic types. | 
 |   } else if (const auto *atomicType = type->getAs<AtomicType>()) { | 
 |     auto valueType = atomicType->getValueType(); | 
 |     auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType); | 
 |     auto valueSize = CGM.getContext().getTypeSizeInChars(valueType); | 
 |  | 
 |     addTypedData(atomicType->getValueType(), begin); | 
 |  | 
 |     // Add atomic padding. | 
 |     auto atomicPadding = atomicSize - valueSize; | 
 |     if (atomicPadding > CharUnits::Zero()) | 
 |       addOpaqueData(begin + valueSize, begin + atomicSize); | 
 |  | 
 |     // Everything else is scalar and should not convert as an LLVM aggregate. | 
 |   } else { | 
 |     // We intentionally convert as !ForMem because we want to preserve | 
 |     // that a type was an i1. | 
 |     auto *llvmType = CGM.getTypes().ConvertType(type); | 
 |     addTypedData(llvmType, begin); | 
 |   } | 
 | } | 
 |  | 
 | void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { | 
 |   addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); | 
 | } | 
 |  | 
 | void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, | 
 |                                     const ASTRecordLayout &layout) { | 
 |   // Unions are a special case. | 
 |   if (record->isUnion()) { | 
 |     for (auto *field : record->fields()) { | 
 |       if (field->isBitField()) { | 
 |         addBitFieldData(field, begin, 0); | 
 |       } else { | 
 |         addTypedData(field->getType(), begin); | 
 |       } | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Note that correctness does not rely on us adding things in | 
 |   // their actual order of layout; it's just somewhat more efficient | 
 |   // for the builder. | 
 |  | 
 |   // With that in mind, add "early" C++ data. | 
 |   auto cxxRecord = dyn_cast<CXXRecordDecl>(record); | 
 |   if (cxxRecord) { | 
 |     //   - a v-table pointer, if the class adds its own | 
 |     if (layout.hasOwnVFPtr()) { | 
 |       addTypedData(CGM.Int8PtrTy, begin); | 
 |     } | 
 |  | 
 |     //   - non-virtual bases | 
 |     for (auto &baseSpecifier : cxxRecord->bases()) { | 
 |       if (baseSpecifier.isVirtual()) continue; | 
 |  | 
 |       auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); | 
 |       addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); | 
 |     } | 
 |  | 
 |     //   - a vbptr if the class adds its own | 
 |     if (layout.hasOwnVBPtr()) { | 
 |       addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Add fields. | 
 |   for (auto *field : record->fields()) { | 
 |     auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); | 
 |     if (field->isBitField()) { | 
 |       addBitFieldData(field, begin, fieldOffsetInBits); | 
 |     } else { | 
 |       addTypedData(field->getType(), | 
 |               begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Add "late" C++ data: | 
 |   if (cxxRecord) { | 
 |     //   - virtual bases | 
 |     for (auto &vbaseSpecifier : cxxRecord->vbases()) { | 
 |       auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); | 
 |       addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, | 
 |                                        CharUnits recordBegin, | 
 |                                        uint64_t bitfieldBitBegin) { | 
 |   assert(bitfield->isBitField()); | 
 |   auto &ctx = CGM.getContext(); | 
 |   auto width = bitfield->getBitWidthValue(); | 
 |  | 
 |   // We can ignore zero-width bit-fields. | 
 |   if (width == 0) return; | 
 |  | 
 |   // toCharUnitsFromBits rounds down. | 
 |   CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); | 
 |  | 
 |   // Find the offset of the last byte that is partially occupied by the | 
 |   // bit-field; since we otherwise expect exclusive ends, the end is the | 
 |   // next byte. | 
 |   uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; | 
 |   CharUnits bitfieldByteEnd = | 
