|  | //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the VirtRegMap class. | 
|  | // | 
|  | // It also contains implementations of the Spiller interface, which, given a | 
|  | // virtual register map and a machine function, eliminates all virtual | 
|  | // references by replacing them with physical register references - adding spill | 
|  | // code as necessary. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/VirtRegMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/LiveDebugVariables.h" | 
|  | #include "llvm/CodeGen/LiveInterval.h" | 
|  | #include "llvm/CodeGen/LiveIntervals.h" | 
|  | #include "llvm/CodeGen/LiveRegMatrix.h" | 
|  | #include "llvm/CodeGen/LiveStacks.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/CodeGen/TargetFrameLowering.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/MC/LaneBitmask.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "regalloc" | 
|  |  | 
|  | STATISTIC(NumSpillSlots, "Number of spill slots allocated"); | 
|  | STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting"); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  VirtRegMap implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | char VirtRegMapWrapperLegacy::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS(VirtRegMapWrapperLegacy, "virtregmap", "Virtual Register Map", | 
|  | false, false) | 
|  |  | 
|  | void VirtRegMap::init(MachineFunction &mf) { | 
|  | MRI = &mf.getRegInfo(); | 
|  | TII = mf.getSubtarget().getInstrInfo(); | 
|  | TRI = mf.getSubtarget().getRegisterInfo(); | 
|  | MF = &mf; | 
|  |  | 
|  | Virt2PhysMap.clear(); | 
|  | Virt2StackSlotMap.clear(); | 
|  | Virt2SplitMap.clear(); | 
|  | Virt2ShapeMap.clear(); | 
|  |  | 
|  | grow(); | 
|  | } | 
|  |  | 
|  | void VirtRegMap::grow() { | 
|  | unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); | 
|  | Virt2PhysMap.resize(NumRegs); | 
|  | Virt2StackSlotMap.resize(NumRegs); | 
|  | Virt2SplitMap.resize(NumRegs); | 
|  | } | 
|  |  | 
|  | void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) { | 
|  | assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg)); | 
|  | assert(!Virt2PhysMap[virtReg] && | 
|  | "attempt to assign physical register to already mapped " | 
|  | "virtual register"); | 
|  | assert(!getRegInfo().isReserved(physReg) && | 
|  | "Attempt to map virtReg to a reserved physReg"); | 
|  | Virt2PhysMap[virtReg] = physReg; | 
|  | } | 
|  |  | 
|  | unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { | 
|  | unsigned Size = TRI->getSpillSize(*RC); | 
|  | Align Alignment = TRI->getSpillAlign(*RC); | 
|  | // Set preferred alignment if we are still able to realign the stack | 
|  | auto &ST = MF->getSubtarget(); | 
|  | Align CurrentAlign = ST.getFrameLowering()->getStackAlign(); | 
|  | if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) { | 
|  | Alignment = CurrentAlign; | 
|  | } | 
|  | int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment); | 
|  | ++NumSpillSlots; | 
|  | return SS; | 
|  | } | 
|  |  | 
|  | bool VirtRegMap::hasPreferredPhys(Register VirtReg) const { | 
|  | Register Hint = MRI->getSimpleHint(VirtReg); | 
|  | if (!Hint.isValid()) | 
|  | return false; | 
|  | if (Hint.isVirtual()) | 
|  | Hint = getPhys(Hint); | 
|  | return Register(getPhys(VirtReg)) == Hint; | 
|  | } | 
|  |  | 
|  | bool VirtRegMap::hasKnownPreference(Register VirtReg) const { | 
|  | std::pair<unsigned, Register> Hint = MRI->getRegAllocationHint(VirtReg); | 
|  | if (Hint.second.isPhysical()) | 
|  | return true; | 
|  | if (Hint.second.isVirtual()) | 
|  | return hasPhys(Hint.second); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int VirtRegMap::assignVirt2StackSlot(Register virtReg) { | 
|  | assert(virtReg.isVirtual()); | 
|  | assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
