| //===--- CIRGenDecl.cpp - Emit CIR Code for declarations ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Decl nodes as CIR code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CIRGenBuilder.h" |
| #include "CIRGenCstEmitter.h" |
| #include "CIRGenFunction.h" |
| #include "CIRGenOpenMPRuntime.h" |
| #include "EHScopeStack.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/BuiltinAttributeInterfaces.h" |
| #include "mlir/IR/BuiltinOps.h" |
| #include "mlir/IR/SymbolTable.h" |
| |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/CIR/Dialect/IR/CIRDataLayout.h" |
| #include "clang/CIR/Dialect/IR/CIROpsEnums.h" |
| #include "clang/CIR/Dialect/IR/CIRTypes.h" |
| #include "clang/CIR/MissingFeatures.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <cassert> |
| |
| using namespace cir; |
| using namespace clang; |
| |
| CIRGenFunction::AutoVarEmission |
| CIRGenFunction::buildAutoVarAlloca(const VarDecl &D, |
| mlir::OpBuilder::InsertPoint ip) { |
| QualType Ty = D.getType(); |
| assert(!MissingFeatures::openCL()); |
| assert( |
| Ty.getAddressSpace() == LangAS::Default || |
| (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); |
| assert(!D.hasAttr<AnnotateAttr>() && "not implemented"); |
| |
| auto loc = getLoc(D.getSourceRange()); |
| bool NRVO = |
| getContext().getLangOpts().ElideConstructors && D.isNRVOVariable(); |
| AutoVarEmission emission(D); |
| bool isEscapingByRef = D.isEscapingByref(); |
| emission.IsEscapingByRef = isEscapingByRef; |
| |
| CharUnits alignment = getContext().getDeclAlign(&D); |
| |
| // If the type is variably-modified, emit all the VLA sizes for it. |
| if (Ty->isVariablyModifiedType()) |
| buildVariablyModifiedType(Ty); |
| |
| assert(!MissingFeatures::generateDebugInfo()); |
| assert(!MissingFeatures::cxxABI()); |
| |
| Address address = Address::invalid(); |
| Address allocaAddr = Address::invalid(); |
| Address openMPLocalAddr = |
| getCIRGenModule().getOpenMPRuntime().getAddressOfLocalVariable(*this, &D); |
| assert(!getLangOpts().OpenMPIsTargetDevice && "NYI"); |
| if (getLangOpts().OpenMP && openMPLocalAddr.isValid()) { |
| llvm_unreachable("NYI"); |
| } else if (Ty->isConstantSizeType()) { |
| // If this value is an array, struct, or vector with a statically |
| // determinable constant initializer, there are optimizations we can do. |
| // |
| // TODO: We should constant-evaluate the initializer of any variable, |
| // as long as it is initialized by a constant expression. Currently, |
| // isConstantInitializer produces wrong answers for structs with |
| // reference or bitfield members, and a few other cases, and checking |
| // for POD-ness protects us from some of these. |
| if (D.getInit() && |
| (Ty->isArrayType() || Ty->isRecordType() || Ty->isVectorType()) && |
| (D.isConstexpr() || |
| ((Ty.isPODType(getContext()) || |
| getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && |
| D.getInit()->isConstantInitializer(getContext(), false)))) { |
| |
| // If the variable's a const type, and it's neither an NRVO |
| // candidate nor a __block variable and has no mutable members, |
| // emit it as a global instead. |
| // Exception is if a variable is located in non-constant address space |
| // in OpenCL. |
| // TODO: deal with CGM.getCodeGenOpts().MergeAllConstants |
| // TODO: perhaps we don't need this at all at CIR since this can |
| // be done as part of lowering down to LLVM. |
| if ((!getContext().getLangOpts().OpenCL || |
| Ty.getAddressSpace() == LangAS::opencl_constant) && |
| (!NRVO && !D.isEscapingByref() && |
| CGM.isTypeConstant(Ty, /*ExcludeCtor=*/true, |
| /*ExcludeDtor=*/false))) { |
| buildStaticVarDecl(D, mlir::cir::GlobalLinkageKind::InternalLinkage); |
| |
| // Signal this condition to later callbacks. |
| emission.Addr = Address::invalid(); |
| assert(emission.wasEmittedAsGlobal()); |
| return emission; |
| } |
| // Otherwise, tell the initialization code that we're in this case. |
| emission.IsConstantAggregate = true; |
| } |
| |
| // A normal fixed sized variable becomes an alloca in the entry block, |
| // unless: |
| // - it's an NRVO variable. |
| // - we are compiling OpenMP and it's an OpenMP local variable. |
| if (NRVO) { |
| // The named return value optimization: allocate this variable in the |
| // return slot, so that we can elide the copy when returning this |
| // variable (C++0x [class.copy]p34). |
| address = ReturnValue; |
| allocaAddr = ReturnValue; |
| |
| if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { |
| const auto *RD = RecordTy->getDecl(); |
| const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); |
| if ((CXXRD && !CXXRD->hasTrivialDestructor()) || |
| RD->isNonTrivialToPrimitiveDestroy()) { |
| // In LLVM: Create a flag that is used to indicate when the NRVO was |
| // applied to this variable. Set it to zero to indicate that NRVO was |
| // not applied. For now, use the same approach for CIRGen until we can |
| // be sure it's worth doing something more aggressive. |
| auto falseNVRO = builder.getFalse(loc); |
| Address NRVOFlag = CreateTempAlloca( |
| falseNVRO.getType(), CharUnits::One(), loc, "nrvo", |
| /*ArraySize=*/nullptr, &allocaAddr); |
| assert(builder.getInsertionBlock()); |
| builder.createStore(loc, falseNVRO, NRVOFlag); |
| |
| // Record the NRVO flag for this variable. |
| NRVOFlags[&D] = NRVOFlag.getPointer(); |
| emission.NRVOFlag = NRVOFlag.getPointer(); |
| } |
| } |
| } else { |
| if (isEscapingByRef) |
| llvm_unreachable("NYI"); |
| |
| mlir::Type allocaTy = getTypes().convertTypeForMem(Ty); |
| CharUnits allocaAlignment = alignment; |
| // Create the temp alloca and declare variable using it. |
| mlir::Value addrVal; |
| address = CreateTempAlloca(allocaTy, allocaAlignment, loc, D.getName(), |
| /*ArraySize=*/nullptr, &allocaAddr, ip); |
| if (failed(declare(address, &D, Ty, getLoc(D.getSourceRange()), alignment, |
| addrVal))) { |
| CGM.emitError("Cannot declare variable"); |
| return emission; |
| } |
| // TODO: what about emitting lifetime markers for MSVC catch parameters? |
