| //===- RemoveDeadValues.cpp - Remove Dead Values --------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The goal of this pass is optimization (reducing runtime) by removing |
| // unnecessary instructions. Unlike other passes that rely on local information |
| // gathered from patterns to accomplish optimization, this pass uses a full |
| // analysis of the IR, specifically, liveness analysis, and is thus more |
| // powerful. |
| // |
| // Currently, this pass performs the following optimizations: |
| // (A) Removes function arguments that are not live, |
| // (B) Removes function return values that are not live across all callers of |
| // the function, |
| // (C) Removes unneccesary operands, results, region arguments, and region |
| // terminator operands of region branch ops, and, |
| // (D) Removes simple and region branch ops that have all non-live results and |
| // don't affect memory in any way, |
| // |
| // iff |
| // |
| // the IR doesn't have any non-function symbol ops, non-call symbol user ops and |
| // branch ops. |
| // |
| // Here, a "simple op" refers to an op that isn't a symbol op, symbol-user op, |
| // region branch op, branch op, region branch terminator op, or return-like. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h" |
| #include "mlir/Analysis/DataFlow/LivenessAnalysis.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/BuiltinAttributes.h" |
| #include "mlir/IR/Dialect.h" |
| #include "mlir/IR/IRMapping.h" |
| #include "mlir/IR/OperationSupport.h" |
| #include "mlir/IR/SymbolTable.h" |
| #include "mlir/IR/Value.h" |
| #include "mlir/IR/ValueRange.h" |
| #include "mlir/IR/Visitors.h" |
| #include "mlir/Interfaces/CallInterfaces.h" |
| #include "mlir/Interfaces/ControlFlowInterfaces.h" |
| #include "mlir/Interfaces/FunctionInterfaces.h" |
| #include "mlir/Interfaces/SideEffectInterfaces.h" |
| #include "mlir/Pass/Pass.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/FoldUtils.h" |
| #include "mlir/Transforms/Passes.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <memory> |
| #include <optional> |
| #include <vector> |
| |
| namespace mlir { |
| #define GEN_PASS_DEF_REMOVEDEADVALUES |
| #include "mlir/Transforms/Passes.h.inc" |
| } // namespace mlir |
| |
| using namespace mlir; |
| using namespace mlir::dataflow; |
| |
| //===----------------------------------------------------------------------===// |
| // RemoveDeadValues Pass |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| // Some helper functions... |
| |
| /// Return true iff at least one value in `values` is live, given the liveness |
| /// information in `la`. |
| static bool hasLive(ValueRange values, RunLivenessAnalysis &la) { |
| for (Value value : values) { |
| // If there is a null value, it implies that it was dropped during the |
| // execution of this pass, implying that it was non-live. |
| if (!value) |
| continue; |
| |
| const Liveness *liveness = la.getLiveness(value); |
| if (!liveness || liveness->isLive) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Return a BitVector of size `values.size()` where its i-th bit is 1 iff the |
| /// i-th value in `values` is live, given the liveness information in `la`. |
| static BitVector markLives(ValueRange values, RunLivenessAnalysis &la) { |
| BitVector lives(values.size(), true); |
| |
| for (auto [index, value] : llvm::enumerate(values)) { |
| if (!value) { |
| lives.reset(index); |
| continue; |
| } |
| |
| const Liveness *liveness = la.getLiveness(value); |
| // It is important to note that when `liveness` is null, we can't tell if |