|  | "attempt to assign stack slot to already spilled register"); | 
|  | const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); | 
|  | return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); | 
|  | } | 
|  |  | 
|  | void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) { | 
|  | assert(virtReg.isVirtual()); | 
|  | assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && | 
|  | "attempt to assign stack slot to already spilled register"); | 
|  | assert((SS >= 0 || | 
|  | (SS >= MF->getFrameInfo().getObjectIndexBegin())) && | 
|  | "illegal fixed frame index"); | 
|  | Virt2StackSlotMap[virtReg] = SS; | 
|  | } | 
|  |  | 
|  | void VirtRegMap::print(raw_ostream &OS, const Module*) const { | 
|  | OS << "********** REGISTER MAP **********\n"; | 
|  | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
|  | Register Reg = Register::index2VirtReg(i); | 
|  | if (Virt2PhysMap[Reg]) { | 
|  | OS << '[' << printReg(Reg, TRI) << " -> " | 
|  | << printReg(Virt2PhysMap[Reg], TRI) << "] " | 
|  | << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
|  | Register Reg = Register::index2VirtReg(i); | 
|  | if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { | 
|  | OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] | 
|  | << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; | 
|  | } | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void VirtRegMap::dump() const { | 
|  | print(dbgs()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | AnalysisKey VirtRegMapAnalysis::Key; | 
|  |  | 
|  | PreservedAnalyses | 
|  | VirtRegMapPrinterPass::run(MachineFunction &MF, | 
|  | MachineFunctionAnalysisManager &MFAM) { | 
|  | OS << MFAM.getResult<VirtRegMapAnalysis>(MF); | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | VirtRegMap VirtRegMapAnalysis::run(MachineFunction &MF, | 
|  | MachineFunctionAnalysisManager &MAM) { | 
|  | VirtRegMap VRM; | 
|  | VRM.init(MF); | 
|  | return VRM; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              VirtRegRewriter | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The VirtRegRewriter is the last of the register allocator passes. | 
|  | // It rewrites virtual registers to physical registers as specified in the | 
|  | // VirtRegMap analysis. It also updates live-in information on basic blocks | 
|  | // according to LiveIntervals. | 
|  | // | 
|  | namespace { | 
|  |  | 
|  | class VirtRegRewriter : public MachineFunctionPass { | 
|  | MachineFunction *MF = nullptr; | 
|  | const TargetRegisterInfo *TRI = nullptr; | 
|  | const TargetInstrInfo *TII = nullptr; | 
|  | MachineRegisterInfo *MRI = nullptr; | 
|  | SlotIndexes *Indexes = nullptr; | 
|  | LiveIntervals *LIS = nullptr; | 
|  | LiveRegMatrix *LRM = nullptr; | 
|  | VirtRegMap *VRM = nullptr; | 
|  | LiveDebugVariables *DebugVars = nullptr; | 
|  | DenseSet<Register> RewriteRegs; | 
|  | bool ClearVirtRegs; | 
|  |  | 
|  | void rewrite(); | 
|  | void addMBBLiveIns(); | 
|  | bool readsUndefSubreg(const MachineOperand &MO) const; | 
|  | void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const; | 
|  | void handleIdentityCopy(MachineInstr &MI); | 
|  | void expandCopyBundle(MachineInstr &MI) const; | 
|  | bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const; | 
|  | LaneBitmask liveOutUndefPhiLanesForUndefSubregDef( | 
|  | const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, | 
|  | MCPhysReg PhysReg, const MachineInstr &MI) const; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | VirtRegRewriter(bool ClearVirtRegs_ = true) : | 
|  | MachineFunctionPass(ID), | 
|  | ClearVirtRegs(ClearVirtRegs_) {} | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction&) override; | 
|  |  | 
|  | MachineFunctionProperties getSetProperties() const override { | 
|  | if (ClearVirtRegs) { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  |  | 