 |     ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); | 
 |   addOpaqueData(recordBegin + bitfieldByteBegin, | 
 |                 recordBegin + bitfieldByteEnd); | 
 | } | 
 |  | 
 | void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { | 
 |   assert(type && "didn't provide type for typed data"); | 
 |   addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); | 
 | } | 
 |  | 
 | void SwiftAggLowering::addTypedData(llvm::Type *type, | 
 |                                     CharUnits begin, CharUnits end) { | 
 |   assert(type && "didn't provide type for typed data"); | 
 |   assert(getTypeStoreSize(CGM, type) == end - begin); | 
 |  | 
 |   // Legalize vector types. | 
 |   if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { | 
 |     SmallVector<llvm::Type*, 4> componentTys; | 
 |     legalizeVectorType(CGM, end - begin, vecTy, componentTys); | 
 |     assert(componentTys.size() >= 1); | 
 |  | 
 |     // Walk the initial components. | 
 |     for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { | 
 |       llvm::Type *componentTy = componentTys[i]; | 
 |       auto componentSize = getTypeStoreSize(CGM, componentTy); | 
 |       assert(componentSize < end - begin); | 
 |       addLegalTypedData(componentTy, begin, begin + componentSize); | 
 |       begin += componentSize; | 
 |     } | 
 |  | 
 |     return addLegalTypedData(componentTys.back(), begin, end); | 
 |   } | 
 |  | 
 |   // Legalize integer types. | 
 |   if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { | 
 |     if (!isLegalIntegerType(CGM, intTy)) | 
 |       return addOpaqueData(begin, end); | 
 |   } | 
 |  | 
 |   // All other types should be legal. | 
 |   return addLegalTypedData(type, begin, end); | 
 | } | 
 |  | 
 | void SwiftAggLowering::addLegalTypedData(llvm::Type *type, | 
 |                                          CharUnits begin, CharUnits end) { | 
 |   // Require the type to be naturally aligned. | 
 |   if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { | 
 |  | 
 |     // Try splitting vector types. | 
 |     if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { | 
 |       auto split = splitLegalVectorType(CGM, end - begin, vecTy); | 
 |       auto eltTy = split.first; | 
 |       auto numElts = split.second; | 
 |  | 
 |       auto eltSize = (end - begin) / numElts; | 
 |       assert(eltSize == getTypeStoreSize(CGM, eltTy)); | 
 |       for (size_t i = 0, e = numElts; i != e; ++i) { | 
 |         addLegalTypedData(eltTy, begin, begin + eltSize); | 
 |         begin += eltSize; | 
 |       } | 
 |       assert(begin == end); | 
 |       return; | 
 |     } | 
 |  | 
 |     return addOpaqueData(begin, end); | 
 |   } | 
 |  | 
 |   addEntry(type, begin, end); | 
 | } | 
 |  | 
 | void SwiftAggLowering::addEntry(llvm::Type *type, | 
 |                                 CharUnits begin, CharUnits end) { | 
 |   assert((!type || | 
 |           (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && | 
 |          "cannot add aggregate-typed data"); | 
 |   assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); | 
 |  | 
 |   // Fast path: we can just add entries to the end. | 
 |   if (Entries.empty() || Entries.back().End <= begin) { | 
 |     Entries.push_back({begin, end, type}); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Find the first existing entry that ends after the start of the new data. | 
 |   // TODO: do a binary search if Entries is big enough for it to matter. | 
 |   size_t index = Entries.size() - 1; | 
 |   while (index != 0) { | 
 |     if (Entries[index - 1].End <= begin) break; | 
 |     --index; | 
 |   } | 
 |  | 
 |   // The entry ends after the start of the new data. | 
 |   // If the entry starts after the end of the new data, there's no conflict. | 
 |   if (Entries[index].Begin >= end) { | 
 |     // This insertion is potentially O(n), but the way we generally build | 
 |     // these layouts makes that unlikely to matter: we'd need a union of | 