| // TODO: something like @llvm.lifetime.start/end here? revisit this later. |
| assert(!MissingFeatures::shouldEmitLifetimeMarkers()); |
| } |
| } else { // not openmp nor constant sized type |
| bool VarAllocated = false; |
| if (getLangOpts().OpenMPIsTargetDevice) |
| llvm_unreachable("NYI"); |
| |
| if (!VarAllocated) { |
| if (!DidCallStackSave) { |
| // Save the stack. |
| auto defaultTy = AllocaInt8PtrTy; |
| CharUnits Align = CharUnits::fromQuantity( |
| CGM.getDataLayout().getAlignment(defaultTy, false)); |
| Address Stack = CreateTempAlloca(defaultTy, Align, loc, "saved_stack"); |
| |
| mlir::Value V = builder.createStackSave(loc, defaultTy); |
| assert(V.getType() == AllocaInt8PtrTy); |
| builder.createStore(loc, V, Stack); |
| |
| DidCallStackSave = true; |
| |
| // Push a cleanup block and restore the stack there. |
| // FIXME: in general circumstances, this should be an EH cleanup. |
| pushStackRestore(NormalCleanup, Stack); |
| } |
| |
| auto VlaSize = getVLASize(Ty); |
| mlir::Type mTy = convertTypeForMem(VlaSize.Type); |
| |
| // Allocate memory for the array. |
| address = CreateTempAlloca(mTy, alignment, loc, "vla", VlaSize.NumElts, |
| &allocaAddr, builder.saveInsertionPoint()); |
| } |
| |
| // If we have debug info enabled, properly describe the VLA dimensions for |
| // this type by registering the vla size expression for each of the |
| // dimensions. |
| assert(!MissingFeatures::generateDebugInfo()); |
| } |
| |
| emission.Addr = address; |
| setAddrOfLocalVar(&D, emission.Addr); |
| return emission; |
| } |
| |
| /// Determine whether the given initializer is trivial in the sense |
| /// that it requires no code to be generated. |
| bool CIRGenFunction::isTrivialInitializer(const Expr *Init) { |
| if (!Init) |
| return true; |
| |
| if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) |
| if (CXXConstructorDecl *Constructor = Construct->getConstructor()) |
| if (Constructor->isTrivial() && Constructor->isDefaultConstructor() && |
| !Construct->requiresZeroInitialization()) |
| return true; |
| |
| return false; |
| } |
| |
| static void emitStoresForConstant(CIRGenModule &CGM, const VarDecl &D, |
| Address addr, bool isVolatile, |
| CIRGenBuilderTy &builder, |
| mlir::TypedAttr constant, bool IsAutoInit) { |
| auto Ty = constant.getType(); |
| cir::CIRDataLayout layout{CGM.getModule()}; |
| uint64_t ConstantSize = layout.getTypeAllocSize(Ty); |
| if (!ConstantSize) |
| return; |
| assert(!MissingFeatures::addAutoInitAnnotation()); |
| assert(!MissingFeatures::vectorConstants()); |
| assert(!MissingFeatures::shouldUseBZeroPlusStoresToInitialize()); |
| assert(!MissingFeatures::shouldUseMemSetToInitialize()); |
| assert(!MissingFeatures::shouldSplitConstantStore()); |
| assert(!MissingFeatures::shouldCreateMemCpyFromGlobal()); |
| // In CIR we want to emit a store for the whole thing, later lowering |
| // prepare to LLVM should unwrap this into the best policy (see asserts |
| // above). |
| // |
| // FIXME(cir): This is closer to memcpy behavior but less optimal, instead of |
| // copy from a global, we just create a cir.const out of it. |
| |
| if (addr.getElementType() != Ty) { |
| auto ptr = addr.getPointer(); |
| ptr = builder.createBitcast(ptr.getLoc(), ptr, builder.getPointerTo(Ty)); |
| addr = addr.withPointer(ptr, addr.isKnownNonNull()); |
| } |
| |
| auto loc = CGM.getLoc(D.getSourceRange()); |
| builder.createStore(loc, builder.getConstant(loc, constant), addr); |
| } |
| |
| void CIRGenFunction::buildAutoVarInit(const AutoVarEmission &emission) { |
| assert(emission.Variable && "emission was not valid!"); |
| |
| // If this was emitted as a global constant, we're done. |
| if (emission.wasEmittedAsGlobal()) |
| return; |
| |
| const VarDecl &D = *emission.Variable; |
| QualType type = D.getType(); |
| |
| // If this local has an initializer, emit it now. |
| const Expr *Init = D.getInit(); |
| |
| // TODO: in LLVM codegen if we are at an unreachable point, the initializer |
| // isn't emitted unless it contains a label. What we want for CIR? |
| assert(builder.getInsertionBlock()); |
| |
| // Initialize the variable here if it doesn't have a initializer and it is a |
| // C struct that is non-trivial to initialize or an array containing such a |
| // struct. |
| if (!Init && type.isNonTrivialToPrimitiveDefaultInitialize() == |
| QualType::PDIK_Struct) { |
| assert(0 && "not implemented"); |
| return; |
| } |
| |
| const Address Loc = emission.Addr; |
| // Check whether this is a byref variable that's potentially |
| // captured and moved by its own initializer. If so, we'll need to |
| // emit the initializer first, then copy into the variable. |
| assert(!MissingFeatures::capturedByInit() && "NYI"); |
| |
| // Note: constexpr already initializes everything correctly. |
| LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = |
| (D.isConstexpr() |
| ? LangOptions::TrivialAutoVarInitKind::Uninitialized |
| : (D.getAttr<UninitializedAttr>() |
| ? LangOptions::TrivialAutoVarInitKind::Uninitialized |
| : getContext().getLangOpts().getTrivialAutoVarInit())); |
| |
| auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { |
| if (trivialAutoVarInit == |
| LangOptions::TrivialAutoVarInitKind::Uninitialized) |
| return; |
| |
| assert(0 && "unimplemented"); |
| }; |
| |
| if (isTrivialInitializer(Init)) |
| return initializeWhatIsTechnicallyUninitialized(Loc); |
| |
| mlir::Attribute constant; |
| if (emission.IsConstantAggregate || |
| D.mightBeUsableInConstantExpressions(getContext())) { |
| // FIXME: Differently from LLVM we try not to emit / lower too much |
| // here for CIR since we are interesting in seeing the ctor in some |
| // analysis later on. So CIR's implementation of ConstantEmitter will |
| // frequently return an empty Attribute, to signal we want to codegen |
| // some trivial ctor calls and whatnots. |
| constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); |
| if (constant && !mlir::isa<mlir::cir::ZeroAttr>(constant) && |
