| // RUN: mlir-opt %s -split-input-file -canonicalize="test-convergence" | FileCheck %s |
| |
| #BCOO = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton) |
| }> |
| |
| // CHECK-DAG: #[[$BCOO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton) }> |
| // CHECK-LABEL: func @sparse_slice_canonicalize |
| // CHECK-SAME: %[[ARG0:.+]]: tensor<?x?x?xf32, #[[$BCOO]]> |
| // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]][0, %{{[a-zA-Z0-9_]+}}, 1] |
| // CHECK-SAME: [4, 1, %{{[a-zA-Z0-9_]+}}] [1, 1, 1] |
| // CHECK-SAME: : tensor<?x?x?xf32, #[[$BCOO]]> to tensor<4x1x?xf32, #[[$BCOO]]> |
| // CHECK: %[[RESULT:.+]] = tensor.cast %[[SLICE]] |
| // CHECK: return %[[RESULT]] |
| func.func @sparse_slice_canonicalize(%arg0 : tensor<?x?x?xf32, #BCOO>, %arg1 : index, |
| %arg2 : index) -> tensor<?x?x?xf32, #BCOO> |
| { |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| %c4 = arith.constant 4 : index |
| %0 = tensor.extract_slice %arg0[%c0, %arg1, %c1] [%c4, %c1, %arg2] [%c1, %c1, %c1] : tensor<?x?x?xf32, #BCOO> to tensor<?x?x?xf32, #BCOO> |
| return %0 : tensor<?x?x?xf32, #BCOO> |
| } |
| |
| // ----- |
| |
| #CSR = #sparse_tensor.encoding<{ |
| map = (i, j) -> (i : dense, j : compressed) |
| }> |
| |
| // Make sure that the first unused coordinate is optimized. |
| // CHECK-LABEL: @sparse_iterate_canonicalize |
| // CHECK: sparse_tensor.iterate {{.*}} at(_, %{{.*}}) |
| func.func @sparse_iterate_canonicalize(%sp : tensor<?x?xf64, #CSR>) { |
| %l1 = sparse_tensor.extract_iteration_space %sp lvls = 0 to 2 |
| : tensor<?x?xf64, #CSR> -> !sparse_tensor.iter_space<#CSR, lvls = 0 to 2> |
| sparse_tensor.iterate %it1 in %l1 at (%coord0, %coord1) : !sparse_tensor.iter_space<#CSR, lvls = 0 to 2> { |
| "test.op"(%coord1) : (index) -> () |
| } |
| return |
| } |