 |     // several very large types. | 
 |     Entries.insert(Entries.begin() + index, {begin, end, type}); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, the ranges overlap.  The new range might also overlap | 
 |   // with later ranges. | 
 | restartAfterSplit: | 
 |  | 
 |   // Simplest case: an exact overlap. | 
 |   if (Entries[index].Begin == begin && Entries[index].End == end) { | 
 |     // If the types match exactly, great. | 
 |     if (Entries[index].Type == type) return; | 
 |  | 
 |     // If either type is opaque, make the entry opaque and return. | 
 |     if (Entries[index].Type == nullptr) { | 
 |       return; | 
 |     } else if (type == nullptr) { | 
 |       Entries[index].Type = nullptr; | 
 |       return; | 
 |     } | 
 |  | 
 |     // If they disagree in an ABI-agnostic way, just resolve the conflict | 
 |     // arbitrarily. | 
 |     if (auto entryType = getCommonType(Entries[index].Type, type)) { | 
 |       Entries[index].Type = entryType; | 
 |       return; | 
 |     } | 
 |  | 
 |     // Otherwise, make the entry opaque. | 
 |     Entries[index].Type = nullptr; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay, we have an overlapping conflict of some sort. | 
 |  | 
 |   // If we have a vector type, split it. | 
 |   if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { | 
 |     auto eltTy = vecTy->getElementType(); | 
 |     CharUnits eltSize = | 
 |         (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements(); | 
 |     assert(eltSize == getTypeStoreSize(CGM, eltTy)); | 
 |     for (unsigned i = 0, | 
 |                   e = cast<llvm::FixedVectorType>(vecTy)->getNumElements(); | 
 |          i != e; ++i) { | 
 |       addEntry(eltTy, begin, begin + eltSize); | 
 |       begin += eltSize; | 
 |     } | 
 |     assert(begin == end); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If the entry is a vector type, split it and try again. | 
 |   if (Entries[index].Type && Entries[index].Type->isVectorTy()) { | 
 |     splitVectorEntry(index); | 
 |     goto restartAfterSplit; | 
 |   } | 
 |  | 
 |   // Okay, we have no choice but to make the existing entry opaque. | 
 |  | 
 |   Entries[index].Type = nullptr; | 
 |  | 
 |   // Stretch the start of the entry to the beginning of the range. | 
 |   if (begin < Entries[index].Begin) { | 
 |     Entries[index].Begin = begin; | 
 |     assert(index == 0 || begin >= Entries[index - 1].End); | 
 |   } | 
 |  | 
 |   // Stretch the end of the entry to the end of the range; but if we run | 
 |   // into the start of the next entry, just leave the range there and repeat. | 
 |   while (end > Entries[index].End) { | 
 |     assert(Entries[index].Type == nullptr); | 
 |  | 
 |     // If the range doesn't overlap the next entry, we're done. | 
 |     if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { | 
 |       Entries[index].End = end; | 
 |       break; | 
 |     } | 
 |  | 
 |     // Otherwise, stretch to the start of the next entry. | 
 |     Entries[index].End = Entries[index + 1].Begin; | 
 |  | 
 |     // Continue with the next entry. | 
 |     index++; | 
 |  | 
 |     // This entry needs to be made opaque if it is not already. | 
 |     if (Entries[index].Type == nullptr) | 
 |       continue; | 
 |  | 
 |     // Split vector entries unless we completely subsume them. | 
 |     if (Entries[index].Type->isVectorTy() && | 
 |         end < Entries[index].End) { | 
 |       splitVectorEntry(index); | 
 |     } | 
 |  | 
 |     // Make the entry opaque. | 
 |     Entries[index].Type = nullptr; | 
 |   } | 
 | } | 
 |  | 
 | /// Replace the entry of vector type at offset 'index' with a sequence | 
 | /// of its component vectors. | 
 | void SwiftAggLowering::splitVectorEntry(unsigned index) { | 
 |   auto vecTy = cast<llvm::VectorType>(Entries[index].Type); | 
 |   auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); | 