| (trivialAutoVarInit != |
| LangOptions::TrivialAutoVarInitKind::Uninitialized)) { |
| llvm_unreachable("NYI"); |
| } |
| } |
| |
| // NOTE(cir): In case we have a constant initializer, we can just emit a |
| // store. But, in CIR, we wish to retain any ctor calls, so if it is a |
| // CXX temporary object creation, we ensure the ctor call is used deferring |
| // its removal/optimization to the CIR lowering. |
| if (!constant || isa<CXXTemporaryObjectExpr>(Init)) { |
| initializeWhatIsTechnicallyUninitialized(Loc); |
| LValue lv = LValue::makeAddr(Loc, type, AlignmentSource::Decl); |
| buildExprAsInit(Init, &D, lv); |
| // In case lv has uses it means we indeed initialized something |
| // out of it while trying to build the expression, mark it as such. |
| auto addr = lv.getAddress().getPointer(); |
| assert(addr && "Should have an address"); |
| auto allocaOp = dyn_cast_or_null<mlir::cir::AllocaOp>(addr.getDefiningOp()); |
| assert(allocaOp && "Address should come straight out of the alloca"); |
| |
| if (!allocaOp.use_empty()) |
| allocaOp.setInitAttr(mlir::UnitAttr::get(builder.getContext())); |
| return; |
| } |
| |
| // FIXME(cir): migrate most of this file to use mlir::TypedAttr directly. |
| auto typedConstant = mlir::dyn_cast<mlir::TypedAttr>(constant); |
| assert(typedConstant && "expected typed attribute"); |
| if (!emission.IsConstantAggregate) { |
| // For simple scalar/complex initialization, store the value directly. |
| LValue lv = makeAddrLValue(Loc, type); |
| assert(Init && "expected initializer"); |
| auto initLoc = getLoc(Init->getSourceRange()); |
| lv.setNonGC(true); |
| return buildStoreThroughLValue( |
| RValue::get(builder.getConstant(initLoc, typedConstant)), lv); |
| } |
| |
| emitStoresForConstant(CGM, D, Loc, type.isVolatileQualified(), builder, |
| typedConstant, /*IsAutoInit=*/false); |
| } |
| |
| void CIRGenFunction::buildAutoVarCleanups(const AutoVarEmission &emission) { |
| assert(emission.Variable && "emission was not valid!"); |
| |
| // If this was emitted as a global constant, we're done. |
| if (emission.wasEmittedAsGlobal()) |
| return; |
| |
| // TODO: in LLVM codegen if we are at an unreachable point codgen |
| // is ignored. What we want for CIR? |
| assert(builder.getInsertionBlock()); |
| const VarDecl &D = *emission.Variable; |
| |
| // Check the type for a cleanup. |
| if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) |
| buildAutoVarTypeCleanup(emission, dtorKind); |
| |
| // In GC mode, honor objc_precise_lifetime. |
| if (getContext().getLangOpts().getGC() != LangOptions::NonGC && |
| D.hasAttr<ObjCPreciseLifetimeAttr>()) |
| assert(0 && "not implemented"); |
| |
| // Handle the cleanup attribute. |
| if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) |
| assert(0 && "not implemented"); |
| |
| // TODO: handle block variable |
| } |
| |
| /// Emit code and set up symbol table for a variable declaration with auto, |
| /// register, or no storage class specifier. These turn into simple stack |
| /// objects, globals depending on target. |
| void CIRGenFunction::buildAutoVarDecl(const VarDecl &D) { |
| AutoVarEmission emission = buildAutoVarAlloca(D); |
| buildAutoVarInit(emission); |
| buildAutoVarCleanups(emission); |
| } |
| |
| void CIRGenFunction::buildVarDecl(const VarDecl &D) { |
| if (D.hasExternalStorage()) { |
| // Don't emit it now, allow it to be emitted lazily on its first use. |
| return; |
| } |
| |
| // Some function-scope variable does not have static storage but still |
| // needs to be emitted like a static variable, e.g. a function-scope |
| // variable in constant address space in OpenCL. |
| if (D.getStorageDuration() != SD_Automatic) { |
| // Static sampler variables translated to function calls. |
| if (D.getType()->isSamplerT()) |
| return; |
| |
| auto Linkage = CGM.getCIRLinkageVarDefinition(&D, /*IsConstant=*/false); |
| |
| // FIXME: We need to force the emission/use of a guard variable for |
| // some variables even if we can constant-evaluate them because |
| // we can't guarantee every translation unit will constant-evaluate them. |
| |
| return buildStaticVarDecl(D, Linkage); |
| } |
| |
| if (D.getType().getAddressSpace() == LangAS::opencl_local) |
| return CGM.getOpenCLRuntime().buildWorkGroupLocalVarDecl(*this, D); |
| |
| assert(D.hasLocalStorage()); |
| |
| CIRGenFunction::VarDeclContext varDeclCtx{*this, &D}; |
| return buildAutoVarDecl(D); |
| } |
| |
| static std::string getStaticDeclName(CIRGenModule &CGM, const VarDecl &D) { |
| if (CGM.getLangOpts().CPlusPlus) |
| return CGM.getMangledName(&D).str(); |
| |
| // If this isn't C++, we don't need a mangled name, just a pretty one. |
| assert(!D.isExternallyVisible() && "name shouldn't matter"); |
| std::string ContextName; |
| const DeclContext *DC = D.getDeclContext(); |
| if (auto *CD = dyn_cast<CapturedDecl>(DC)) |
| DC = cast<DeclContext>(CD->getNonClosureContext()); |
| if (const auto *FD = dyn_cast<FunctionDecl>(DC)) |
| ContextName = std::string(CGM.getMangledName(FD)); |
| else if (const auto *BD = dyn_cast<BlockDecl>(DC)) |
| llvm_unreachable("block decl context for static var is NYI"); |
| else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) |
| llvm_unreachable("ObjC decl context for static var is NYI"); |
| else |
| llvm_unreachable("Unknown context for static var decl"); |
| |
| ContextName += "." + D.getNameAsString(); |
| return ContextName; |
| } |
| |
| // TODO(cir): LLVM uses a Constant base class. Maybe CIR could leverage an |
| // interface for all constants? |
| mlir::cir::GlobalOp |
| CIRGenModule::getOrCreateStaticVarDecl(const VarDecl &D, |
| mlir::cir::GlobalLinkageKind Linkage) { |
| // In general, we don't always emit static var decls once before we reference |
| // them. It is possible to reference them before emitting the function that |
| // contains them, and it is possible to emit the containing function multiple |
| // times. |
| if (mlir::cir::GlobalOp ExistingGV = StaticLocalDeclMap[&D]) |
| return ExistingGV; |
| |