| // `value` is live or not. So, the safe option is to consider it live. Also, |
| // the execution of this pass might create new SSA values when erasing some |
| // of the results of an op and we know that these new values are live |
| // (because they weren't erased) and also their liveness is null because |
| // liveness analysis ran before their creation. |
| if (liveness && !liveness->isLive) |
| lives.reset(index); |
| } |
| |
| return lives; |
| } |
| |
| /// Drop the uses of the i-th result of `op` and then erase it iff toErase[i] |
| /// is 1. |
| static void dropUsesAndEraseResults(Operation *op, BitVector toErase) { |
| assert(op->getNumResults() == toErase.size() && |
| "expected the number of results in `op` and the size of `toErase` to " |
| "be the same"); |
| |
| std::vector<Type> newResultTypes; |
| for (OpResult result : op->getResults()) |
| if (!toErase[result.getResultNumber()]) |
| newResultTypes.push_back(result.getType()); |
| OpBuilder builder(op); |
| builder.setInsertionPointAfter(op); |
| OperationState state(op->getLoc(), op->getName().getStringRef(), |
| op->getOperands(), newResultTypes, op->getAttrs()); |
| for (unsigned i = 0, e = op->getNumRegions(); i < e; ++i) |
| state.addRegion(); |
| Operation *newOp = builder.create(state); |
| for (const auto &[index, region] : llvm::enumerate(op->getRegions())) { |
| Region &newRegion = newOp->getRegion(index); |
| // Move all blocks of `region` into `newRegion`. |
| Block *temp = new Block(); |
| newRegion.push_back(temp); |
| while (!region.empty()) |
| region.front().moveBefore(temp); |
| temp->erase(); |
| } |
| |
| unsigned indexOfNextNewCallOpResultToReplace = 0; |
| for (auto [index, result] : llvm::enumerate(op->getResults())) { |
| assert(result && "expected result to be non-null"); |
| if (toErase[index]) { |
| result.dropAllUses(); |
| } else { |
| result.replaceAllUsesWith( |
| newOp->getResult(indexOfNextNewCallOpResultToReplace++)); |
| } |
| } |
| op->erase(); |
| } |
| |
| /// Convert a list of `Operand`s to a list of `OpOperand`s. |
| static SmallVector<OpOperand *> operandsToOpOperands(OperandRange operands) { |
| OpOperand *values = operands.getBase(); |
| SmallVector<OpOperand *> opOperands; |
| for (unsigned i = 0, e = operands.size(); i < e; i++) |
| opOperands.push_back(&values[i]); |
| return opOperands; |
| } |
| |
| /// Clean a simple op `op`, given the liveness analysis information in `la`. |
| /// Here, cleaning means: |
| /// (1) Dropping all its uses, AND |
| /// (2) Erasing it |
| /// iff it has no memory effects and none of its results are live. |
| /// |
| /// It is assumed that `op` is simple. Here, a simple op is one which isn't a |
| /// symbol op, a symbol-user op, a region branch op, a branch op, a region |
| /// branch terminator op, or return-like. |
| static void cleanSimpleOp(Operation *op, RunLivenessAnalysis &la) { |
| if (!isMemoryEffectFree(op) || hasLive(op->getResults(), la)) |
| return; |
| |
| op->dropAllUses(); |
| op->erase(); |
| } |
| |
| /// Clean a function-like op `funcOp`, given the liveness information in `la` |
| /// and the IR in `module`. Here, cleaning means: |
| /// (1) Dropping the uses of its unnecessary (non-live) arguments, |
| /// (2) Erasing these arguments, |
| /// (3) Erasing their corresponding operands from its callers, |
| /// (4) Erasing its unnecessary terminator operands (return values that are |
| /// non-live across all callers), |
| /// (5) Dropping the uses of these return values from its callers, AND |