 |  | 
 |   auto eltTy = split.first; | 
 |   CharUnits eltSize = getTypeStoreSize(CGM, eltTy); | 
 |   auto numElts = split.second; | 
 |   Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry()); | 
 |  | 
 |   CharUnits begin = Entries[index].Begin; | 
 |   for (unsigned i = 0; i != numElts; ++i) { | 
 |     unsigned idx = index + i; | 
 |     Entries[idx].Type = eltTy; | 
 |     Entries[idx].Begin = begin; | 
 |     Entries[idx].End = begin + eltSize; | 
 |     begin += eltSize; | 
 |   } | 
 | } | 
 |  | 
 | /// Given a power-of-two unit size, return the offset of the aligned unit | 
 | /// of that size which contains the given offset. | 
 | /// | 
 | /// In other words, round down to the nearest multiple of the unit size. | 
 | static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { | 
 |   assert(isPowerOf2(unitSize.getQuantity())); | 
 |   auto unitMask = ~(unitSize.getQuantity() - 1); | 
 |   return CharUnits::fromQuantity(offset.getQuantity() & unitMask); | 
 | } | 
 |  | 
 | static bool areBytesInSameUnit(CharUnits first, CharUnits second, | 
 |                                CharUnits chunkSize) { | 
 |   return getOffsetAtStartOfUnit(first, chunkSize) | 
 |       == getOffsetAtStartOfUnit(second, chunkSize); | 
 | } | 
 |  | 
 | static bool isMergeableEntryType(llvm::Type *type) { | 
 |   // Opaquely-typed memory is always mergeable. | 
 |   if (type == nullptr) return true; | 
 |  | 
 |   // Pointers and integers are always mergeable.  In theory we should not | 
 |   // merge pointers, but (1) it doesn't currently matter in practice because | 
 |   // the chunk size is never greater than the size of a pointer and (2) | 
 |   // Swift IRGen uses integer types for a lot of things that are "really" | 
 |   // just storing pointers (like std::optional<SomePointer>).  If we ever have a | 
 |   // target that would otherwise combine pointers, we should put some effort | 
 |   // into fixing those cases in Swift IRGen and then call out pointer types | 
 |   // here. | 
 |  | 
 |   // Floating-point and vector types should never be merged. | 
 |   // Most such types are too large and highly-aligned to ever trigger merging | 
 |   // in practice, but it's important for the rule to cover at least 'half' | 
 |   // and 'float', as well as things like small vectors of 'i1' or 'i8'. | 
 |   return (!type->isFloatingPointTy() && !type->isVectorTy()); | 
 | } | 
 |  | 
 | bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first, | 
 |                                           const StorageEntry &second, | 
 |                                           CharUnits chunkSize) { | 
 |   // Only merge entries that overlap the same chunk.  We test this first | 
 |   // despite being a bit more expensive because this is the condition that | 
 |   // tends to prevent merging. | 
 |   if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin, | 
 |                           chunkSize)) | 
 |     return false; | 
 |  | 
 |   return (isMergeableEntryType(first.Type) && | 
 |           isMergeableEntryType(second.Type)); | 
 | } | 
 |  | 
 | void SwiftAggLowering::finish() { | 
 |   if (Entries.empty()) { | 
 |     Finished = true; | 
 |     return; | 
 |   } | 
 |  | 
 |   // We logically split the layout down into a series of chunks of this size, | 
 |   // which is generally the size of a pointer. | 
 |   const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); | 
 |  | 
 |   // First pass: if two entries should be merged, make them both opaque | 
 |   // and stretch one to meet the next. | 
 |   // Also, remember if there are any opaque entries. | 
 |   bool hasOpaqueEntries = (Entries[0].Type == nullptr); | 
 |   for (size_t i = 1, e = Entries.size(); i != e; ++i) { | 
 |     if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) { | 
 |       Entries[i - 1].Type = nullptr; | 
 |       Entries[i].Type = nullptr; | 
