|  | //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the debug info Metadata classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "LLVMContextImpl.h" | 
|  | #include "MetadataImpl.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/BinaryFormat/Dwarf.h" | 
|  | #include "llvm/IR/DebugProgramInstruction.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  |  | 
|  | #include <numeric> | 
|  | #include <optional> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace llvm { | 
|  | // Use FS-AFDO discriminator. | 
|  | cl::opt<bool> EnableFSDiscriminator( | 
|  | "enable-fs-discriminator", cl::Hidden, | 
|  | cl::desc("Enable adding flow sensitive discriminators")); | 
|  |  | 
|  | // When true, preserves line and column number by picking one of the merged | 
|  | // location info in a deterministic manner to assist sample based PGO. | 
|  | LLVM_ABI cl::opt<bool> PickMergedSourceLocations( | 
|  | "pick-merged-source-locations", cl::init(false), cl::Hidden, | 
|  | cl::desc("Preserve line and column number when merging locations.")); | 
|  | } // namespace llvm | 
|  |  | 
|  | uint32_t DIType::getAlignInBits() const { | 
|  | return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32); | 
|  | } | 
|  |  | 
|  | const DIExpression::FragmentInfo DebugVariable::DefaultFragment = { | 
|  | std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()}; | 
|  |  | 
|  | DebugVariable::DebugVariable(const DbgVariableRecord *DVR) | 
|  | : Variable(DVR->getVariable()), | 
|  | Fragment(DVR->getExpression()->getFragmentInfo()), | 
|  | InlinedAt(DVR->getDebugLoc().getInlinedAt()) {} | 
|  |  | 
|  | DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line, | 
|  | unsigned Column, uint64_t AtomGroup, uint8_t AtomRank, | 
|  | ArrayRef<Metadata *> MDs, bool ImplicitCode) | 
|  | : MDNode(C, DILocationKind, Storage, MDs), AtomGroup(AtomGroup), | 
|  | AtomRank(AtomRank) { | 
|  | assert(AtomRank <= 7 && "AtomRank number should fit in 3 bits"); | 
|  | if (AtomGroup) | 
|  | C.updateDILocationAtomGroupWaterline(AtomGroup + 1); | 
|  |  | 
|  | assert((MDs.size() == 1 || MDs.size() == 2) && | 
|  | "Expected a scope and optional inlined-at"); | 
|  | // Set line and column. | 
|  | assert(Column < (1u << 16) && "Expected 16-bit column"); | 
|  |  | 
|  | SubclassData32 = Line; | 
|  | SubclassData16 = Column; | 
|  |  | 
|  | setImplicitCode(ImplicitCode); | 
|  | } | 
|  |  | 
|  | static void adjustColumn(unsigned &Column) { | 
|  | // Set to unknown on overflow.  We only have 16 bits to play with here. | 
|  | if (Column >= (1u << 16)) | 
|  | Column = 0; | 
|  | } | 
|  |  | 
|  | DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line, | 
|  | unsigned Column, Metadata *Scope, | 
|  | Metadata *InlinedAt, bool ImplicitCode, | 
|  | uint64_t AtomGroup, uint8_t AtomRank, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | // Fixup column. | 
|  | adjustColumn(Column); | 
|  |  | 
|  | if (Storage == Uniqued) { | 
|  | if (auto *N = getUniqued(Context.pImpl->DILocations, | 
|  | DILocationInfo::KeyTy(Line, Column, Scope, | 
|  | InlinedAt, ImplicitCode, | 
|  | AtomGroup, AtomRank))) | 
|  | return N; | 
|  | if (!ShouldCreate) | 
|  | return nullptr; | 
|  | } else { | 
|  | assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); | 
|  | } | 
|  |  | 
|  | SmallVector<Metadata *, 2> Ops; | 
|  | Ops.push_back(Scope); | 
|  | if (InlinedAt) | 
|  | Ops.push_back(InlinedAt); | 
|  | return storeImpl(new (Ops.size(), Storage) | 
|  | DILocation(Context, Storage, Line, Column, AtomGroup, | 
|  | AtomRank, Ops, ImplicitCode), | 
|  | Storage, Context.pImpl->DILocations); | 
|  | } | 
|  |  | 
|  | DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) { | 
|  | if (Locs.empty()) | 
|  | return nullptr; | 
|  | if (Locs.size() == 1) | 
|  | return Locs[0]; | 
|  | auto *Merged = Locs[0]; | 
|  | for (DILocation *L : llvm::drop_begin(Locs)) { | 
|  | Merged = getMergedLocation(Merged, L); | 
|  | if (Merged == nullptr) | 
|  | break; | 
|  | } | 
|  | return Merged; | 
|  | } | 
|  |  | 
|  | static DILexicalBlockBase *cloneAndReplaceParentScope(DILexicalBlockBase *LBB, | 
|  | DIScope *NewParent) { | 
|  | TempMDNode ClonedScope = LBB->clone(); | 
|  | cast<DILexicalBlockBase>(*ClonedScope).replaceScope(NewParent); | 
|  | return cast<DILexicalBlockBase>( | 
|  | MDNode::replaceWithUniqued(std::move(ClonedScope))); | 
|  | } | 
|  |  | 
|  | using LineColumn = std::pair<unsigned /* Line */, unsigned /* Column */>; | 
|  |  | 
|  | /// Returns the location of DILocalScope, if present, or a default value. | 
|  | static LineColumn getLocalScopeLocationOr(DIScope *S, LineColumn Default) { | 
|  | assert(isa<DILocalScope>(S) && "Expected DILocalScope."); | 
|  |  | 
|  | if (isa<DILexicalBlockFile>(S)) | 
|  | return Default; | 
|  | if (auto *LB = dyn_cast<DILexicalBlock>(S)) | 
|  | return {LB->getLine(), LB->getColumn()}; | 
|  | if (auto *SP = dyn_cast<DISubprogram>(S)) | 
|  | return {SP->getLine(), 0u}; | 
|  |  | 
|  | llvm_unreachable("Unhandled type of DILocalScope."); | 
|  | } | 
|  |  | 
|  | // Returns the nearest matching scope inside a subprogram. | 
|  | template <typename MatcherT> | 
|  | static std::pair<DIScope *, LineColumn> | 
|  | getNearestMatchingScope(const DILocation *L1, const DILocation *L2) { | 
|  | MatcherT Matcher; | 
|  |  | 
|  | DIScope *S1 = L1->getScope(); | 
|  | DIScope *S2 = L2->getScope(); | 
|  |  | 
|  | LineColumn Loc1(L1->getLine(), L1->getColumn()); | 
|  | for (; S1; S1 = S1->getScope()) { | 
|  | Loc1 = getLocalScopeLocationOr(S1, Loc1); | 
|  | Matcher.insert(S1, Loc1); | 
|  | if (isa<DISubprogram>(S1)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | LineColumn Loc2(L2->getLine(), L2->getColumn()); | 
|  | for (; S2; S2 = S2->getScope()) { | 
|  | Loc2 = getLocalScopeLocationOr(S2, Loc2); | 
|  |  | 
|  | if (DIScope *S = Matcher.match(S2, Loc2)) | 
|  | return std::make_pair(S, Loc2); | 
|  |  | 
|  | if (isa<DISubprogram>(S2)) | 
|  | break; | 
|  | } | 
|  | return std::make_pair(nullptr, LineColumn(L2->getLine(), L2->getColumn())); | 