| /// (6) Erasing these return values |
| /// iff it is not public. |
| static void cleanFuncOp(FunctionOpInterface funcOp, Operation *module, |
| RunLivenessAnalysis &la) { |
| if (funcOp.isPublic()) |
| return; |
| |
| // Get the list of unnecessary (non-live) arguments in `nonLiveArgs`. |
| SmallVector<Value> arguments(funcOp.getArguments()); |
| BitVector nonLiveArgs = markLives(arguments, la); |
| nonLiveArgs = nonLiveArgs.flip(); |
| |
| // Do (1). |
| for (auto [index, arg] : llvm::enumerate(arguments)) |
| if (arg && nonLiveArgs[index]) |
| arg.dropAllUses(); |
| |
| // Do (2). |
| funcOp.eraseArguments(nonLiveArgs); |
| |
| // Do (3). |
| SymbolTable::UseRange uses = *funcOp.getSymbolUses(module); |
| for (SymbolTable::SymbolUse use : uses) { |
| Operation *callOp = use.getUser(); |
| assert(isa<CallOpInterface>(callOp) && "expected a call-like user"); |
| // The number of operands in the call op may not match the number of |
| // arguments in the func op. |
| BitVector nonLiveCallOperands(callOp->getNumOperands(), false); |
| SmallVector<OpOperand *> callOpOperands = |
| operandsToOpOperands(cast<CallOpInterface>(callOp).getArgOperands()); |
| for (int index : nonLiveArgs.set_bits()) |
| nonLiveCallOperands.set(callOpOperands[index]->getOperandNumber()); |
| callOp->eraseOperands(nonLiveCallOperands); |
| } |
| |
| // Get the list of unnecessary terminator operands (return values that are |
| // non-live across all callers) in `nonLiveRets`. There is a very important |
| // subtlety here. Unnecessary terminator operands are NOT the operands of the |
| // terminator that are non-live. Instead, these are the return values of the |
| // callers such that a given return value is non-live across all callers. Such |
| // corresponding operands in the terminator could be live. An example to |
| // demonstrate this: |
| // func.func private @f(%arg0: memref<i32>) -> (i32, i32) { |
| // %c0_i32 = arith.constant 0 : i32 |
| // %0 = arith.addi %c0_i32, %c0_i32 : i32 |
| // memref.store %0, %arg0[] : memref<i32> |
| // return %c0_i32, %0 : i32, i32 |
| // } |
| // func.func @main(%arg0: i32, %arg1: memref<i32>) -> (i32) { |
| // %1:2 = call @f(%arg1) : (memref<i32>) -> i32 |
| // return %1#0 : i32 |
| // } |
| // Here, we can see that %1#1 is never used. It is non-live. Thus, @f doesn't |
| // need to return %0. But, %0 is live. And, still, we want to stop it from |
| // being returned, in order to optimize our IR. So, this demonstrates how we |
| // can make our optimization strong by even removing a live return value (%0), |
| // since it forwards only to non-live value(s) (%1#1). |
| Operation *lastReturnOp = funcOp.back().getTerminator(); |
| size_t numReturns = lastReturnOp->getNumOperands(); |
| BitVector nonLiveRets(numReturns, true); |
| for (SymbolTable::SymbolUse use : uses) { |
| Operation *callOp = use.getUser(); |
| assert(isa<CallOpInterface>(callOp) && "expected a call-like user"); |
| BitVector liveCallRets = markLives(callOp->getResults(), la); |
| nonLiveRets &= liveCallRets.flip(); |
| } |
| |
| // Do (4). |
| // Note that in the absence of control flow ops forcing the control to go from |
| // the entry (first) block to the other blocks, the control never reaches any |
| // block other than the entry block, because every block has a terminator. |
| for (Block &block : funcOp.getBlocks()) { |
| Operation *returnOp = block.getTerminator(); |
| if (returnOp && returnOp->getNumOperands() == numReturns) |
| returnOp->eraseOperands(nonLiveRets); |
| } |
| funcOp.eraseResults(nonLiveRets); |
| |