 |       Entries[i - 1].End = Entries[i].Begin; | 
 |       hasOpaqueEntries = true; | 
 |  | 
 |     } else if (Entries[i].Type == nullptr) { | 
 |       hasOpaqueEntries = true; | 
 |     } | 
 |   } | 
 |  | 
 |   // The rest of the algorithm leaves non-opaque entries alone, so if we | 
 |   // have no opaque entries, we're done. | 
 |   if (!hasOpaqueEntries) { | 
 |     Finished = true; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay, move the entries to a temporary and rebuild Entries. | 
 |   auto orig = std::move(Entries); | 
 |   assert(Entries.empty()); | 
 |  | 
 |   for (size_t i = 0, e = orig.size(); i != e; ++i) { | 
 |     // Just copy over non-opaque entries. | 
 |     if (orig[i].Type != nullptr) { | 
 |       Entries.push_back(orig[i]); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Scan forward to determine the full extent of the next opaque range. | 
 |     // We know from the first pass that only contiguous ranges will overlap | 
 |     // the same aligned chunk. | 
 |     auto begin = orig[i].Begin; | 
 |     auto end = orig[i].End; | 
 |     while (i + 1 != e && | 
 |            orig[i + 1].Type == nullptr && | 
 |            end == orig[i + 1].Begin) { | 
 |       end = orig[i + 1].End; | 
 |       i++; | 
 |     } | 
 |  | 
 |     // Add an entry per intersected chunk. | 
 |     do { | 
 |       // Find the smallest aligned storage unit in the maximal aligned | 
 |       // storage unit containing 'begin' that contains all the bytes in | 
 |       // the intersection between the range and this chunk. | 
 |       CharUnits localBegin = begin; | 
 |       CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); | 
 |       CharUnits chunkEnd = chunkBegin + chunkSize; | 
 |       CharUnits localEnd = std::min(end, chunkEnd); | 
 |  | 
 |       // Just do a simple loop over ever-increasing unit sizes. | 
 |       CharUnits unitSize = CharUnits::One(); | 
 |       CharUnits unitBegin, unitEnd; | 
 |       for (; ; unitSize *= 2) { | 
 |         assert(unitSize <= chunkSize); | 
 |         unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); | 
 |         unitEnd = unitBegin + unitSize; | 
 |         if (unitEnd >= localEnd) break; | 
 |       } | 
 |  | 
 |       // Add an entry for this unit. | 
 |       auto entryTy = | 
 |         llvm::IntegerType::get(CGM.getLLVMContext(), | 
 |                                CGM.getContext().toBits(unitSize)); | 
 |       Entries.push_back({unitBegin, unitEnd, entryTy}); | 
 |  | 
 |       // The next chunk starts where this chunk left off. | 
 |       begin = localEnd; | 
 |     } while (begin != end); | 
 |   } | 
 |  | 
 |   // Okay, finally finished. | 
 |   Finished = true; | 
 | } | 
 |  | 
 | void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { | 
 |   assert(Finished && "haven't yet finished lowering"); | 
 |  | 
 |   for (auto &entry : Entries) { | 
 |     callback(entry.Begin, entry.End, entry.Type); | 
 |   } | 
 | } | 
 |  | 
 | std::pair<llvm::StructType*, llvm::Type*> | 
 | SwiftAggLowering::getCoerceAndExpandTypes() const { | 
 |   assert(Finished && "haven't yet finished lowering"); | 
 |  | 
 |   auto &ctx = CGM.getLLVMContext(); | 
 |  | 
 |   if (Entries.empty()) { | 
 |     auto type = llvm::StructType::get(ctx); | 
 |     return { type, type }; | 
 |   } | 
 |  | 
 |   SmallVector<llvm::Type*, 8> elts; | 
 |   CharUnits lastEnd = CharUnits::Zero(); | 
 |   bool hasPadding = false; | 
 |   bool packed = false; | 
 |   for (auto &entry : Entries) { | 
 |     if (entry.Begin != lastEnd) { | 
 |       auto paddingSize = entry.Begin - lastEnd; | 
 |       assert(!paddingSize.isNegative()); | 
 |  | 
 |       auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), | 
 |                                           paddingSize.getQuantity()); | 
 |       elts.push_back(padding); | 
 |       hasPadding = true; | 
 |     } | 
 |  | 
 |     if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity( | 