| QualType Ty = D.getType(); |
| assert(Ty->isConstantSizeType() && "VLAs can't be static"); |
| |
| // Use the label if the variable is renamed with the asm-label extension. |
| std::string Name; |
| if (D.hasAttr<AsmLabelAttr>()) |
| llvm_unreachable("asm label is NYI"); |
| else |
| Name = getStaticDeclName(*this, D); |
| |
| mlir::Type LTy = getTypes().convertTypeForMem(Ty); |
| mlir::cir::AddressSpaceAttr AS = |
| builder.getAddrSpaceAttr(getGlobalVarAddressSpace(&D)); |
| |
| // OpenCL variables in local address space and CUDA shared |
| // variables cannot have an initializer. |
| mlir::Attribute Init = nullptr; |
| if (D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) |
| llvm_unreachable("CUDA is NYI"); |
| else if (Ty.getAddressSpace() != LangAS::opencl_local) |
| Init = builder.getZeroInitAttr(getTypes().ConvertType(Ty)); |
| |
| mlir::cir::GlobalOp GV = builder.createVersionedGlobal( |
| getModule(), getLoc(D.getLocation()), Name, LTy, false, Linkage, AS); |
| // TODO(cir): infer visibility from linkage in global op builder. |
| GV.setVisibility(getMLIRVisibilityFromCIRLinkage(Linkage)); |
| GV.setInitialValueAttr(Init); |
| GV.setAlignment(getASTContext().getDeclAlign(&D).getAsAlign().value()); |
| |
| if (supportsCOMDAT() && GV.isWeakForLinker()) |
| llvm_unreachable("COMDAT globals are NYI"); |
| |
| if (D.getTLSKind()) |
| llvm_unreachable("TLS mode is NYI"); |
| |
| setGVProperties(GV, &D); |
| |
| // Make sure the result is of the correct type. |
| if (AS != builder.getAddrSpaceAttr(Ty.getAddressSpace())) |
| llvm_unreachable("address space cast NYI"); |
| |
| // Ensure that the static local gets initialized by making sure the parent |
| // function gets emitted eventually. |
| const Decl *DC = cast<Decl>(D.getDeclContext()); |
| |
| // We can't name blocks or captured statements directly, so try to emit their |
| // parents. |
| if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { |
| DC = DC->getNonClosureContext(); |
| // FIXME: Ensure that global blocks get emitted. |
| if (!DC) |
| llvm_unreachable("address space is NYI"); |
| } |
| |
| GlobalDecl GD; |
| if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) |
| llvm_unreachable("C++ constructors static var context is NYI"); |
| else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) |
| llvm_unreachable("C++ destructors static var context is NYI"); |
| else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) |
| GD = GlobalDecl(FD); |
| else { |
| // Don't do anything for Obj-C method decls or global closures. We should |
| // never defer them. |
| assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); |
| } |
| if (GD.getDecl() && MissingFeatures::openMP()) { |
| // Disable emission of the parent function for the OpenMP device codegen. |
| llvm_unreachable("OpenMP is NYI"); |
| } |
| |
| return GV; |
| } |
| |
| /// Add the initializer for 'D' to the global variable that has already been |
| /// created for it. If the initializer has a different type than GV does, this |
| /// may free GV and return a different one. Otherwise it just returns GV. |
| mlir::cir::GlobalOp CIRGenFunction::addInitializerToStaticVarDecl( |
| const VarDecl &D, mlir::cir::GlobalOp GV, mlir::cir::GetGlobalOp GVAddr) { |
| ConstantEmitter emitter(*this); |
| mlir::TypedAttr Init = |
| mlir::dyn_cast<mlir::TypedAttr>(emitter.tryEmitForInitializer(D)); |
| assert(Init && "Expected typed attribute"); |
| |
| // If constant emission failed, then this should be a C++ static |
| // initializer. |
| if (!Init) { |
| if (!getLangOpts().CPlusPlus) |
| CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); |
| else if (D.hasFlexibleArrayInit(getContext())) |
| CGM.ErrorUnsupported(D.getInit(), "flexible array initializer"); |
| else { |
| // Since we have a static initializer, this global variable can't |
| // be constant. |
| GV.setConstant(false); |
| llvm_unreachable("C++ guarded init it NYI"); |
| } |
| return GV; |
| } |
| |
| #ifndef NDEBUG |
| CharUnits VarSize = CGM.getASTContext().getTypeSizeInChars(D.getType()) + |
| D.getFlexibleArrayInitChars(getContext()); |
| CharUnits CstSize = CharUnits::fromQuantity( |
| CGM.getDataLayout().getTypeAllocSize(Init.getType())); |
| assert(VarSize == CstSize && "Emitted constant has unexpected size"); |
| #endif |
| |
| // The initializer may differ in type from the global. Rewrite |
| // the global to match the initializer. (We have to do this |
| // because some types, like unions, can't be completely represented |
| // in the LLVM type system.) |
| if (GV.getSymType() != Init.getType()) { |
| mlir::cir::GlobalOp OldGV = GV; |
| GV = builder.createGlobal(CGM.getModule(), getLoc(D.getSourceRange()), |
| OldGV.getName(), Init.getType(), |
| OldGV.getConstant(), GV.getLinkage()); |
| // FIXME(cir): OG codegen inserts new GV before old one, we probably don't |
| // need that? |
| GV.setVisibility(OldGV.getVisibility()); |
| GV.setGlobalVisibilityAttr(OldGV.getGlobalVisibilityAttr()); |
| GV.setInitialValueAttr(Init); |
| GV.setTlsModelAttr(OldGV.getTlsModelAttr()); |
| assert(!MissingFeatures::setDSOLocal()); |
| assert(!MissingFeatures::setComdat()); |
| assert(!MissingFeatures::addressSpaceInGlobalVar()); |
| |
| // Normally this should be done with a call to CGM.replaceGlobal(OldGV, GV), |
| // but since at this point the current block hasn't been really attached, |
| // there's no visibility into the GetGlobalOp corresponding to this Global. |
| // Given those constraints, thread in the GetGlobalOp and update it |
| // directly. |
| GVAddr.getAddr().setType( |
| mlir::cir::PointerType::get(builder.getContext(), Init.getType())); |
| OldGV->erase(); |
| } |
| |
| bool NeedsDtor = |
| D.needsDestruction(getContext()) == QualType::DK_cxx_destructor; |
| |
| GV.setConstant( |
| CGM.isTypeConstant(D.getType(), /*ExcludeCtor=*/true, !NeedsDtor)); |
| GV.setInitialValueAttr(Init); |
| |
| emitter.finalize(GV); |
| |
| if (NeedsDtor) { |
| // We have a constant initializer, but a nontrivial destructor. We still |