|  | return MachineFunctionProperties(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char VirtRegRewriter::ID = 0; | 
|  |  | 
|  | char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", | 
|  | "Virtual Register Rewriter", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveRegMatrixWrapperLegacy) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveStacks) | 
|  | INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy) | 
|  | INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", | 
|  | "Virtual Register Rewriter", false, false) | 
|  |  | 
|  | void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<LiveIntervalsWrapperPass>(); | 
|  | AU.addPreserved<LiveIntervalsWrapperPass>(); | 
|  | AU.addRequired<SlotIndexesWrapperPass>(); | 
|  | AU.addPreserved<SlotIndexesWrapperPass>(); | 
|  | AU.addRequired<LiveDebugVariables>(); | 
|  | AU.addRequired<LiveStacks>(); | 
|  | AU.addPreserved<LiveStacks>(); | 
|  | AU.addRequired<VirtRegMapWrapperLegacy>(); | 
|  | AU.addRequired<LiveRegMatrixWrapperLegacy>(); | 
|  |  | 
|  | if (!ClearVirtRegs) | 
|  | AU.addPreserved<LiveDebugVariables>(); | 
|  |  | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { | 
|  | MF = &fn; | 
|  | TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | MRI = &MF->getRegInfo(); | 
|  | Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); | 
|  | LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); | 
|  | LRM = &getAnalysis<LiveRegMatrixWrapperLegacy>().getLRM(); | 
|  | VRM = &getAnalysis<VirtRegMapWrapperLegacy>().getVRM(); | 
|  | DebugVars = &getAnalysis<LiveDebugVariables>(); | 
|  | LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" | 
|  | << "********** Function: " << MF->getName() << '\n'); | 
|  | LLVM_DEBUG(VRM->dump()); | 
|  |  | 
|  | // Add kill flags while we still have virtual registers. | 
|  | LIS->addKillFlags(VRM); | 
|  |  | 
|  | // Live-in lists on basic blocks are required for physregs. | 
|  | addMBBLiveIns(); | 
|  |  | 
|  | // Rewrite virtual registers. | 
|  | rewrite(); | 
|  |  | 
|  | if (ClearVirtRegs) { | 
|  | // Write out new DBG_VALUE instructions. | 
|  |  | 
|  | // We only do this if ClearVirtRegs is specified since this should be the | 
|  | // final run of the pass and we don't want to emit them multiple times. | 
|  | DebugVars->emitDebugValues(VRM); | 
|  |  | 
|  | // All machine operands and other references to virtual registers have been | 
|  | // replaced. Remove the virtual registers and release all the transient data. | 
|  | VRM->clearAllVirt(); | 
|  | MRI->clearVirtRegs(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, | 
|  | MCRegister PhysReg) const { | 
|  | assert(!LI.empty()); | 
|  | assert(LI.hasSubRanges()); | 
|  |  | 
|  | using SubRangeIteratorPair = | 
|  | std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>; | 
|  |  | 
|  | SmallVector<SubRangeIteratorPair, 4> SubRanges; | 
|  | SlotIndex First; | 
|  | SlotIndex Last; | 
|  | for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | SubRanges.push_back(std::make_pair(&SR, SR.begin())); | 
|  | if (!First.isValid() || SR.segments.front().start < First) | 
|  | First = SR.segments.front().start; | 
|  | if (!Last.isValid() || SR.segments.back().end > Last) | 
|  | Last = SR.segments.back().end; | 
|  | } | 
|  |  | 
|  | // Check all mbb start positions between First and Last while | 
|  | // simultaneously advancing an iterator for each subrange. | 
|  | for (SlotIndexes::MBBIndexIterator MBBI = Indexes->getMBBLowerBound(First); | 
|  | MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { | 
|  | SlotIndex MBBBegin = MBBI->first; | 
|  | // Advance all subrange iterators so that their end position is just | 
|  | // behind MBBBegin (or the iterator is at the end). | 