 |                        CGM.getDataLayout().getABITypeAlign(entry.Type)))) | 
 |       packed = true; | 
 |  | 
 |     elts.push_back(entry.Type); | 
 |  | 
 |     lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type); | 
 |     assert(entry.End <= lastEnd); | 
 |   } | 
 |  | 
 |   // We don't need to adjust 'packed' to deal with possible tail padding | 
 |   // because we never do that kind of access through the coercion type. | 
 |   auto coercionType = llvm::StructType::get(ctx, elts, packed); | 
 |  | 
 |   llvm::Type *unpaddedType = coercionType; | 
 |   if (hasPadding) { | 
 |     elts.clear(); | 
 |     for (auto &entry : Entries) { | 
 |       elts.push_back(entry.Type); | 
 |     } | 
 |     if (elts.size() == 1) { | 
 |       unpaddedType = elts[0]; | 
 |     } else { | 
 |       unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); | 
 |     } | 
 |   } else if (Entries.size() == 1) { | 
 |     unpaddedType = Entries[0].Type; | 
 |   } | 
 |  | 
 |   return { coercionType, unpaddedType }; | 
 | } | 
 |  | 
 | bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { | 
 |   assert(Finished && "haven't yet finished lowering"); | 
 |  | 
 |   // Empty types don't need to be passed indirectly. | 
 |   if (Entries.empty()) return false; | 
 |  | 
 |   // Avoid copying the array of types when there's just a single element. | 
 |   if (Entries.size() == 1) { | 
 |     return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type, | 
 |                                                      asReturnValue); | 
 |   } | 
 |  | 
 |   SmallVector<llvm::Type*, 8> componentTys; | 
 |   componentTys.reserve(Entries.size()); | 
 |   for (auto &entry : Entries) { | 
 |     componentTys.push_back(entry.Type); | 
 |   } | 
 |   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue); | 
 | } | 
 |  | 
 | bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM, | 
 |                                      ArrayRef<llvm::Type*> componentTys, | 
 |                                      bool asReturnValue) { | 
 |   return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue); | 
 | } | 
 |  | 
 | CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { | 
 |   // Currently always the size of an ordinary pointer. | 
 |   return CGM.getContext().toCharUnitsFromBits( | 
 |       CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default)); | 
 | } | 
 |  | 
 | CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { | 
 |   // For Swift's purposes, this is always just the store size of the type | 
 |   // rounded up to a power of 2. | 
 |   auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); | 
 |   size = llvm::bit_ceil(size); | 
 |   assert(CGM.getDataLayout().getABITypeAlign(type) <= size); | 
 |   return CharUnits::fromQuantity(size); | 
 | } | 
 |  | 
 | bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, | 
 |                                    llvm::IntegerType *intTy) { | 
 |   auto size = intTy->getBitWidth(); | 
 |   switch (size) { | 
 |   case 1: | 
 |   case 8: | 
 |   case 16: | 
 |   case 32: | 
 |   case 64: | 
 |     // Just assume that the above are always legal. | 
 |     return true; | 
 |  | 
 |   case 128: | 
 |     return CGM.getContext().getTargetInfo().hasInt128Type(); | 
 |  | 
 |   default: | 
 |     return false; | 
 |   } | 
 | } | 
 |  | 
 | bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, | 
 |                                   llvm::VectorType *vectorTy) { | 
 |   return isLegalVectorType( | 
 |       CGM, vectorSize, vectorTy->getElementType(), | 
 |       cast<llvm::FixedVectorType>(vectorTy)->getNumElements()); | 
 | } | 
 |  | 
 | bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, | 
 |                                   llvm::Type *eltTy, unsigned numElts) { | 
 |   assert(numElts > 1 && "illegal vector length"); | 
 |   return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts); | 