|  | } | 
|  |  | 
|  | // Matches equal scopes. | 
|  | struct EqualScopesMatcher { | 
|  | SmallPtrSet<DIScope *, 8> Scopes; | 
|  |  | 
|  | void insert(DIScope *S, LineColumn Loc) { Scopes.insert(S); } | 
|  |  | 
|  | DIScope *match(DIScope *S, LineColumn Loc) { | 
|  | return Scopes.contains(S) ? S : nullptr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Matches scopes with the same location. | 
|  | struct ScopeLocationsMatcher { | 
|  | SmallMapVector<std::pair<DIFile *, LineColumn>, SmallSetVector<DIScope *, 8>, | 
|  | 8> | 
|  | Scopes; | 
|  |  | 
|  | void insert(DIScope *S, LineColumn Loc) { | 
|  | Scopes[{S->getFile(), Loc}].insert(S); | 
|  | } | 
|  |  | 
|  | DIScope *match(DIScope *S, LineColumn Loc) { | 
|  | auto ScopesAtLoc = Scopes.find({S->getFile(), Loc}); | 
|  | // No scope found with the given location. | 
|  | if (ScopesAtLoc == Scopes.end()) | 
|  | return nullptr; | 
|  |  | 
|  | // Prefer S over other scopes with the same location. | 
|  | if (ScopesAtLoc->second.contains(S)) | 
|  | return S; | 
|  |  | 
|  | if (!ScopesAtLoc->second.empty()) | 
|  | return *ScopesAtLoc->second.begin(); | 
|  |  | 
|  | llvm_unreachable("Scopes must not have empty entries."); | 
|  | } | 
|  | }; | 
|  |  | 
|  | DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) { | 
|  | if (LocA == LocB) | 
|  | return LocA; | 
|  |  | 
|  | // For some use cases (SamplePGO), it is important to retain distinct source | 
|  | // locations. When this flag is set, we choose arbitrarily between A and B, | 
|  | // rather than computing a merged location using line 0, which is typically | 
|  | // not useful for PGO. If one of them is null, then try to return one which is | 
|  | // valid. | 
|  | if (PickMergedSourceLocations) { | 
|  | if (!LocA || !LocB) | 
|  | return LocA ? LocA : LocB; | 
|  |  | 
|  | auto A = std::make_tuple(LocA->getLine(), LocA->getColumn(), | 
|  | LocA->getDiscriminator(), LocA->getFilename(), | 
|  | LocA->getDirectory()); | 
|  | auto B = std::make_tuple(LocB->getLine(), LocB->getColumn(), | 
|  | LocB->getDiscriminator(), LocB->getFilename(), | 
|  | LocB->getDirectory()); | 
|  | return A < B ? LocA : LocB; | 
|  | } | 
|  |  | 
|  | if (!LocA || !LocB) | 
|  | return nullptr; | 
|  |  | 
|  | LLVMContext &C = LocA->getContext(); | 
|  |  | 
|  | using LocVec = SmallVector<const DILocation *>; | 
|  | LocVec ALocs; | 
|  | LocVec BLocs; | 
|  | SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned, | 
|  | 4> | 
|  | ALookup; | 
|  |  | 
|  | // Walk through LocA and its inlined-at locations, populate them in ALocs and | 
|  | // save the index for the subprogram and inlined-at pair, which we use to find | 
|  | // a matching starting location in LocB's chain. | 
|  | for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) { | 
|  | ALocs.push_back(L); | 
|  | auto Res = ALookup.try_emplace( | 
|  | {L->getScope()->getSubprogram(), L->getInlinedAt()}, I); | 
|  | assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?"); | 
|  | (void)Res; | 
|  | } | 
|  |  | 
|  | LocVec::reverse_iterator ARIt = ALocs.rend(); | 
|  | LocVec::reverse_iterator BRIt = BLocs.rend(); | 
|  |  | 
|  | // Populate BLocs and look for a matching starting location, the first | 
|  | // location with the same subprogram and inlined-at location as in LocA's | 
|  | // chain. Since the two locations have the same inlined-at location we do | 
|  | // not need to look at those parts of the chains. | 
|  | for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) { | 
|  | BLocs.push_back(L); | 
|  |  | 
|  | if (ARIt != ALocs.rend()) | 
|  | // We have already found a matching starting location. | 
|  | continue; | 
|  |  | 
|  | auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()}); | 
|  | if (IT == ALookup.end()) | 
|  | continue; | 
|  |  | 
|  | // The + 1 is to account for the &*rev_it = &(it - 1) relationship. | 
|  | ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1); | 
|  | BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1); | 
|  |  | 
|  | // If we have found a matching starting location we do not need to add more | 
|  | // locations to BLocs, since we will only look at location pairs preceding | 
|  | // the matching starting location, and adding more elements to BLocs could | 
|  | // invalidate the iterator that we initialized here. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Merge the two locations if possible, using the supplied | 
|  | // inlined-at location for the created location. | 
|  | auto *LocAIA = LocA->getInlinedAt(); | 
|  | auto *LocBIA = LocB->getInlinedAt(); | 
|  | auto MergeLocPair = [&C, LocAIA, | 
|  | LocBIA](const DILocation *L1, const DILocation *L2, | 
|  | DILocation *InlinedAt) -> DILocation * { | 
|  | if (L1 == L2) | 
|  | return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(), | 
|  | InlinedAt, L1->isImplicitCode(), | 
|  | L1->getAtomGroup(), L1->getAtomRank()); | 
|  |  | 
|  | // If the locations originate from different subprograms we can't produce | 
|  | // a common location. | 
|  | if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram()) | 
|  | return nullptr; | 
|  |  | 
|  | // Find nearest common scope inside subprogram. | 
|  | DIScope *Scope = getNearestMatchingScope<EqualScopesMatcher>(L1, L2).first; | 
|  | assert(Scope && "No common scope in the same subprogram?"); | 
|  |  | 
|  | // Try using the nearest scope with common location if files are different. | 
|  | if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile()) { | 
|  | auto [CommonLocScope, CommonLoc] = | 
|  | getNearestMatchingScope<ScopeLocationsMatcher>(L1, L2); | 
|  |  | 
|  | // If CommonLocScope is a DILexicalBlockBase, clone it and locate | 
|  | // a new scope inside the nearest common scope to preserve | 
|  | // lexical blocks structure. | 
|  | if (auto *LBB = dyn_cast<DILexicalBlockBase>(CommonLocScope); | 
|  | LBB && LBB != Scope) | 
|  | CommonLocScope = cloneAndReplaceParentScope(LBB, Scope); | 
|  |  | 
|  | Scope = CommonLocScope; | 
|  |  | 