| // Do (5) and (6). |
| for (SymbolTable::SymbolUse use : uses) { |
| Operation *callOp = use.getUser(); |
| assert(isa<CallOpInterface>(callOp) && "expected a call-like user"); |
| dropUsesAndEraseResults(callOp, nonLiveRets); |
| } |
| } |
| |
| /// Clean a region branch op `regionBranchOp`, given the liveness information in |
| /// `la`. Here, cleaning means: |
| /// (1') Dropping all its uses, AND |
| /// (2') Erasing it |
| /// if it has no memory effects and none of its results are live, AND |
| /// (1) Erasing its unnecessary operands (operands that are forwarded to |
| /// unneccesary results and arguments), |
| /// (2) Cleaning each of its regions, |
| /// (3) Dropping the uses of its unnecessary results (results that are |
| /// forwarded from unnecessary operands and terminator operands), AND |
| /// (4) Erasing these results |
| /// otherwise. |
| /// Note that here, cleaning a region means: |
| /// (2.a) Dropping the uses of its unnecessary arguments (arguments that are |
| /// forwarded from unneccesary operands and terminator operands), |
| /// (2.b) Erasing these arguments, AND |
| /// (2.c) Erasing its unnecessary terminator operands (terminator operands |
| /// that are forwarded to unneccesary results and arguments). |
| /// It is important to note that values in this op flow from operands and |
| /// terminator operands (successor operands) to arguments and results (successor |
| /// inputs). |
| static void cleanRegionBranchOp(RegionBranchOpInterface regionBranchOp, |
| RunLivenessAnalysis &la) { |
| // Mark live results of `regionBranchOp` in `liveResults`. |
| auto markLiveResults = [&](BitVector &liveResults) { |
| liveResults = markLives(regionBranchOp->getResults(), la); |
| }; |
| |
| // Mark live arguments in the regions of `regionBranchOp` in `liveArgs`. |
| auto markLiveArgs = [&](DenseMap<Region *, BitVector> &liveArgs) { |
| for (Region ®ion : regionBranchOp->getRegions()) { |
| SmallVector<Value> arguments(region.front().getArguments()); |
| BitVector regionLiveArgs = markLives(arguments, la); |
| liveArgs[®ion] = regionLiveArgs; |
| } |
| }; |
| |
| // Return the successors of `region` if the latter is not null. Else return |
| // the successors of `regionBranchOp`. |
| auto getSuccessors = [&](Region *region = nullptr) { |
| auto point = region ? region : RegionBranchPoint::parent(); |
| SmallVector<Attribute> operandAttributes(regionBranchOp->getNumOperands(), |
| nullptr); |
| SmallVector<RegionSuccessor> successors; |
| regionBranchOp.getSuccessorRegions(point, successors); |
| return successors; |
| }; |
| |
| // Return the operands of `terminator` that are forwarded to `successor` if |
| // the former is not null. Else return the operands of `regionBranchOp` |
| // forwarded to `successor`. |
| auto getForwardedOpOperands = [&](const RegionSuccessor &successor, |
| Operation *terminator = nullptr) { |
| OperandRange operands = |
| terminator ? cast<RegionBranchTerminatorOpInterface>(terminator) |
| .getSuccessorOperands(successor) |
| : regionBranchOp.getEntrySuccessorOperands(successor); |
| SmallVector<OpOperand *> opOperands = operandsToOpOperands(operands); |
| return opOperands; |
| }; |
| |
| // Mark the non-forwarded operands of `regionBranchOp` in |
| // `nonForwardedOperands`. |
| auto markNonForwardedOperands = [&](BitVector &nonForwardedOperands) { |
| nonForwardedOperands.resize(regionBranchOp->getNumOperands(), true); |
| for (const RegionSuccessor &successor : getSuccessors()) { |
| for (OpOperand *opOperand : getForwardedOpOperands(successor)) |