| // need to perform a guarded "initialization" in order to register the |
| // destructor. |
| llvm_unreachable("C++ guarded init is NYI"); |
| } |
| |
| return GV; |
| } |
| |
| void CIRGenFunction::buildStaticVarDecl(const VarDecl &D, |
| mlir::cir::GlobalLinkageKind Linkage) { |
| // Check to see if we already have a global variable for this |
| // declaration. This can happen when double-emitting function |
| // bodies, e.g. with complete and base constructors. |
| auto globalOp = CGM.getOrCreateStaticVarDecl(D, Linkage); |
| // TODO(cir): we should have a way to represent global ops as values without |
| // having to emit a get global op. Sometimes these emissions are not used. |
| auto addr = getBuilder().createGetGlobal(globalOp); |
| auto getAddrOp = mlir::cast<mlir::cir::GetGlobalOp>(addr.getDefiningOp()); |
| |
| CharUnits alignment = getContext().getDeclAlign(&D); |
| |
| // Store into LocalDeclMap before generating initializer to handle |
| // circular references. |
| mlir::Type elemTy = getTypes().convertTypeForMem(D.getType()); |
| setAddrOfLocalVar(&D, Address(addr, elemTy, alignment)); |
| |
| // We can't have a VLA here, but we can have a pointer to a VLA, |
| // even though that doesn't really make any sense. |
| // Make sure to evaluate VLA bounds now so that we have them for later. |
| if (D.getType()->isVariablyModifiedType()) |
| llvm_unreachable("VLAs are NYI"); |
| |
| // Save the type in case adding the initializer forces a type change. |
| auto expectedType = addr.getType(); |
| |
| auto var = globalOp; |
| |
| // CUDA's local and local static __shared__ variables should not |
| // have any non-empty initializers. This is ensured by Sema. |
| // Whatever initializer such variable may have when it gets here is |
| // a no-op and should not be emitted. |
| bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && |
| D.hasAttr<CUDASharedAttr>(); |
| // If this value has an initializer, emit it. |
| if (D.getInit() && !isCudaSharedVar) |
| var = addInitializerToStaticVarDecl(D, var, getAddrOp); |
| |
| var.setAlignment(alignment.getAsAlign().value()); |
| |
| if (D.hasAttr<AnnotateAttr>()) |
| llvm_unreachable("Global annotations are NYI"); |
| |
| if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) |
| llvm_unreachable("CIR global BSS section attribute is NYI"); |
| if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) |
| llvm_unreachable("CIR global Data section attribute is NYI"); |
| if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) |
| llvm_unreachable("CIR global Rodata section attribute is NYI"); |
| if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) |
| llvm_unreachable("CIR global Relro section attribute is NYI"); |
| |
| if (const SectionAttr *SA = D.getAttr<SectionAttr>()) |
| llvm_unreachable("CIR global object file section attribute is NYI"); |
| |
| if (D.hasAttr<RetainAttr>()) |
| llvm_unreachable("llvm.used metadata is NYI"); |
| else if (D.hasAttr<UsedAttr>()) |
| llvm_unreachable("llvm.compiler.used metadata is NYI"); |
| |
| // From traditional codegen: |
| // We may have to cast the constant because of the initializer |
| // mismatch above. |
| // |
| // FIXME: It is really dangerous to store this in the map; if anyone |
| // RAUW's the GV uses of this constant will be invalid. |
| auto castedAddr = builder.createBitcast(getAddrOp.getAddr(), expectedType); |
| LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment); |
| CGM.setStaticLocalDeclAddress(&D, var); |
| |
| assert(!MissingFeatures::reportGlobalToASan()); |
| |
| // Emit global variable debug descriptor for static vars. |
| auto *DI = getDebugInfo(); |
| if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { |
| llvm_unreachable("Debug info is NYI"); |
| } |
| } |
| |
| void CIRGenFunction::buildNullabilityCheck(LValue LHS, mlir::Value RHS, |
| SourceLocation Loc) { |
| if (!SanOpts.has(SanitizerKind::NullabilityAssign)) |
| return; |
| |
| llvm_unreachable("NYI"); |
| } |
| |
| void CIRGenFunction::buildScalarInit(const Expr *init, mlir::Location loc, |
| LValue lvalue, bool capturedByInit) { |
| Qualifiers::ObjCLifetime lifetime = Qualifiers::ObjCLifetime::OCL_None; |
| assert(!MissingFeatures::objCLifetime()); |
| |
| if (!lifetime) { |
| SourceLocRAIIObject Loc{*this, loc}; |
| mlir::Value value = buildScalarExpr(init); |
| if (capturedByInit) |
| llvm_unreachable("NYI"); |
| assert(!MissingFeatures::emitNullabilityCheck()); |
| buildStoreThroughLValue(RValue::get(value), lvalue, true); |
| return; |
| } |
| |
| llvm_unreachable("NYI"); |
| } |
| |
| void CIRGenFunction::buildExprAsInit(const Expr *init, const ValueDecl *D, |
| LValue lvalue, bool capturedByInit) { |
| SourceLocRAIIObject Loc{*this, getLoc(init->getSourceRange())}; |
| if (capturedByInit) |
| llvm_unreachable("NYI"); |
| |
| QualType type = D->getType(); |
| |
| if (type->isReferenceType()) { |
| RValue rvalue = buildReferenceBindingToExpr(init); |
| if (capturedByInit) |
| llvm_unreachable("NYI"); |
| buildStoreThroughLValue(rvalue, lvalue); |
| return; |
| } |
| switch (CIRGenFunction::getEvaluationKind(type)) { |
| case TEK_Scalar: |
| buildScalarInit(init, getLoc(D->getSourceRange()), lvalue); |
| return; |
| case TEK_Complex: { |
| mlir::Value complex = buildComplexExpr(init); |
| if (capturedByInit) |
| llvm_unreachable("NYI"); |
| buildStoreOfComplex(getLoc(init->getExprLoc()), complex, lvalue, |
| /*init*/ true); |
| return; |
| } |
| case TEK_Aggregate: |
| assert(!type->isAtomicType() && "NYI"); |
| AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; |
| if (isa<VarDecl>(D)) |
| Overlap = AggValueSlot::DoesNotOverlap; |
| else if (auto *FD = dyn_cast<FieldDecl>(D)) |
| assert(false && "Field decl NYI"); |
| else |
| assert(false && "Only VarDecl implemented so far"); |
| // TODO: how can we delay here if D is captured by its initializer? |
| buildAggExpr(init, |
| AggValueSlot::forLValue(lvalue, AggValueSlot::IsDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, Overlap)); |