|  | // If files are still different, assume that L1 and L2 were "included" | 
|  | // from CommonLoc. Use it as merged location. | 
|  | if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile()) | 
|  | return DILocation::get(C, CommonLoc.first, CommonLoc.second, | 
|  | CommonLocScope, InlinedAt); | 
|  | } | 
|  |  | 
|  | bool SameLine = L1->getLine() == L2->getLine(); | 
|  | bool SameCol = L1->getColumn() == L2->getColumn(); | 
|  | unsigned Line = SameLine ? L1->getLine() : 0; | 
|  | unsigned Col = SameLine && SameCol ? L1->getColumn() : 0; | 
|  | bool IsImplicitCode = L1->isImplicitCode() && L2->isImplicitCode(); | 
|  |  | 
|  | // Discard source location atom if the line becomes 0. And there's nothing | 
|  | // further to do if neither location has an atom number. | 
|  | if (!SameLine || !(L1->getAtomGroup() || L2->getAtomGroup())) | 
|  | return DILocation::get(C, Line, Col, Scope, InlinedAt, IsImplicitCode, | 
|  | /*AtomGroup*/ 0, /*AtomRank*/ 0); | 
|  |  | 
|  | uint64_t Group = 0; | 
|  | uint64_t Rank = 0; | 
|  | // If we're preserving the same matching inlined-at field we can | 
|  | // preserve the atom. | 
|  | if (LocBIA == LocAIA && InlinedAt == LocBIA) { | 
|  | // Deterministically keep the lowest non-zero ranking atom group | 
|  | // number. | 
|  | // FIXME: It would be nice if we could track that an instruction | 
|  | // belongs to two source atoms. | 
|  | bool UseL1Atom = [L1, L2]() { | 
|  | if (L1->getAtomRank() == L2->getAtomRank()) { | 
|  | // Arbitrarily choose the lowest non-zero group number. | 
|  | if (!L1->getAtomGroup() || !L2->getAtomGroup()) | 
|  | return !L2->getAtomGroup(); | 
|  | return L1->getAtomGroup() < L2->getAtomGroup(); | 
|  | } | 
|  | // Choose the lowest non-zero rank. | 
|  | if (!L1->getAtomRank() || !L2->getAtomRank()) | 
|  | return !L2->getAtomRank(); | 
|  | return L1->getAtomRank() < L2->getAtomRank(); | 
|  | }(); | 
|  | Group = UseL1Atom ? L1->getAtomGroup() : L2->getAtomGroup(); | 
|  | Rank = UseL1Atom ? L1->getAtomRank() : L2->getAtomRank(); | 
|  | } else { | 
|  | // If either instruction is part of a source atom, reassign it a new | 
|  | // atom group. This essentially regresses to non-key-instructions | 
|  | // behaviour (now that it's the only instruction in its group it'll | 
|  | // probably get is_stmt applied). | 
|  | Group = C.incNextDILocationAtomGroup(); | 
|  | Rank = 1; | 
|  | } | 
|  | return DILocation::get(C, Line, Col, Scope, InlinedAt, IsImplicitCode, | 
|  | Group, Rank); | 
|  | }; | 
|  |  | 
|  | DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr; | 
|  |  | 
|  | // If we have found a common starting location, walk up the inlined-at chains | 
|  | // and try to produce common locations. | 
|  | for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) { | 
|  | DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result); | 
|  |  | 
|  | if (!Tmp) | 
|  | // We have walked up to a point in the chains where the two locations | 
|  | // are irreconsilable. At this point Result contains the nearest common | 
|  | // location in the inlined-at chains of LocA and LocB, so we break here. | 
|  | break; | 
|  |  | 
|  | Result = Tmp; | 
|  | } | 
|  |  | 
|  | if (Result) | 
|  | return Result; | 
|  |  | 
|  | // We ended up with LocA and LocB as irreconsilable locations. Produce a | 
|  | // location at 0:0 with one of the locations' scope. The function has | 
|  | // historically picked A's scope, and a nullptr inlined-at location, so that | 
|  | // behavior is mimicked here but I am not sure if this is always the correct | 
|  | // way to handle this. | 
|  | // Key Instructions: it's fine to drop atom group and rank here, as line 0 | 
|  | // is a nonsensical is_stmt location. | 
|  | return DILocation::get(C, 0, 0, LocA->getScope(), nullptr, false, | 
|  | /*AtomGroup*/ 0, /*AtomRank*/ 0); | 
|  | } | 
|  |  | 
|  | std::optional<unsigned> | 
|  | DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) { | 
|  | std::array<unsigned, 3> Components = {BD, DF, CI}; | 
|  | uint64_t RemainingWork = 0U; | 
|  | // We use RemainingWork to figure out if we have no remaining components to | 
|  | // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to | 
|  | // encode anything for the latter 2. | 
|  | // Since any of the input components is at most 32 bits, their sum will be | 
|  | // less than 34 bits, and thus RemainingWork won't overflow. | 
|  | RemainingWork = | 
|  | std::accumulate(Components.begin(), Components.end(), RemainingWork); | 
|  |  | 
|  | int I = 0; | 
|  | unsigned Ret = 0; | 
|  | unsigned NextBitInsertionIndex = 0; | 
|  | while (RemainingWork > 0) { | 
|  | unsigned C = Components[I++]; | 
|  | RemainingWork -= C; | 
|  | unsigned EC = encodeComponent(C); | 
|  | Ret |= (EC << NextBitInsertionIndex); | 
|  | NextBitInsertionIndex += encodingBits(C); | 
|  | } | 
|  |  | 
|  | // Encoding may be unsuccessful because of overflow. We determine success by | 
|  | // checking equivalence of components before & after encoding. Alternatively, | 
|  | // we could determine Success during encoding, but the current alternative is | 
|  | // simpler. | 
|  | unsigned TBD, TDF, TCI = 0; | 
|  | decodeDiscriminator(Ret, TBD, TDF, TCI); | 
|  | if (TBD == BD && TDF == DF && TCI == CI) | 
|  | return Ret; | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, | 
|  | unsigned &CI) { | 
|  | BD = getUnsignedFromPrefixEncoding(D); | 
|  | DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D)); | 
|  | CI = getUnsignedFromPrefixEncoding( | 
|  | getNextComponentInDiscriminator(getNextComponentInDiscriminator(D))); | 
|  | } | 
|  | dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; } | 
|  |  | 
|  | DINode::DIFlags DINode::getFlag(StringRef Flag) { | 
|  | return StringSwitch<DIFlags>(Flag) | 
|  | #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME) | 
|  | #include "llvm/IR/DebugInfoFlags.def" | 
|  | .Default(DINode::FlagZero); | 
|  | } | 
|  |  | 
|  | StringRef DINode::getFlagString(DIFlags Flag) { | 
|  | switch (Flag) { | 