| nonForwardedOperands.reset(opOperand->getOperandNumber()); |
| } |
| }; |
| |
| // Mark the non-forwarded terminator operands of the various regions of |
| // `regionBranchOp` in `nonForwardedRets`. |
| auto markNonForwardedReturnValues = |
| [&](DenseMap<Operation *, BitVector> &nonForwardedRets) { |
| for (Region ®ion : regionBranchOp->getRegions()) { |
| Operation *terminator = region.front().getTerminator(); |
| nonForwardedRets[terminator] = |
| BitVector(terminator->getNumOperands(), true); |
| for (const RegionSuccessor &successor : getSuccessors(®ion)) { |
| for (OpOperand *opOperand : |
| getForwardedOpOperands(successor, terminator)) |
| nonForwardedRets[terminator].reset(opOperand->getOperandNumber()); |
| } |
| } |
| }; |
| |
| // Update `valuesToKeep` (which is expected to correspond to operands or |
| // terminator operands) based on `resultsToKeep` and `argsToKeep`, given |
| // `region`. When `valuesToKeep` correspond to operands, `region` is null. |
| // Else, `region` is the parent region of the terminator. |
| auto updateOperandsOrTerminatorOperandsToKeep = |
| [&](BitVector &valuesToKeep, BitVector &resultsToKeep, |
| DenseMap<Region *, BitVector> &argsToKeep, Region *region = nullptr) { |
| Operation *terminator = |
| region ? region->front().getTerminator() : nullptr; |
| |
| for (const RegionSuccessor &successor : getSuccessors(region)) { |
| Region *successorRegion = successor.getSuccessor(); |
| for (auto [opOperand, input] : |
| llvm::zip(getForwardedOpOperands(successor, terminator), |
| successor.getSuccessorInputs())) { |
| size_t operandNum = opOperand->getOperandNumber(); |
| bool updateBasedOn = |
| successorRegion |
| ? argsToKeep[successorRegion] |
| [cast<BlockArgument>(input).getArgNumber()] |
| : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
| valuesToKeep[operandNum] = valuesToKeep[operandNum] | updateBasedOn; |
| } |
| } |
| }; |
| |
| // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep` and |
| // `terminatorOperandsToKeep`. Store true in `resultsOrArgsToKeepChanged` if a |
| // value is modified, else, false. |
| auto recomputeResultsAndArgsToKeep = |
| [&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep, |
| BitVector &operandsToKeep, |
| DenseMap<Operation *, BitVector> &terminatorOperandsToKeep, |
| bool &resultsOrArgsToKeepChanged) { |
| resultsOrArgsToKeepChanged = false; |
| |
| // Recompute `resultsToKeep` and `argsToKeep` based on `operandsToKeep`. |
| for (const RegionSuccessor &successor : getSuccessors()) { |
| Region *successorRegion = successor.getSuccessor(); |
| for (auto [opOperand, input] : |
| llvm::zip(getForwardedOpOperands(successor), |
| successor.getSuccessorInputs())) { |
| bool recomputeBasedOn = |
| operandsToKeep[opOperand->getOperandNumber()]; |
| bool toRecompute = |
| successorRegion |
| ? argsToKeep[successorRegion] |
| [cast<BlockArgument>(input).getArgNumber()] |
| : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
| if (!toRecompute && recomputeBasedOn) |
| resultsOrArgsToKeepChanged = true; |
| if (successorRegion) { |
| argsToKeep[successorRegion][cast<BlockArgument>(input) |
| .getArgNumber()] = |
| argsToKeep[successorRegion] |
| [cast<BlockArgument>(input).getArgNumber()] | |
| recomputeBasedOn; |
| } else { |
| resultsToKeep[cast<OpResult>(input).getResultNumber()] = |
| resultsToKeep[cast<OpResult>(input).getResultNumber()] | |
| recomputeBasedOn; |
| } |
| } |
| } |
| |
| // Recompute `resultsToKeep` and `argsToKeep` based on |
| // `terminatorOperandsToKeep`. |