|  | LaneBitmask LaneMask; | 
|  | for (auto &RangeIterPair : SubRanges) { | 
|  | const LiveInterval::SubRange *SR = RangeIterPair.first; | 
|  | LiveInterval::const_iterator &SRI = RangeIterPair.second; | 
|  | while (SRI != SR->end() && SRI->end <= MBBBegin) | 
|  | ++SRI; | 
|  | if (SRI == SR->end()) | 
|  | continue; | 
|  | if (SRI->start <= MBBBegin) | 
|  | LaneMask |= SR->LaneMask; | 
|  | } | 
|  | if (LaneMask.none()) | 
|  | continue; | 
|  | MachineBasicBlock *MBB = MBBI->second; | 
|  | MBB->addLiveIn(PhysReg, LaneMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute MBB live-in lists from virtual register live ranges and their | 
|  | // assignments. | 
|  | void VirtRegRewriter::addMBBLiveIns() { | 
|  | for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { | 
|  | Register VirtReg = Register::index2VirtReg(Idx); | 
|  | if (MRI->reg_nodbg_empty(VirtReg)) | 
|  | continue; | 
|  | LiveInterval &LI = LIS->getInterval(VirtReg); | 
|  | if (LI.empty() || LIS->intervalIsInOneMBB(LI)) | 
|  | continue; | 
|  | // This is a virtual register that is live across basic blocks. Its | 
|  | // assigned PhysReg must be marked as live-in to those blocks. | 
|  | MCRegister PhysReg = VRM->getPhys(VirtReg); | 
|  | if (!PhysReg) { | 
|  | // There may be no physical register assigned if only some register | 
|  | // classes were already allocated. | 
|  | assert(!ClearVirtRegs && "Unmapped virtual register"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LI.hasSubRanges()) { | 
|  | addLiveInsForSubRanges(LI, PhysReg); | 
|  | } else { | 
|  | // Go over MBB begin positions and see if we have segments covering them. | 
|  | // The following works because segments and the MBBIndex list are both | 
|  | // sorted by slot indexes. | 
|  | SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); | 
|  | for (const auto &Seg : LI) { | 
|  | I = Indexes->getMBBLowerBound(I, Seg.start); | 
|  | for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { | 
|  | MachineBasicBlock *MBB = I->second; | 
|  | MBB->addLiveIn(PhysReg); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in | 
|  | // each MBB's LiveIns set before calling addLiveIn on them. | 
|  | for (MachineBasicBlock &MBB : *MF) | 
|  | MBB.sortUniqueLiveIns(); | 
|  | } | 
|  |  | 
|  | /// Returns true if the given machine operand \p MO only reads undefined lanes. | 
|  | /// The function only works for use operands with a subregister set. | 
|  | bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { | 
|  | // Shortcut if the operand is already marked undef. | 
|  | if (MO.isUndef()) | 
|  | return true; | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  | const LiveInterval &LI = LIS->getInterval(Reg); | 
|  | const MachineInstr &MI = *MO.getParent(); | 
|  | SlotIndex BaseIndex = LIS->getInstructionIndex(MI); | 
|  | // This code is only meant to handle reading undefined subregisters which | 
|  | // we couldn't properly detect before. | 
|  | assert(LI.liveAt(BaseIndex) && | 
|  | "Reads of completely dead register should be marked undef already"); | 
|  | unsigned SubRegIdx = MO.getSubReg(); | 
|  | assert(SubRegIdx != 0 && LI.hasSubRanges()); | 
|  | LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); | 
|  | // See if any of the relevant subregister liveranges is defined at this point. | 
|  | for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) { | 
|  | if (!MI.isIdentityCopy()) | 
|  | return; | 
|  | LLVM_DEBUG(dbgs() << "Identity copy: " << MI); | 
|  | ++NumIdCopies; | 
|  |  | 
|  | Register DstReg = MI.getOperand(0).getReg(); | 
|  |  | 
|  | // We may have deferred allocation of the virtual register, and the rewrite | 
|  | // regs code doesn't handle the liveness update. | 
|  | if (DstReg.isVirtual()) | 
|  | return; | 
|  |  | 
|  | RewriteRegs.insert(DstReg); | 