| return; |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| void CIRGenFunction::buildDecl(const Decl &D) { |
| switch (D.getKind()) { |
| case Decl::ImplicitConceptSpecialization: |
| case Decl::HLSLBuffer: |
| case Decl::TopLevelStmt: |
| llvm_unreachable("NYI"); |
| case Decl::BuiltinTemplate: |
| case Decl::TranslationUnit: |
| case Decl::ExternCContext: |
| case Decl::Namespace: |
| case Decl::UnresolvedUsingTypename: |
| case Decl::ClassTemplateSpecialization: |
| case Decl::ClassTemplatePartialSpecialization: |
| case Decl::VarTemplateSpecialization: |
| case Decl::VarTemplatePartialSpecialization: |
| case Decl::TemplateTypeParm: |
| case Decl::UnresolvedUsingValue: |
| case Decl::NonTypeTemplateParm: |
| case Decl::CXXDeductionGuide: |
| case Decl::CXXMethod: |
| case Decl::CXXConstructor: |
| case Decl::CXXDestructor: |
| case Decl::CXXConversion: |
| case Decl::Field: |
| case Decl::MSProperty: |
| case Decl::IndirectField: |
| case Decl::ObjCIvar: |
| case Decl::ObjCAtDefsField: |
| case Decl::ParmVar: |
| case Decl::ImplicitParam: |
| case Decl::ClassTemplate: |
| case Decl::VarTemplate: |
| case Decl::FunctionTemplate: |
| case Decl::TypeAliasTemplate: |
| case Decl::TemplateTemplateParm: |
| case Decl::ObjCMethod: |
| case Decl::ObjCCategory: |
| case Decl::ObjCProtocol: |
| case Decl::ObjCInterface: |
| case Decl::ObjCCategoryImpl: |
| case Decl::ObjCImplementation: |
| case Decl::ObjCProperty: |
| case Decl::ObjCCompatibleAlias: |
| case Decl::PragmaComment: |
| case Decl::PragmaDetectMismatch: |
| case Decl::AccessSpec: |
| case Decl::LinkageSpec: |
| case Decl::Export: |
| case Decl::ObjCPropertyImpl: |
| case Decl::FileScopeAsm: |
| case Decl::Friend: |
| case Decl::FriendTemplate: |
| case Decl::Block: |
| case Decl::Captured: |
| case Decl::UsingShadow: |
| case Decl::ConstructorUsingShadow: |
| case Decl::ObjCTypeParam: |
| case Decl::Binding: |
| case Decl::UnresolvedUsingIfExists: |
| llvm_unreachable("Declaration should not be in declstmts!"); |
| case Decl::Record: // struct/union/class X; |
| case Decl::CXXRecord: // struct/union/class X; [C++] |
| if (auto *DI = getDebugInfo()) |
| llvm_unreachable("NYI"); |
| return; |
| case Decl::Enum: // enum X; |
| if (auto *DI = getDebugInfo()) |
| llvm_unreachable("NYI"); |
| return; |
| case Decl::Function: // void X(); |
| case Decl::EnumConstant: // enum ? { X = ? } |
| case Decl::StaticAssert: // static_assert(X, ""); [C++0x] |
| case Decl::Label: // __label__ x; |
| case Decl::Import: |
| case Decl::MSGuid: // __declspec(uuid("...")) |
| case Decl::TemplateParamObject: |
| case Decl::OMPThreadPrivate: |
| case Decl::OMPAllocate: |
| case Decl::OMPCapturedExpr: |
| case Decl::OMPRequires: |
| case Decl::Empty: |
| case Decl::Concept: |
| case Decl::LifetimeExtendedTemporary: |
| case Decl::RequiresExprBody: |
| case Decl::UnnamedGlobalConstant: |
| // None of these decls require codegen support. |
| return; |
| |
| case Decl::NamespaceAlias: |
| case Decl::Using: // using X; [C++] |
| case Decl::UsingEnum: // using enum X; [C++] |
| case Decl::UsingDirective: // using namespace X; [C++] |
| assert(!MissingFeatures::generateDebugInfo()); |
| return; |
| case Decl::UsingPack: |
| assert(0 && "Not implemented"); |
| return; |
| case Decl::Var: |
| case Decl::Decomposition: { |
| const VarDecl &VD = cast<VarDecl>(D); |
| assert(VD.isLocalVarDecl() && |
| "Should not see file-scope variables inside a function!"); |
| buildVarDecl(VD); |
| if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) |
| for (auto *B : DD->bindings()) |
| if (auto *HD = B->getHoldingVar()) |
| buildVarDecl(*HD); |
| return; |
| } |
| |
| case Decl::OMPDeclareReduction: |
| case Decl::OMPDeclareMapper: |
| assert(0 && "Not implemented"); |
| |
| case Decl::Typedef: // typedef int X; |
| case Decl::TypeAlias: { // using X = int; [C++0x] |
| QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); |
| if (auto *DI = getDebugInfo()) |
| assert(!MissingFeatures::generateDebugInfo()); |
| if (Ty->isVariablyModifiedType()) |
| buildVariablyModifiedType(Ty); |
| return; |
| } |
| } |
| } |
| |
| namespace { |
| struct DestroyObject final : EHScopeStack::Cleanup { |
| DestroyObject(Address addr, QualType type, |
| CIRGenFunction::Destroyer *destroyer, bool useEHCleanupForArray) |
| : addr(addr), type(type), destroyer(destroyer), |
| useEHCleanupForArray(useEHCleanupForArray) {} |
| |
| Address addr; |
| QualType type; |
| CIRGenFunction::Destroyer *destroyer; |
| bool useEHCleanupForArray; |
| |
| void Emit(CIRGenFunction &CGF, Flags flags) override { |
| // Don't use an EH cleanup recursively from an EH cleanup. |
| [[maybe_unused]] bool useEHCleanupForArray = |
| flags.isForNormalCleanup() && this->useEHCleanupForArray; |
| |
| CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); |
| } |
| }; |
| |
| template <class Derived> struct DestroyNRVOVariable : EHScopeStack::Cleanup { |
| DestroyNRVOVariable(Address addr, QualType type, mlir::Value NRVOFlag) |
| : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} |
| |
| mlir::Value NRVOFlag; |
| Address Loc; |
| QualType Ty; |
| |
| void Emit(CIRGenFunction &CGF, Flags flags) override { |
| llvm_unreachable("NYI"); |
| } |
| |
| virtual ~DestroyNRVOVariable() = default; |
| }; |
| |
| struct DestroyNRVOVariableCXX final |
| : DestroyNRVOVariable<DestroyNRVOVariableCXX> { |
| DestroyNRVOVariableCXX(Address addr, QualType type, |
| const CXXDestructorDecl *Dtor, mlir::Value NRVOFlag) |
| : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), |
| Dtor(Dtor) {} |
| |
| const CXXDestructorDecl *Dtor; |
| |
| void emitDestructorCall(CIRGenFunction &CGF) { llvm_unreachable("NYI"); } |
| }; |
| |
| struct DestroyNRVOVariableC final : DestroyNRVOVariable<DestroyNRVOVariableC> { |
| DestroyNRVOVariableC(Address addr, mlir::Value NRVOFlag, QualType Ty) |
| : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} |
| |
| void emitDestructorCall(CIRGenFunction &CGF) { llvm_unreachable("NYI"); } |
| }; |
| |
| struct CallStackRestore final : EHScopeStack::Cleanup { |