| for (Region ®ion : regionBranchOp->getRegions()) { |
| Operation *terminator = region.front().getTerminator(); |
| for (const RegionSuccessor &successor : getSuccessors(®ion)) { |
| Region *successorRegion = successor.getSuccessor(); |
| for (auto [opOperand, input] : |
| llvm::zip(getForwardedOpOperands(successor, terminator), |
| successor.getSuccessorInputs())) { |
| bool recomputeBasedOn = |
| terminatorOperandsToKeep[region.back().getTerminator()] |
| [opOperand->getOperandNumber()]; |
| bool toRecompute = |
| successorRegion |
| ? argsToKeep[successorRegion] |
| [cast<BlockArgument>(input).getArgNumber()] |
| : resultsToKeep[cast<OpResult>(input).getResultNumber()]; |
| if (!toRecompute && recomputeBasedOn) |
| resultsOrArgsToKeepChanged = true; |
| if (successorRegion) { |
| argsToKeep[successorRegion][cast<BlockArgument>(input) |
| .getArgNumber()] = |
| argsToKeep[successorRegion] |
| [cast<BlockArgument>(input).getArgNumber()] | |
| recomputeBasedOn; |
| } else { |
| resultsToKeep[cast<OpResult>(input).getResultNumber()] = |
| resultsToKeep[cast<OpResult>(input).getResultNumber()] | |
| recomputeBasedOn; |
| } |
| } |
| } |
| } |
| }; |
| |
| // Mark the values that we want to keep in `resultsToKeep`, `argsToKeep`, |
| // `operandsToKeep`, and `terminatorOperandsToKeep`. |
| auto markValuesToKeep = |
| [&](BitVector &resultsToKeep, DenseMap<Region *, BitVector> &argsToKeep, |
| BitVector &operandsToKeep, |
| DenseMap<Operation *, BitVector> &terminatorOperandsToKeep) { |
| bool resultsOrArgsToKeepChanged = true; |
| // We keep updating and recomputing the values until we reach a point |
| // where they stop changing. |
| while (resultsOrArgsToKeepChanged) { |
| // Update the operands that need to be kept. |
| updateOperandsOrTerminatorOperandsToKeep(operandsToKeep, |
| resultsToKeep, argsToKeep); |
| |
| // Update the terminator operands that need to be kept. |
| for (Region ®ion : regionBranchOp->getRegions()) { |
| updateOperandsOrTerminatorOperandsToKeep( |
| terminatorOperandsToKeep[region.back().getTerminator()], |
| resultsToKeep, argsToKeep, ®ion); |
| } |
| |
| // Recompute the results and arguments that need to be kept. |
| recomputeResultsAndArgsToKeep( |
| resultsToKeep, argsToKeep, operandsToKeep, |
| terminatorOperandsToKeep, resultsOrArgsToKeepChanged); |
| } |
| }; |
| |
| // Do (1') and (2'). This is the only case where the entire `regionBranchOp` |
| // is removed. It will not happen in any other scenario. Note that in this |
| // case, a non-forwarded operand of `regionBranchOp` could be live/non-live. |
| // It could never be live because of this op but its liveness could have been |
| // attributed to something else. |
| if (isMemoryEffectFree(regionBranchOp.getOperation()) && |
| !hasLive(regionBranchOp->getResults(), la)) { |
| regionBranchOp->dropAllUses(); |
| regionBranchOp->erase(); |
| return; |
| } |
| |
| // At this point, we know that every non-forwarded operand of `regionBranchOp` |
| // is live. |
| |
| // Stores the results of `regionBranchOp` that we want to keep. |
| BitVector resultsToKeep; |
| // Stores the mapping from regions of `regionBranchOp` to their arguments that |
| // we want to keep. |
| DenseMap<Region *, BitVector> argsToKeep; |
| // Stores the operands of `regionBranchOp` that we want to keep. |
| BitVector operandsToKeep; |
| // Stores the mapping from region terminators in `regionBranchOp` to their |
| // operands that we want to keep. |
| DenseMap<Operation *, BitVector> terminatorOperandsToKeep; |
| |
| // Initializing the above variables... |
| |