|  | #define HANDLE_DI_FLAG(ID, NAME)                                               \ | 
|  | case Flag##NAME:                                                             \ | 
|  | return "DIFlag" #NAME; | 
|  | #include "llvm/IR/DebugInfoFlags.def" | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | DINode::DIFlags DINode::splitFlags(DIFlags Flags, | 
|  | SmallVectorImpl<DIFlags> &SplitFlags) { | 
|  | // Flags that are packed together need to be specially handled, so | 
|  | // that, for example, we emit "DIFlagPublic" and not | 
|  | // "DIFlagPrivate | DIFlagProtected". | 
|  | if (DIFlags A = Flags & FlagAccessibility) { | 
|  | if (A == FlagPrivate) | 
|  | SplitFlags.push_back(FlagPrivate); | 
|  | else if (A == FlagProtected) | 
|  | SplitFlags.push_back(FlagProtected); | 
|  | else | 
|  | SplitFlags.push_back(FlagPublic); | 
|  | Flags &= ~A; | 
|  | } | 
|  | if (DIFlags R = Flags & FlagPtrToMemberRep) { | 
|  | if (R == FlagSingleInheritance) | 
|  | SplitFlags.push_back(FlagSingleInheritance); | 
|  | else if (R == FlagMultipleInheritance) | 
|  | SplitFlags.push_back(FlagMultipleInheritance); | 
|  | else | 
|  | SplitFlags.push_back(FlagVirtualInheritance); | 
|  | Flags &= ~R; | 
|  | } | 
|  | if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) { | 
|  | Flags &= ~FlagIndirectVirtualBase; | 
|  | SplitFlags.push_back(FlagIndirectVirtualBase); | 
|  | } | 
|  |  | 
|  | #define HANDLE_DI_FLAG(ID, NAME)                                               \ | 
|  | if (DIFlags Bit = Flags & Flag##NAME) {                                      \ | 
|  | SplitFlags.push_back(Bit);                                                 \ | 
|  | Flags &= ~Bit;                                                             \ | 
|  | } | 
|  | #include "llvm/IR/DebugInfoFlags.def" | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | DIScope *DIScope::getScope() const { | 
|  | if (auto *T = dyn_cast<DIType>(this)) | 
|  | return T->getScope(); | 
|  |  | 
|  | if (auto *SP = dyn_cast<DISubprogram>(this)) | 
|  | return SP->getScope(); | 
|  |  | 
|  | if (auto *LB = dyn_cast<DILexicalBlockBase>(this)) | 
|  | return LB->getScope(); | 
|  |  | 
|  | if (auto *NS = dyn_cast<DINamespace>(this)) | 
|  | return NS->getScope(); | 
|  |  | 
|  | if (auto *CB = dyn_cast<DICommonBlock>(this)) | 
|  | return CB->getScope(); | 
|  |  | 
|  | if (auto *M = dyn_cast<DIModule>(this)) | 
|  | return M->getScope(); | 
|  |  | 
|  | assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) && | 
|  | "Unhandled type of scope."); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | StringRef DIScope::getName() const { | 
|  | if (auto *T = dyn_cast<DIType>(this)) | 
|  | return T->getName(); | 
|  | if (auto *SP = dyn_cast<DISubprogram>(this)) | 
|  | return SP->getName(); | 
|  | if (auto *NS = dyn_cast<DINamespace>(this)) | 
|  | return NS->getName(); | 
|  | if (auto *CB = dyn_cast<DICommonBlock>(this)) | 
|  | return CB->getName(); | 
|  | if (auto *M = dyn_cast<DIModule>(this)) | 
|  | return M->getName(); | 
|  | assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) || | 
|  | isa<DICompileUnit>(this)) && | 
|  | "Unhandled type of scope."); | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static bool isCanonical(const MDString *S) { | 
|  | return !S || !S->getString().empty(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; } | 
|  | GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag, | 
|  | MDString *Header, | 
|  | ArrayRef<Metadata *> DwarfOps, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | unsigned Hash = 0; | 
|  | if (Storage == Uniqued) { | 
|  | GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps); | 
|  | if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key)) | 
|  | return N; | 
|  | if (!ShouldCreate) | 
|  | return nullptr; | 
|  | Hash = Key.getHash(); | 
|  | } else { | 
|  | assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); | 
|  | } | 
|  |  | 
|  | // Use a nullptr for empty headers. | 
|  | assert(isCanonical(Header) && "Expected canonical MDString"); | 
|  | Metadata *PreOps[] = {Header}; | 
|  | return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode( | 
|  | Context, Storage, Hash, Tag, PreOps, DwarfOps), | 
|  | Storage, Context.pImpl->GenericDINodes); | 
|  | } | 
|  |  | 
|  | void GenericDINode::recalculateHash() { | 
|  | setHash(GenericDINodeInfo::KeyTy::calculateHash(this)); | 
|  | } | 
|  |  | 
|  | #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__ | 
|  | #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS | 
|  | #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS)                                     \ | 
|  | do {                                                                         \ | 
|  | if (Storage == Uniqued) {                                                  \ | 
|  | if (auto *N = getUniqued(Context.pImpl->CLASS##s,                        \ | 
|  | CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS))))         \ | 
|  | return N;                                                              \ | 
|  | if (!ShouldCreate)                                                       \ | 
|  | return nullptr;                                                        \ | 
|  | } else {                                                                   \ | 
|  | assert(ShouldCreate &&                                                   \ | 
|  | "Expected non-uniqued nodes to always be created");               \ | 
|  | }                                                                          \ | 
|  | } while (false) | 
|  | #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS)                                 \ | 
|  | return storeImpl(new (std::size(OPS), Storage)                               \ | 
|  | CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \ | 
|  | Storage, Context.pImpl->CLASS##s) | 
|  | #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS)                               \ | 
|  | return storeImpl(new (0u, Storage)                                           \ | 
|  | CLASS(Context, Storage, UNWRAP_ARGS(ARGS)),             \ | 