|  |  | 
|  | // Copies like: | 
|  | //    %r0 = COPY undef %r0 | 
|  | //    %al = COPY %al, implicit-def %eax | 
|  | // give us additional liveness information: The target (super-)register | 
|  | // must not be valid before this point. Replace the COPY with a KILL | 
|  | // instruction to maintain this information. | 
|  | if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) { | 
|  | MI.setDesc(TII->get(TargetOpcode::KILL)); | 
|  | LLVM_DEBUG(dbgs() << "  replace by: " << MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Indexes) | 
|  | Indexes->removeSingleMachineInstrFromMaps(MI); | 
|  | MI.eraseFromBundle(); | 
|  | LLVM_DEBUG(dbgs() << "  deleted.\n"); | 
|  | } | 
|  |  | 
|  | /// The liverange splitting logic sometimes produces bundles of copies when | 
|  | /// subregisters are involved. Expand these into a sequence of copy instructions | 
|  | /// after processing the last in the bundle. Does not update LiveIntervals | 
|  | /// which we shouldn't need for this instruction anymore. | 
|  | void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { | 
|  | if (!MI.isCopy() && !MI.isKill()) | 
|  | return; | 
|  |  | 
|  | if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { | 
|  | SmallVector<MachineInstr *, 2> MIs({&MI}); | 
|  |  | 
|  | // Only do this when the complete bundle is made out of COPYs and KILLs. | 
|  | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | for (MachineBasicBlock::reverse_instr_iterator I = | 
|  | std::next(MI.getReverseIterator()), E = MBB.instr_rend(); | 
|  | I != E && I->isBundledWithSucc(); ++I) { | 
|  | if (!I->isCopy() && !I->isKill()) | 
|  | return; | 
|  | MIs.push_back(&*I); | 
|  | } | 
|  | MachineInstr *FirstMI = MIs.back(); | 
|  |  | 
|  | auto anyRegsAlias = [](const MachineInstr *Dst, | 
|  | ArrayRef<MachineInstr *> Srcs, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | for (const MachineInstr *Src : Srcs) | 
|  | if (Src != Dst) | 
|  | if (TRI->regsOverlap(Dst->getOperand(0).getReg(), | 
|  | Src->getOperand(1).getReg())) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // If any of the destination registers in the bundle of copies alias any of | 
|  | // the source registers, try to schedule the instructions to avoid any | 
|  | // clobbering. | 
|  | for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { | 
|  | for (int I = E; I--; ) | 
|  | if (!anyRegsAlias(MIs[I], ArrayRef(MIs).take_front(E), TRI)) { | 
|  | if (I + 1 != E) | 
|  | std::swap(MIs[I], MIs[E - 1]); | 
|  | --E; | 
|  | } | 
|  | if (PrevE == E) { | 
|  | MF->getFunction().getContext().emitError( | 
|  | "register rewriting failed: cycle in copy bundle"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineInstr *BundleStart = FirstMI; | 
|  | for (MachineInstr *BundledMI : llvm::reverse(MIs)) { | 
|  | // If instruction is in the middle of the bundle, move it before the | 
|  | // bundle starts, otherwise, just unbundle it. When we get to the last | 
|  | // instruction, the bundle will have been completely undone. | 
|  | if (BundledMI != BundleStart) { | 
|  | BundledMI->removeFromBundle(); | 
|  | MBB.insert(BundleStart, BundledMI); | 
|  | } else if (BundledMI->isBundledWithSucc()) { | 
|  | BundledMI->unbundleFromSucc(); | 
|  | BundleStart = &*std::next(BundledMI->getIterator()); | 
|  | } | 
|  |  | 
|  | if (Indexes && BundledMI != FirstMI) | 
|  | Indexes->insertMachineInstrInMaps(*BundledMI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether (part of) \p SuperPhysReg is live through \p MI. | 
|  | /// \pre \p MI defines a subregister of a virtual register that | 
|  | /// has been assigned to \p SuperPhysReg. | 
|  | bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, | 
|  | MCRegister SuperPhysReg) const { | 
|  | SlotIndex MIIndex = LIS->getInstructionIndex(MI); | 