 | } | 
 |  | 
 | std::pair<llvm::Type*, unsigned> | 
 | swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, | 
 |                                 llvm::VectorType *vectorTy) { | 
 |   auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements(); | 
 |   auto eltTy = vectorTy->getElementType(); | 
 |  | 
 |   // Try to split the vector type in half. | 
 |   if (numElts >= 4 && isPowerOf2(numElts)) { | 
 |     if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) | 
 |       return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2}; | 
 |   } | 
 |  | 
 |   return {eltTy, numElts}; | 
 | } | 
 |  | 
 | void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, | 
 |                                    llvm::VectorType *origVectorTy, | 
 |                              llvm::SmallVectorImpl<llvm::Type*> &components) { | 
 |   // If it's already a legal vector type, use it. | 
 |   if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { | 
 |     components.push_back(origVectorTy); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Try to split the vector into legal subvectors. | 
 |   auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements(); | 
 |   auto eltTy = origVectorTy->getElementType(); | 
 |   assert(numElts != 1); | 
 |  | 
 |   // The largest size that we're still considering making subvectors of. | 
 |   // Always a power of 2. | 
 |   unsigned logCandidateNumElts = llvm::Log2_32(numElts); | 
 |   unsigned candidateNumElts = 1U << logCandidateNumElts; | 
 |   assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); | 
 |  | 
 |   // Minor optimization: don't check the legality of this exact size twice. | 
 |   if (candidateNumElts == numElts) { | 
 |     logCandidateNumElts--; | 
 |     candidateNumElts >>= 1; | 
 |   } | 
 |  | 
 |   CharUnits eltSize = (origVectorSize / numElts); | 
 |   CharUnits candidateSize = eltSize * candidateNumElts; | 
 |  | 
 |   // The sensibility of this algorithm relies on the fact that we never | 
 |   // have a legal non-power-of-2 vector size without having the power of 2 | 
 |   // also be legal. | 
 |   while (logCandidateNumElts > 0) { | 
 |     assert(candidateNumElts == 1U << logCandidateNumElts); | 
 |     assert(candidateNumElts <= numElts); | 
 |     assert(candidateSize == eltSize * candidateNumElts); | 
 |  | 
 |     // Skip illegal vector sizes. | 
 |     if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { | 
 |       logCandidateNumElts--; | 
 |       candidateNumElts /= 2; | 
 |       candidateSize /= 2; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Add the right number of vectors of this size. | 
 |     auto numVecs = numElts >> logCandidateNumElts; | 
 |     components.append(numVecs, | 
 |                       llvm::FixedVectorType::get(eltTy, candidateNumElts)); | 
 |     numElts -= (numVecs << logCandidateNumElts); | 
 |  | 
 |     if (numElts == 0) return; | 
 |  | 
 |     // It's possible that the number of elements remaining will be legal. | 
 |     // This can happen with e.g. <7 x float> when <3 x float> is legal. | 
 |     // This only needs to be separately checked if it's not a power of 2. | 
 |     if (numElts > 2 && !isPowerOf2(numElts) && | 
 |         isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { | 
 |       components.push_back(llvm::FixedVectorType::get(eltTy, numElts)); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Bring vecSize down to something no larger than numElts. | 
 |     do { | 
 |       logCandidateNumElts--; | 
 |       candidateNumElts /= 2; | 
 |       candidateSize /= 2; | 
 |     } while (candidateNumElts > numElts); | 
 |   } | 
 |  | 
 |   // Otherwise, just append a bunch of individual elements. | 
 |   components.append(numElts, eltTy); | 
 | } | 
 |  | 
 | bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM, | 
 |                                          const RecordDecl *record) { | 