|  | Storage, Context.pImpl->CLASS##s) | 
|  | #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS)                   \ | 
|  | return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \ | 
|  | Storage, Context.pImpl->CLASS##s) | 
|  | #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS)                      \ | 
|  | return storeImpl(new (NUM_OPS, Storage)                                      \ | 
|  | CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS),        \ | 
|  | Storage, Context.pImpl->CLASS##s) | 
|  |  | 
|  | DISubrange::DISubrange(LLVMContext &C, StorageType Storage, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {} | 
|  | DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | auto *CountNode = ConstantAsMetadata::get( | 
|  | ConstantInt::getSigned(Type::getInt64Ty(Context), Count)); | 
|  | auto *LB = ConstantAsMetadata::get( | 
|  | ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); | 
|  | return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, | 
|  | ShouldCreate); | 
|  | } | 
|  |  | 
|  | DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, | 
|  | int64_t Lo, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | auto *LB = ConstantAsMetadata::get( | 
|  | ConstantInt::getSigned(Type::getInt64Ty(Context), Lo)); | 
|  | return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage, | 
|  | ShouldCreate); | 
|  | } | 
|  |  | 
|  | DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode, | 
|  | Metadata *LB, Metadata *UB, Metadata *Stride, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride)); | 
|  | Metadata *Ops[] = {CountNode, LB, UB, Stride}; | 
|  | DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops); | 
|  | } | 
|  |  | 
|  | DISubrange::BoundType DISubrange::getCount() const { | 
|  | Metadata *CB = getRawCountNode(); | 
|  | if (!CB) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) || | 
|  | isa<DIExpression>(CB)) && | 
|  | "Count must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<ConstantAsMetadata>(CB)) | 
|  | return BoundType(cast<ConstantInt>(MD->getValue())); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(CB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(CB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DISubrange::BoundType DISubrange::getLowerBound() const { | 
|  | Metadata *LB = getRawLowerBound(); | 
|  | if (!LB) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) || | 
|  | isa<DIExpression>(LB)) && | 
|  | "LowerBound must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<ConstantAsMetadata>(LB)) | 
|  | return BoundType(cast<ConstantInt>(MD->getValue())); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(LB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(LB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DISubrange::BoundType DISubrange::getUpperBound() const { | 
|  | Metadata *UB = getRawUpperBound(); | 
|  | if (!UB) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) || | 
|  | isa<DIExpression>(UB)) && | 
|  | "UpperBound must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<ConstantAsMetadata>(UB)) | 
|  | return BoundType(cast<ConstantInt>(MD->getValue())); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(UB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(UB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DISubrange::BoundType DISubrange::getStride() const { | 
|  | Metadata *ST = getRawStride(); | 
|  | if (!ST) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) || | 
|  | isa<DIExpression>(ST)) && | 
|  | "Stride must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<ConstantAsMetadata>(ST)) | 
|  | return BoundType(cast<ConstantInt>(MD->getValue())); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(ST)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(ST)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  | DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange, | 
|  | Ops) {} | 
|  |  | 
|  | DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context, | 
|  | Metadata *CountNode, Metadata *LB, | 
|  | Metadata *UB, Metadata *Stride, | 
|  | StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride)); | 
|  | Metadata *Ops[] = {CountNode, LB, UB, Stride}; | 
|  | DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops); | 
|  | } | 
|  |  | 
|  | DIGenericSubrange::BoundType DIGenericSubrange::getCount() const { | 
|  | Metadata *CB = getRawCountNode(); | 
|  | if (!CB) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) && | 
|  | "Count must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(CB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(CB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const { | 
|  | Metadata *LB = getRawLowerBound(); | 
|  | if (!LB) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) && | 
|  | "LowerBound must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(LB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(LB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const { | 
|  | Metadata *UB = getRawUpperBound(); | 
|  | if (!UB) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) && | 
|  | "UpperBound must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(UB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(UB)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DIGenericSubrange::BoundType DIGenericSubrange::getStride() const { | 
|  | Metadata *ST = getRawStride(); | 
|  | if (!ST) | 
|  | return BoundType(); | 
|  |  | 
|  | assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) && | 
|  | "Stride must be signed constant or DIVariable or DIExpression"); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(ST)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(ST)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DISubrangeType::DISubrangeType(LLVMContext &C, StorageType Storage, | 
|  | unsigned Line, uint32_t AlignInBits, | 
|  | DIFlags Flags, ArrayRef<Metadata *> Ops) | 
|  | : DIType(C, DISubrangeTypeKind, Storage, dwarf::DW_TAG_subrange_type, Line, | 
|  | AlignInBits, 0, Flags, Ops) {} | 