| // The live results of `regionBranchOp` definitely need to be kept. |
| markLiveResults(resultsToKeep); |
| // Similarly, the live arguments of the regions in `regionBranchOp` definitely |
| // need to be kept. |
| markLiveArgs(argsToKeep); |
| // The non-forwarded operands of `regionBranchOp` definitely need to be kept. |
| // A live forwarded operand can be removed but no non-forwarded operand can be |
| // removed since it "controls" the flow of data in this control flow op. |
| markNonForwardedOperands(operandsToKeep); |
| // Similarly, the non-forwarded terminator operands of the regions in |
| // `regionBranchOp` definitely need to be kept. |
| markNonForwardedReturnValues(terminatorOperandsToKeep); |
| |
| // Mark the values (results, arguments, operands, and terminator operands) |
| // that we want to keep. |
| markValuesToKeep(resultsToKeep, argsToKeep, operandsToKeep, |
| terminatorOperandsToKeep); |
| |
| // Do (1). |
| regionBranchOp->eraseOperands(operandsToKeep.flip()); |
| |
| // Do (2.a) and (2.b). |
| for (Region ®ion : regionBranchOp->getRegions()) { |
| assert(!region.empty() && "expected a non-empty region in an op " |
| "implementing `RegionBranchOpInterface`"); |
| for (auto [index, arg] : llvm::enumerate(region.front().getArguments())) { |
| if (argsToKeep[®ion][index]) |
| continue; |
| if (arg) |
| arg.dropAllUses(); |
| } |
| region.front().eraseArguments(argsToKeep[®ion].flip()); |
| } |
| |
| // Do (2.c). |
| for (Region ®ion : regionBranchOp->getRegions()) { |
| Operation *terminator = region.front().getTerminator(); |
| terminator->eraseOperands(terminatorOperandsToKeep[terminator].flip()); |
| } |
| |
| // Do (3) and (4). |
| dropUsesAndEraseResults(regionBranchOp.getOperation(), resultsToKeep.flip()); |
| } |
| |
| struct RemoveDeadValues : public impl::RemoveDeadValuesBase<RemoveDeadValues> { |
| void runOnOperation() override; |
| }; |
| } // namespace |
| |
| void RemoveDeadValues::runOnOperation() { |
| auto &la = getAnalysis<RunLivenessAnalysis>(); |
| Operation *module = getOperation(); |
| |
| // The removal of non-live values is performed iff there are no branch ops, |
| // all symbol ops present in the IR are function-like, and all symbol user ops |
| // present in the IR are call-like. |
| WalkResult acceptableIR = module->walk([&](Operation *op) { |
| if (isa<BranchOpInterface>(op) || |
| (isa<SymbolOpInterface>(op) && !isa<FunctionOpInterface>(op)) || |
| (isa<SymbolUserOpInterface>(op) && !isa<CallOpInterface>(op))) { |
| op->emitError() << "cannot optimize an IR with non-function symbol ops, " |
| "non-call symbol user ops or branch ops\n"; |
| return WalkResult::interrupt(); |
| } |
| return WalkResult::advance(); |
| }); |
| |
| if (acceptableIR.wasInterrupted()) |
| return; |
| |
| module->walk([&](Operation *op) { |
| if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) { |
| cleanFuncOp(funcOp, module, la); |
| } else if (auto regionBranchOp = dyn_cast<RegionBranchOpInterface>(op)) { |
| cleanRegionBranchOp(regionBranchOp, la); |
| } else if (op->hasTrait<::mlir::OpTrait::IsTerminator>()) { |
| // Nothing to do here because this is a terminator op and it should be |
| // honored with respect to its parent |
| } else if (isa<CallOpInterface>(op)) { |
| // Nothing to do because this op is associated with a function op and gets |
| // cleaned when the latter is cleaned. |
| } else { |
| cleanSimpleOp(op, la); |
| } |
| }); |
| } |
| |
| std::unique_ptr<Pass> mlir::createRemoveDeadValuesPass() { |
| return std::make_unique<RemoveDeadValues>(); |
| } |