 |   // FIXME: should we not rely on the standard computation in Sema, just in | 
 |   // case we want to diverge from the platform ABI (e.g. on targets where | 
 |   // that uses the MSVC rule)? | 
 |   return !record->canPassInRegisters(); | 
 | } | 
 |  | 
 | static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, | 
 |                                        bool forReturn, | 
 |                                        CharUnits alignmentForIndirect, | 
 |                                        unsigned IndirectAS) { | 
 |   if (lowering.empty()) { | 
 |     return ABIArgInfo::getIgnore(); | 
 |   } else if (lowering.shouldPassIndirectly(forReturn)) { | 
 |     return ABIArgInfo::getIndirect(alignmentForIndirect, | 
 |                                    /*AddrSpace=*/IndirectAS, | 
 |                                    /*byval=*/false); | 
 |   } else { | 
 |     auto types = lowering.getCoerceAndExpandTypes(); | 
 |     return ABIArgInfo::getCoerceAndExpand(types.first, types.second); | 
 |   } | 
 | } | 
 |  | 
 | static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, | 
 |                                bool forReturn) { | 
 |   unsigned IndirectAS = CGM.getDataLayout().getAllocaAddrSpace(); | 
 |   if (auto recordType = dyn_cast<RecordType>(type)) { | 
 |     auto record = recordType->getDecl(); | 
 |     auto &layout = CGM.getContext().getASTRecordLayout(record); | 
 |  | 
 |     if (mustPassRecordIndirectly(CGM, record)) | 
 |       return ABIArgInfo::getIndirect(layout.getAlignment(), | 
 |                                      /*AddrSpace=*/IndirectAS, /*byval=*/false); | 
 |  | 
 |     SwiftAggLowering lowering(CGM); | 
 |     lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); | 
 |     lowering.finish(); | 
 |  | 
 |     return classifyExpandedType(lowering, forReturn, layout.getAlignment(), | 
 |                                 IndirectAS); | 
 |   } | 
 |  | 
 |   // Just assume that all of our target ABIs can support returning at least | 
 |   // two integer or floating-point values. | 
 |   if (isa<ComplexType>(type)) { | 
 |     return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); | 
 |   } | 
 |  | 
 |   // Vector types may need to be legalized. | 
 |   if (isa<VectorType>(type)) { | 
 |     SwiftAggLowering lowering(CGM); | 
 |     lowering.addTypedData(type, CharUnits::Zero()); | 
 |     lowering.finish(); | 
 |  | 
 |     CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); | 
 |     return classifyExpandedType(lowering, forReturn, alignment, IndirectAS); | 
 |   } | 
 |  | 
 |   // Member pointer types need to be expanded, but it's a simple form of | 
 |   // expansion that 'Direct' can handle.  Note that CanBeFlattened should be | 
 |   // true for this to work. | 
 |  | 
 |   // 'void' needs to be ignored. | 
 |   if (type->isVoidType()) { | 
 |     return ABIArgInfo::getIgnore(); | 
 |   } | 
 |  | 
 |   // Everything else can be passed directly. | 
 |   return ABIArgInfo::getDirect(); | 
 | } | 
 |  | 
 | ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { | 
 |   return classifyType(CGM, type, /*forReturn*/ true); | 
 | } | 
 |  | 
 | ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, | 
 |                                            CanQualType type) { | 
 |   return classifyType(CGM, type, /*forReturn*/ false); | 
 | } | 
 |  | 
 | void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { | 
 |   auto &retInfo = FI.getReturnInfo(); | 
 |   retInfo = classifyReturnType(CGM, FI.getReturnType()); | 
 |  | 
 |   for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { | 
 |     auto &argInfo = FI.arg_begin()[i]; | 
 |     argInfo.info = classifyArgumentType(CGM, argInfo.type); | 
 |   } | 
 | } | 
 |  | 
 | // Is swifterror lowered to a register by the target ABI. | 
 | bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) { | 
 |   return getSwiftABIInfo(CGM).isSwiftErrorInRegister(); | 
 | } |