|  | SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); | 
|  | SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); | 
|  | for (MCRegUnit Unit : TRI->regunits(SuperPhysReg)) { | 
|  | const LiveRange &UnitRange = LIS->getRegUnit(Unit); | 
|  | // If the regunit is live both before and after MI, | 
|  | // we assume it is live through. | 
|  | // Generally speaking, this is not true, because something like | 
|  | // "RU = op RU" would match that description. | 
|  | // However, we know that we are trying to assess whether | 
|  | // a def of a virtual reg, vreg, is live at the same time of RU. | 
|  | // If we are in the "RU = op RU" situation, that means that vreg | 
|  | // is defined at the same time as RU (i.e., "vreg, RU = op RU"). | 
|  | // Thus, vreg and RU interferes and vreg cannot be assigned to | 
|  | // SuperPhysReg. Therefore, this situation cannot happen. | 
|  | if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Compute a lanemask for undef lanes which need to be preserved out of the | 
|  | /// defining block for a register assignment for a subregister def. \p PhysReg | 
|  | /// is assigned to \p LI, which is the main range. | 
|  | LaneBitmask VirtRegRewriter::liveOutUndefPhiLanesForUndefSubregDef( | 
|  | const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, | 
|  | MCPhysReg PhysReg, const MachineInstr &MI) const { | 
|  | LaneBitmask UndefMask = ~TRI->getSubRegIndexLaneMask(SubReg); | 
|  | LaneBitmask LiveOutUndefLanes; | 
|  |  | 
|  | for (const LiveInterval::SubRange &SR : LI.subranges()) { | 
|  | // Figure out which lanes are undef live into a successor. | 
|  | LaneBitmask NeedImpDefLanes = UndefMask & SR.LaneMask; | 
|  | if (NeedImpDefLanes.any() && !LIS->isLiveOutOfMBB(SR, &MBB)) { | 
|  | for (const MachineBasicBlock *Succ : MBB.successors()) { | 
|  | if (LIS->isLiveInToMBB(SR, Succ)) | 
|  | LiveOutUndefLanes |= NeedImpDefLanes; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SlotIndex MIIndex = LIS->getInstructionIndex(MI); | 
|  | SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); | 
|  | LaneBitmask InterferingLanes = | 
|  | LRM->checkInterferenceLanes(BeforeMIUses, MIIndex.getRegSlot(), PhysReg); | 
|  | LiveOutUndefLanes &= ~InterferingLanes; | 
|  |  | 
|  | LLVM_DEBUG(if (LiveOutUndefLanes.any()) { | 
|  | dbgs() << "Need live out undef defs for " << printReg(PhysReg) | 
|  | << LiveOutUndefLanes << " from " << printMBBReference(MBB) << '\n'; | 
|  | }); | 
|  |  | 
|  | return LiveOutUndefLanes; | 
|  | } | 
|  |  | 
|  | void VirtRegRewriter::rewrite() { | 
|  | bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); | 
|  | SmallVector<Register, 8> SuperDeads; | 
|  | SmallVector<Register, 8> SuperDefs; | 
|  | SmallVector<Register, 8> SuperKills; | 
|  |  | 
|  | for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); | 
|  | MBBI != MBBE; ++MBBI) { | 
|  | LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); | 
|  | for (MachineInstr &MI : llvm::make_early_inc_range(MBBI->instrs())) { | 
|  | for (MachineOperand &MO : MI.operands()) { | 
|  | // Make sure MRI knows about registers clobbered by regmasks. | 
|  | if (MO.isRegMask()) | 
|  | MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); | 
|  |  | 
|  | if (!MO.isReg() || !MO.getReg().isVirtual()) | 
|  | continue; | 
|  | Register VirtReg = MO.getReg(); | 
|  | MCRegister PhysReg = VRM->getPhys(VirtReg); | 
|  | if (!PhysReg) | 
|  | continue; | 
|  |  | 
|  | assert(Register(PhysReg).isPhysical()); | 
|  |  | 
|  | RewriteRegs.insert(PhysReg); | 
|  | assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); | 
|  |  | 
|  | // Preserve semantics of sub-register operands. | 
|  | unsigned SubReg = MO.getSubReg(); | 
|  | if (SubReg != 0) { | 
|  | if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) { | 