|  |  | 
|  | DISubrangeType *DISubrangeType::getImpl( | 
|  | LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, | 
|  | Metadata *Scope, Metadata *SizeInBits, uint32_t AlignInBits, DIFlags Flags, | 
|  | Metadata *BaseType, Metadata *LowerBound, Metadata *UpperBound, | 
|  | Metadata *Stride, Metadata *Bias, StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DISubrangeType, (Name, File, Line, Scope, SizeInBits, | 
|  | AlignInBits, Flags, BaseType, | 
|  | LowerBound, UpperBound, Stride, Bias)); | 
|  | Metadata *Ops[] = {File,     Scope,      Name,       SizeInBits, nullptr, | 
|  | BaseType, LowerBound, UpperBound, Stride,     Bias}; | 
|  | DEFINE_GETIMPL_STORE(DISubrangeType, (Line, AlignInBits, Flags), Ops); | 
|  | } | 
|  |  | 
|  | DISubrangeType::BoundType | 
|  | DISubrangeType::convertRawToBound(Metadata *IN) const { | 
|  | if (!IN) | 
|  | return BoundType(); | 
|  |  | 
|  | assert(isa<ConstantAsMetadata>(IN) || isa<DIVariable>(IN) || | 
|  | isa<DIExpression>(IN)); | 
|  |  | 
|  | if (auto *MD = dyn_cast<ConstantAsMetadata>(IN)) | 
|  | return BoundType(cast<ConstantInt>(MD->getValue())); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIVariable>(IN)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | if (auto *MD = dyn_cast<DIExpression>(IN)) | 
|  | return BoundType(MD); | 
|  |  | 
|  | return BoundType(); | 
|  | } | 
|  |  | 
|  | DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage, | 
|  | const APInt &Value, bool IsUnsigned, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops), | 
|  | Value(Value) { | 
|  | SubclassData32 = IsUnsigned; | 
|  | } | 
|  | DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value, | 
|  | bool IsUnsigned, MDString *Name, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name)); | 
|  | Metadata *Ops[] = {Name}; | 
|  | DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops); | 
|  | } | 
|  |  | 
|  | DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag, | 
|  | MDString *Name, Metadata *SizeInBits, | 
|  | uint32_t AlignInBits, unsigned Encoding, | 
|  | uint32_t NumExtraInhabitants, DIFlags Flags, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIBasicType, (Tag, Name, SizeInBits, AlignInBits, | 
|  | Encoding, NumExtraInhabitants, Flags)); | 
|  | Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr}; | 
|  | DEFINE_GETIMPL_STORE(DIBasicType, | 
|  | (Tag, AlignInBits, Encoding, NumExtraInhabitants, Flags), | 
|  | Ops); | 
|  | } | 
|  |  | 
|  | std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const { | 
|  | switch (getEncoding()) { | 
|  | case dwarf::DW_ATE_signed: | 
|  | case dwarf::DW_ATE_signed_char: | 
|  | case dwarf::DW_ATE_signed_fixed: | 
|  | return Signedness::Signed; | 
|  | case dwarf::DW_ATE_unsigned: | 
|  | case dwarf::DW_ATE_unsigned_char: | 
|  | case dwarf::DW_ATE_unsigned_fixed: | 
|  | return Signedness::Unsigned; | 
|  | default: | 
|  | return std::nullopt; | 
|  | } | 
|  | } | 
|  |  | 
|  | DIFixedPointType * | 
|  | DIFixedPointType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name, | 
|  | Metadata *SizeInBits, uint32_t AlignInBits, | 
|  | unsigned Encoding, DIFlags Flags, unsigned Kind, | 
|  | int Factor, APInt Numerator, APInt Denominator, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | DEFINE_GETIMPL_LOOKUP(DIFixedPointType, | 
|  | (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags, | 
|  | Kind, Factor, Numerator, Denominator)); | 
|  | Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr}; | 
|  | DEFINE_GETIMPL_STORE( | 
|  | DIFixedPointType, | 
|  | (Tag, AlignInBits, Encoding, Flags, Kind, Factor, Numerator, Denominator), | 
|  | Ops); | 
|  | } | 
|  |  | 
|  | bool DIFixedPointType::isSigned() const { | 
|  | return getEncoding() == dwarf::DW_ATE_signed_fixed; | 
|  | } | 
|  |  | 
|  | std::optional<DIFixedPointType::FixedPointKind> | 
|  | DIFixedPointType::getFixedPointKind(StringRef Str) { | 
|  | return StringSwitch<std::optional<FixedPointKind>>(Str) | 
|  | .Case("Binary", FixedPointBinary) | 
|  | .Case("Decimal", FixedPointDecimal) | 
|  | .Case("Rational", FixedPointRational) | 
|  | .Default(std::nullopt); | 
|  | } | 
|  |  | 
|  | const char *DIFixedPointType::fixedPointKindString(FixedPointKind V) { | 
|  | switch (V) { | 
|  | case FixedPointBinary: | 
|  | return "Binary"; | 
|  | case FixedPointDecimal: | 
|  | return "Decimal"; | 
|  | case FixedPointRational: | 
|  | return "Rational"; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag, | 
|  | MDString *Name, Metadata *StringLength, | 
|  | Metadata *StringLengthExp, | 
|  | Metadata *StringLocationExp, | 
|  | Metadata *SizeInBits, uint32_t AlignInBits, | 
|  | unsigned Encoding, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIStringType, | 
|  | (Tag, Name, StringLength, StringLengthExp, | 
|  | StringLocationExp, SizeInBits, AlignInBits, Encoding)); | 
|  | Metadata *Ops[] = {nullptr,         nullptr,          Name, | 
|  | SizeInBits,      nullptr,          StringLength, | 
|  | StringLengthExp, StringLocationExp}; | 
|  | DEFINE_GETIMPL_STORE(DIStringType, (Tag, AlignInBits, Encoding), Ops); | 
|  | } | 
|  | DIType *DIDerivedType::getClassType() const { | 
|  | assert(getTag() == dwarf::DW_TAG_ptr_to_member_type); | 
|  | return cast_or_null<DIType>(getExtraData()); | 
|  | } | 
|  | uint32_t DIDerivedType::getVBPtrOffset() const { | 
|  | assert(getTag() == dwarf::DW_TAG_inheritance); | 
|  | if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData())) | 
|  | if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue())) | 
|  | return static_cast<uint32_t>(CI->getZExtValue()); | 
|  | return 0; | 
|  | } | 
|  | Constant *DIDerivedType::getStorageOffsetInBits() const { | 
|  | assert(getTag() == dwarf::DW_TAG_member && isBitField()); | 
|  | if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) | 
|  | return C->getValue(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *DIDerivedType::getConstant() const { | 
|  | assert((getTag() == dwarf::DW_TAG_member || | 
|  | getTag() == dwarf::DW_TAG_variable) && | 