| Address Stack; |
| CallStackRestore(Address Stack) : Stack(Stack) {} |
| bool isRedundantBeforeReturn() override { return true; } |
| void Emit(CIRGenFunction &CGF, Flags flags) override { |
| auto loc = Stack.getPointer().getLoc(); |
| mlir::Value V = CGF.getBuilder().createLoad(loc, Stack); |
| CGF.getBuilder().createStackRestore(loc, V); |
| } |
| }; |
| |
| struct ExtendGCLifetime final : EHScopeStack::Cleanup { |
| const VarDecl &Var; |
| ExtendGCLifetime(const VarDecl *var) : Var(*var) {} |
| |
| void Emit(CIRGenFunction &CGF, Flags flags) override { |
| llvm_unreachable("NYI"); |
| } |
| }; |
| |
| struct CallCleanupFunction final : EHScopeStack::Cleanup { |
| // FIXME: mlir::Value used as placeholder, check options before implementing |
| // Emit below. |
| mlir::Value CleanupFn; |
| const CIRGenFunctionInfo &FnInfo; |
| const VarDecl &Var; |
| |
| CallCleanupFunction(mlir::Value CleanupFn, const CIRGenFunctionInfo *Info, |
| const VarDecl *Var) |
| : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} |
| |
| void Emit(CIRGenFunction &CGF, Flags flags) override { |
| llvm_unreachable("NYI"); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Push the standard destructor for the given type as |
| /// at least a normal cleanup. |
| void CIRGenFunction::pushDestroy(QualType::DestructionKind dtorKind, |
| Address addr, QualType type) { |
| assert(dtorKind && "cannot push destructor for trivial type"); |
| |
| CleanupKind cleanupKind = getCleanupKind(dtorKind); |
| pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), |
| cleanupKind & EHCleanup); |
| } |
| |
| void CIRGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, |
| QualType type, Destroyer *destroyer, |
| bool useEHCleanupForArray) { |
| pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, |
| useEHCleanupForArray); |
| } |
| |
| namespace { |
| /// A cleanup which performs a partial array destroy where the end pointer is |
| /// regularly determined and does not need to be loaded from a local. |
| class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { |
| mlir::Value ArrayBegin; |
| mlir::Value ArrayEnd; |
| QualType ElementType; |
| [[maybe_unused]] CIRGenFunction::Destroyer *Destroyer; |
| CharUnits ElementAlign; |
| |
| public: |
| RegularPartialArrayDestroy(mlir::Value arrayBegin, mlir::Value arrayEnd, |
| QualType elementType, CharUnits elementAlign, |
| CIRGenFunction::Destroyer *destroyer) |
| : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), ElementType(elementType), |
| Destroyer(destroyer), ElementAlign(elementAlign) {} |
| |
| void Emit(CIRGenFunction &CGF, Flags flags) override { |
| llvm_unreachable("NYI"); |
| } |
| }; |
| |
| /// A cleanup which performs a partial array destroy where the end pointer is |
| /// irregularly determined and must be loaded from a local. |
| class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { |
| mlir::Value ArrayBegin; |
| Address ArrayEndPointer; |
| QualType ElementType; |
| [[maybe_unused]] CIRGenFunction::Destroyer *Destroyer; |
| CharUnits ElementAlign; |
| |
| public: |
| IrregularPartialArrayDestroy(mlir::Value arrayBegin, Address arrayEndPointer, |
| QualType elementType, CharUnits elementAlign, |
| CIRGenFunction::Destroyer *destroyer) |
| : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), |
| ElementType(elementType), Destroyer(destroyer), |
| ElementAlign(elementAlign) {} |
| |
| void Emit(CIRGenFunction &CGF, Flags flags) override { |
| llvm_unreachable("NYI"); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Push an EH cleanup to destroy already-constructed elements of the given |
| /// array. The cleanup may be popped with DeactivateCleanupBlock or |
| /// PopCleanupBlock. |
| /// |
| /// \param elementType - the immediate element type of the array; |
| /// possibly still an array type |
| void CIRGenFunction::pushIrregularPartialArrayCleanup(mlir::Value arrayBegin, |
| Address arrayEndPointer, |
| QualType elementType, |
| CharUnits elementAlign, |
| Destroyer *destroyer) { |
| pushFullExprCleanup<IrregularPartialArrayDestroy>( |
| EHCleanup, arrayBegin, arrayEndPointer, elementType, elementAlign, |
| destroyer); |
| } |
| |
| /// Push an EH cleanup to destroy already-constructed elements of the given |
| /// array. The cleanup may be popped with DeactivateCleanupBlock or |
| /// PopCleanupBlock. |
| /// |
| /// \param elementType - the immediate element type of the array; |
| /// possibly still an array type |
| void CIRGenFunction::pushRegularPartialArrayCleanup(mlir::Value arrayBegin, |
| mlir::Value arrayEnd, |
| QualType elementType, |
| CharUnits elementAlign, |
| Destroyer *destroyer) { |
| pushFullExprCleanup<RegularPartialArrayDestroy>( |
| EHCleanup, arrayBegin, arrayEnd, elementType, elementAlign, destroyer); |
| } |
| |
| /// Destroys all the elements of the given array, beginning from last to first. |
| /// The array cannot be zero-length. |
| /// |
| /// \param begin - a type* denoting the first element of the array |
| /// \param end - a type* denoting one past the end of the array |
| /// \param elementType - the element type of the array |
| /// \param destroyer - the function to call to destroy elements |
| /// \param useEHCleanup - whether to push an EH cleanup to destroy |
| /// the remaining elements in case the destruction of a single |
| /// element throws |
| void CIRGenFunction::buildArrayDestroy(mlir::Value begin, mlir::Value end, |
| QualType elementType, |
| CharUnits elementAlign, |
| Destroyer *destroyer, |
| bool checkZeroLength, |
| bool useEHCleanup) { |
| assert(!elementType->isArrayType()); |
| if (checkZeroLength) { |
| llvm_unreachable("NYI"); |
| } |
| |
| // Differently from LLVM traditional codegen, use a higher level |
| // representation instead of lowering directly to a loop. |
| mlir::Type cirElementType = convertTypeForMem(elementType); |
| auto ptrToElmType = builder.getPointerTo(cirElementType); |
| |
| // Emit the dtor call that will execute for every array element. |