|  | // A virtual register kill refers to the whole register, so we may | 
|  | // have to add implicit killed operands for the super-register.  A | 
|  | // partial redef always kills and redefines the super-register. | 
|  | if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || | 
|  | (MO.isDef() && subRegLiveThrough(MI, PhysReg))) | 
|  | SuperKills.push_back(PhysReg); | 
|  |  | 
|  | if (MO.isDef()) { | 
|  | // Also add implicit defs for the super-register. | 
|  | if (MO.isDead()) | 
|  | SuperDeads.push_back(PhysReg); | 
|  | else | 
|  | SuperDefs.push_back(PhysReg); | 
|  | } | 
|  | } else { | 
|  | if (MO.isUse()) { | 
|  | if (readsUndefSubreg(MO)) | 
|  | // We need to add an <undef> flag if the subregister is | 
|  | // completely undefined (and we are not adding super-register | 
|  | // defs). | 
|  | MO.setIsUndef(true); | 
|  | } else if (!MO.isDead()) { | 
|  | assert(MO.isDef()); | 
|  | if (MO.isUndef()) { | 
|  | const LiveInterval &LI = LIS->getInterval(VirtReg); | 
|  |  | 
|  | LaneBitmask LiveOutUndefLanes = | 
|  | liveOutUndefPhiLanesForUndefSubregDef(LI, *MBBI, SubReg, | 
|  | PhysReg, MI); | 
|  | if (LiveOutUndefLanes.any()) { | 
|  | SmallVector<unsigned, 16> CoveringIndexes; | 
|  |  | 
|  | // TODO: Just use one super register def if none of the lanes | 
|  | // are needed? | 
|  | if (!TRI->getCoveringSubRegIndexes( | 
|  | *MRI, MRI->getRegClass(VirtReg), LiveOutUndefLanes, | 
|  | CoveringIndexes)) | 
|  | llvm_unreachable( | 
|  | "cannot represent required subregister defs"); | 
|  |  | 
|  | // Try to represent the minimum needed live out def as a | 
|  | // sequence of subregister defs. | 
|  | // | 
|  | // FIXME: It would be better if we could directly represent | 
|  | // liveness with a lanemask instead of spamming operands. | 
|  | for (unsigned SubIdx : CoveringIndexes) | 
|  | SuperDefs.push_back(TRI->getSubReg(PhysReg, SubIdx)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The def undef and def internal flags only make sense for | 
|  | // sub-register defs, and we are substituting a full physreg.  An | 
|  | // implicit killed operand from the SuperKills list will represent the | 
|  | // partial read of the super-register. | 
|  | if (MO.isDef()) { | 
|  | MO.setIsUndef(false); | 
|  | MO.setIsInternalRead(false); | 
|  | } | 
|  |  | 
|  | // PhysReg operands cannot have subregister indexes. | 
|  | PhysReg = TRI->getSubReg(PhysReg, SubReg); | 
|  | assert(PhysReg.isValid() && "Invalid SubReg for physical register"); | 
|  | MO.setSubReg(0); | 
|  | } | 
|  | // Rewrite. Note we could have used MachineOperand::substPhysReg(), but | 
|  | // we need the inlining here. | 
|  | MO.setReg(PhysReg); | 
|  | MO.setIsRenamable(true); | 
|  | } | 
|  |  | 
|  | // Add any missing super-register kills after rewriting the whole | 
|  | // instruction. | 
|  | while (!SuperKills.empty()) | 
|  | MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true); | 
|  |  | 
|  | while (!SuperDeads.empty()) | 
|  | MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true); | 
|  |  | 
|  | while (!SuperDefs.empty()) | 
|  | MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "> " << MI); | 
|  |  | 
|  | expandCopyBundle(MI); | 
|  |  | 
|  | // We can remove identity copies right now. | 
|  | handleIdentityCopy(MI); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LIS) { | 
|  | // Don't bother maintaining accurate LiveIntervals for registers which were | 
|  | // already allocated. | 
|  | for (Register PhysReg : RewriteRegs) { | 
|  | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { | 
|  | LIS->removeRegUnit(Unit); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RewriteRegs.clear(); | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) { | 
|  | return new VirtRegRewriter(ClearVirtRegs); | 
|  | } |