|  | isStaticMember()); | 
|  | if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) | 
|  | return C->getValue(); | 
|  | return nullptr; | 
|  | } | 
|  | Constant *DIDerivedType::getDiscriminantValue() const { | 
|  | assert(getTag() == dwarf::DW_TAG_member && !isStaticMember()); | 
|  | if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData())) | 
|  | return C->getValue(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | DIDerivedType *DIDerivedType::getImpl( | 
|  | LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, | 
|  | unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits, | 
|  | uint32_t AlignInBits, Metadata *OffsetInBits, | 
|  | std::optional<unsigned> DWARFAddressSpace, | 
|  | std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData, | 
|  | Metadata *Annotations, StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIDerivedType, | 
|  | (Tag, Name, File, Line, Scope, BaseType, SizeInBits, | 
|  | AlignInBits, OffsetInBits, DWARFAddressSpace, | 
|  | PtrAuthData, Flags, ExtraData, Annotations)); | 
|  | Metadata *Ops[] = {File,         Scope,    Name,      SizeInBits, | 
|  | OffsetInBits, BaseType, ExtraData, Annotations}; | 
|  | DEFINE_GETIMPL_STORE( | 
|  | DIDerivedType, | 
|  | (Tag, Line, AlignInBits, DWARFAddressSpace, PtrAuthData, Flags), Ops); | 
|  | } | 
|  |  | 
|  | std::optional<DIDerivedType::PtrAuthData> | 
|  | DIDerivedType::getPtrAuthData() const { | 
|  | return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type | 
|  | ? std::make_optional<PtrAuthData>(SubclassData32) | 
|  | : std::nullopt; | 
|  | } | 
|  |  | 
|  | DICompositeType *DICompositeType::getImpl( | 
|  | LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File, | 
|  | unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits, | 
|  | uint32_t AlignInBits, Metadata *OffsetInBits, DIFlags Flags, | 
|  | Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind, | 
|  | Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier, | 
|  | Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, | 
|  | Metadata *Allocated, Metadata *Rank, Metadata *Annotations, | 
|  | Metadata *Specification, uint32_t NumExtraInhabitants, Metadata *BitStride, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  |  | 
|  | // Keep this in sync with buildODRType. | 
|  | DEFINE_GETIMPL_LOOKUP( | 
|  | DICompositeType, | 
|  | (Tag, Name, File, Line, Scope, BaseType, SizeInBits, AlignInBits, | 
|  | OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder, TemplateParams, | 
|  | Identifier, Discriminator, DataLocation, Associated, Allocated, Rank, | 
|  | Annotations, Specification, NumExtraInhabitants, BitStride)); | 
|  | Metadata *Ops[] = {File,           Scope,      Name,          SizeInBits, | 
|  | OffsetInBits,   BaseType,   Elements,      VTableHolder, | 
|  | TemplateParams, Identifier, Discriminator, DataLocation, | 
|  | Associated,     Allocated,  Rank,          Annotations, | 
|  | Specification,  BitStride}; | 
|  | DEFINE_GETIMPL_STORE(DICompositeType, | 
|  | (Tag, Line, RuntimeLang, AlignInBits, | 
|  | NumExtraInhabitants, EnumKind, Flags), | 
|  | Ops); | 
|  | } | 
|  |  | 
|  | DICompositeType *DICompositeType::buildODRType( | 
|  | LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, | 
|  | Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, | 
|  | Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits, | 
|  | Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags, | 
|  | Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind, | 
|  | Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, | 
|  | Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, | 
|  | Metadata *Rank, Metadata *Annotations, Metadata *BitStride) { | 
|  | assert(!Identifier.getString().empty() && "Expected valid identifier"); | 
|  | if (!Context.isODRUniquingDebugTypes()) | 
|  | return nullptr; | 
|  | auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; | 
|  | if (!CT) | 
|  | return CT = DICompositeType::getDistinct( | 
|  | Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, | 
|  | AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, | 
|  | EnumKind, VTableHolder, TemplateParams, &Identifier, | 
|  | Discriminator, DataLocation, Associated, Allocated, Rank, | 
|  | Annotations, Specification, NumExtraInhabitants, BitStride); | 
|  | if (CT->getTag() != Tag) | 
|  | return nullptr; | 
|  |  | 
|  | // Only mutate CT if it's a forward declaration and the new operands aren't. | 
|  | assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?"); | 
|  | if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl)) | 
|  | return CT; | 
|  |  | 
|  | // Mutate CT in place.  Keep this in sync with getImpl. | 
|  | CT->mutate(Tag, Line, RuntimeLang, AlignInBits, NumExtraInhabitants, EnumKind, | 
|  | Flags); | 
|  | Metadata *Ops[] = {File,           Scope,       Name,          SizeInBits, | 
|  | OffsetInBits,   BaseType,    Elements,      VTableHolder, | 
|  | TemplateParams, &Identifier, Discriminator, DataLocation, | 
|  | Associated,     Allocated,   Rank,          Annotations, | 
|  | Specification,  BitStride}; | 
|  | assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() && | 
|  | "Mismatched number of operands"); | 
|  | for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I) | 
|  | if (Ops[I] != CT->getOperand(I)) | 
|  | CT->setOperand(I, Ops[I]); | 
|  | return CT; | 
|  | } | 
|  |  | 
|  | DICompositeType *DICompositeType::getODRType( | 
|  | LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, | 
|  | Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, | 
|  | Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits, | 
|  | Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags, | 
|  | Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind, | 
|  | Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, | 
|  | Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, | 
|  | Metadata *Rank, Metadata *Annotations, Metadata *BitStride) { | 
|  | assert(!Identifier.getString().empty() && "Expected valid identifier"); | 