| builder.create<mlir::cir::ArrayDtor>( |
| *currSrcLoc, begin, [&](mlir::OpBuilder &b, mlir::Location loc) { |
| auto arg = b.getInsertionBlock()->addArgument(ptrToElmType, loc); |
| Address curAddr = Address(arg, ptrToElmType, elementAlign); |
| if (useEHCleanup) { |
| pushRegularPartialArrayCleanup(arg, arg, elementType, elementAlign, |
| destroyer); |
| } |
| |
| // Perform the actual destruction there. |
| destroyer(*this, curAddr, elementType); |
| |
| if (useEHCleanup) |
| PopCleanupBlock(); |
| |
| builder.create<mlir::cir::YieldOp>(loc); |
| }); |
| } |
| |
| /// Immediately perform the destruction of the given object. |
| /// |
| /// \param addr - the address of the object; a type* |
| /// \param type - the type of the object; if an array type, all |
| /// objects are destroyed in reverse order |
| /// \param destroyer - the function to call to destroy individual |
| /// elements |
| /// \param useEHCleanupForArray - whether an EH cleanup should be |
| /// used when destroying array elements, in case one of the |
| /// destructions throws an exception |
| void CIRGenFunction::emitDestroy(Address addr, QualType type, |
| Destroyer *destroyer, |
| bool useEHCleanupForArray) { |
| const ArrayType *arrayType = getContext().getAsArrayType(type); |
| if (!arrayType) |
| return destroyer(*this, addr, type); |
| |
| auto length = buildArrayLength(arrayType, type, addr); |
| |
| CharUnits elementAlign = addr.getAlignment().alignmentOfArrayElement( |
| getContext().getTypeSizeInChars(type)); |
| |
| // Normally we have to check whether the array is zero-length. |
| bool checkZeroLength = true; |
| |
| // But if the array length is constant, we can suppress that. |
| auto constantCount = dyn_cast<mlir::cir::ConstantOp>(length.getDefiningOp()); |
| if (constantCount) { |
| auto constIntAttr = |
| mlir::dyn_cast<mlir::cir::IntAttr>(constantCount.getValue()); |
| // ...and if it's constant zero, we can just skip the entire thing. |
| if (constIntAttr && constIntAttr.getUInt() == 0) |
| return; |
| checkZeroLength = false; |
| } else { |
| llvm_unreachable("NYI"); |
| } |
| |
| auto begin = addr.getPointer(); |
| mlir::Value end; // Use this for future non-constant counts. |
| buildArrayDestroy(begin, end, type, elementAlign, destroyer, checkZeroLength, |
| useEHCleanupForArray); |
| if (constantCount.use_empty()) |
| constantCount.erase(); |
| } |
| |
| CIRGenFunction::Destroyer * |
| CIRGenFunction::getDestroyer(QualType::DestructionKind kind) { |
| switch (kind) { |
| case QualType::DK_none: |
| llvm_unreachable("no destroyer for trivial dtor"); |
| case QualType::DK_cxx_destructor: |
| return destroyCXXObject; |
| case QualType::DK_objc_strong_lifetime: |
| case QualType::DK_objc_weak_lifetime: |
| case QualType::DK_nontrivial_c_struct: |
| llvm_unreachable("NYI"); |
| } |
| llvm_unreachable("Unknown DestructionKind"); |
| } |
| |
| void CIRGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { |
| EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); |
| } |
| |
| /// Enter a destroy cleanup for the given local variable. |
| void CIRGenFunction::buildAutoVarTypeCleanup( |
| const CIRGenFunction::AutoVarEmission &emission, |
| QualType::DestructionKind dtorKind) { |
| assert(dtorKind != QualType::DK_none); |
| |
| // Note that for __block variables, we want to destroy the |
| // original stack object, not the possibly forwarded object. |
| Address addr = emission.getObjectAddress(*this); |
| |
| const VarDecl *var = emission.Variable; |
| QualType type = var->getType(); |
| |
| CleanupKind cleanupKind = NormalAndEHCleanup; |
| CIRGenFunction::Destroyer *destroyer = nullptr; |
| |
| switch (dtorKind) { |
| case QualType::DK_none: |
| llvm_unreachable("no cleanup for trivially-destructible variable"); |
| |
| case QualType::DK_cxx_destructor: |
| // If there's an NRVO flag on the emission, we need a different |
| // cleanup. |
| if (emission.NRVOFlag) { |
| assert(!type->isArrayType()); |
| CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); |
| EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, |
| emission.NRVOFlag); |
| return; |
| } |
| break; |
| |
| case QualType::DK_objc_strong_lifetime: |
| llvm_unreachable("NYI"); |
| break; |
| |
| case QualType::DK_objc_weak_lifetime: |
| break; |
| |
| case QualType::DK_nontrivial_c_struct: |
| llvm_unreachable("NYI"); |
| } |
| |
| // If we haven't chosen a more specific destroyer, use the default. |
| if (!destroyer) |
| destroyer = getDestroyer(dtorKind); |
| |
| // Use an EH cleanup in array destructors iff the destructor itself |
| // is being pushed as an EH cleanup. |
| bool useEHCleanup = (cleanupKind & EHCleanup); |
| EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, |
| useEHCleanup); |
| } |
| |
| /// Push the standard destructor for the given type as an EH-only cleanup. |
| void CIRGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, |
| Address addr, QualType type) { |
| assert(dtorKind && "cannot push destructor for trivial type"); |
| assert(needsEHCleanup(dtorKind)); |
| |
| pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); |
| } |
| |
| // Pushes a destroy and defers its deactivation until its |
| // CleanupDeactivationScope is exited. |
| void CIRGenFunction::pushDestroyAndDeferDeactivation( |
| QualType::DestructionKind dtorKind, Address addr, QualType type) { |
| assert(dtorKind && "cannot push destructor for trivial type"); |
| |
| CleanupKind cleanupKind = getCleanupKind(dtorKind); |
| pushDestroyAndDeferDeactivation( |
| cleanupKind, addr, type, getDestroyer(dtorKind), cleanupKind & EHCleanup); |
| } |
| |
| void CIRGenFunction::pushDestroyAndDeferDeactivation( |
| CleanupKind cleanupKind, Address addr, QualType type, Destroyer *destroyer, |
| bool useEHCleanupForArray) { |
| mlir::Operation *flag = |
| builder.create<mlir::cir::UnreachableOp>(builder.getUnknownLoc()); |
| pushDestroy(cleanupKind, addr, type, destroyer, useEHCleanupForArray); |
| DeferredDeactivationCleanupStack.push_back({EHStack.stable_begin(), flag}); |
| } |