|  | if (!Context.isODRUniquingDebugTypes()) | 
|  | return nullptr; | 
|  | auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier]; | 
|  | if (!CT) { | 
|  | CT = DICompositeType::getDistinct( | 
|  | Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits, | 
|  | AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, EnumKind, | 
|  | VTableHolder, TemplateParams, &Identifier, Discriminator, DataLocation, | 
|  | Associated, Allocated, Rank, Annotations, Specification, | 
|  | NumExtraInhabitants, BitStride); | 
|  | } else { | 
|  | if (CT->getTag() != Tag) | 
|  | return nullptr; | 
|  | } | 
|  | return CT; | 
|  | } | 
|  |  | 
|  | DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context, | 
|  | MDString &Identifier) { | 
|  | assert(!Identifier.getString().empty() && "Expected valid identifier"); | 
|  | if (!Context.isODRUniquingDebugTypes()) | 
|  | return nullptr; | 
|  | return Context.pImpl->DITypeMap->lookup(&Identifier); | 
|  | } | 
|  | DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage, | 
|  | DIFlags Flags, uint8_t CC, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0, | 
|  | 0, 0, Flags, Ops), | 
|  | CC(CC) {} | 
|  |  | 
|  | DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags, | 
|  | uint8_t CC, Metadata *TypeArray, | 
|  | StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray)); | 
|  | Metadata *Ops[] = {nullptr, nullptr, nullptr, nullptr, nullptr, TypeArray}; | 
|  | DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops); | 
|  | } | 
|  |  | 
|  | DIFile::DIFile(LLVMContext &C, StorageType Storage, | 
|  | std::optional<ChecksumInfo<MDString *>> CS, MDString *Src, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops), | 
|  | Checksum(CS), Source(Src) {} | 
|  |  | 
|  | // FIXME: Implement this string-enum correspondence with a .def file and macros, | 
|  | // so that the association is explicit rather than implied. | 
|  | static const char *ChecksumKindName[DIFile::CSK_Last] = { | 
|  | "CSK_MD5", | 
|  | "CSK_SHA1", | 
|  | "CSK_SHA256", | 
|  | }; | 
|  |  | 
|  | StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) { | 
|  | assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind"); | 
|  | // The first space was originally the CSK_None variant, which is now | 
|  | // obsolete, but the space is still reserved in ChecksumKind, so we account | 
|  | // for it here. | 
|  | return ChecksumKindName[CSKind - 1]; | 
|  | } | 
|  |  | 
|  | std::optional<DIFile::ChecksumKind> | 
|  | DIFile::getChecksumKind(StringRef CSKindStr) { | 
|  | return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr) | 
|  | .Case("CSK_MD5", DIFile::CSK_MD5) | 
|  | .Case("CSK_SHA1", DIFile::CSK_SHA1) | 
|  | .Case("CSK_SHA256", DIFile::CSK_SHA256) | 
|  | .Default(std::nullopt); | 
|  | } | 
|  |  | 
|  | DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename, | 
|  | MDString *Directory, | 
|  | std::optional<DIFile::ChecksumInfo<MDString *>> CS, | 
|  | MDString *Source, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | assert(isCanonical(Filename) && "Expected canonical MDString"); | 
|  | assert(isCanonical(Directory) && "Expected canonical MDString"); | 
|  | assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString"); | 
|  | // We do *NOT* expect Source to be a canonical MDString because nullptr | 
|  | // means none, so we need something to represent the empty file. | 
|  | DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source)); | 
|  | Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source}; | 
|  | DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops); | 
|  | } | 
|  | DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage, | 
|  | unsigned SourceLanguage, bool IsOptimized, | 
|  | unsigned RuntimeVersion, unsigned EmissionKind, | 
|  | uint64_t DWOId, bool SplitDebugInlining, | 
|  | bool DebugInfoForProfiling, unsigned NameTableKind, | 
|  | bool RangesBaseAddress, ArrayRef<Metadata *> Ops) | 
|  | : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops), | 
|  | SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion), | 
|  | DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind), | 
|  | IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining), | 
|  | DebugInfoForProfiling(DebugInfoForProfiling), | 
|  | RangesBaseAddress(RangesBaseAddress) { | 
|  | assert(Storage != Uniqued); | 
|  | } | 
|  |  | 
|  | DICompileUnit *DICompileUnit::getImpl( | 
|  | LLVMContext &Context, unsigned SourceLanguage, Metadata *File, | 
|  | MDString *Producer, bool IsOptimized, MDString *Flags, | 
|  | unsigned RuntimeVersion, MDString *SplitDebugFilename, | 
|  | unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes, | 
|  | Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros, | 
|  | uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling, | 
|  | unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot, | 
|  | MDString *SDK, StorageType Storage, bool ShouldCreate) { | 
|  | assert(Storage != Uniqued && "Cannot unique DICompileUnit"); | 
|  | assert(isCanonical(Producer) && "Expected canonical MDString"); | 
|  | assert(isCanonical(Flags) && "Expected canonical MDString"); | 
|  | assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString"); | 
|  |  | 
|  | Metadata *Ops[] = {File, | 
|  | Producer, | 
|  | Flags, | 
|  | SplitDebugFilename, | 
|  | EnumTypes, | 
|  | RetainedTypes, | 
|  | GlobalVariables, | 
|  | ImportedEntities, | 
|  | Macros, | 
|  | SysRoot, | 
|  | SDK}; | 
|  | return storeImpl(new (std::size(Ops), Storage) DICompileUnit( | 
|  | Context, Storage, SourceLanguage, IsOptimized, | 
|  | RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining, | 
|  | DebugInfoForProfiling, NameTableKind, RangesBaseAddress, | 
|  | Ops), | 
|  | Storage); | 
|  | } | 
|  |  | 
|  | std::optional<DICompileUnit::DebugEmissionKind> | 
|  | DICompileUnit::getEmissionKind(StringRef Str) { | 
|  | return StringSwitch<std::optional<DebugEmissionKind>>(Str) | 
|  | .Case("NoDebug", NoDebug) | 
|  | .Case("FullDebug", FullDebug) | 
|  | .Case("LineTablesOnly", LineTablesOnly) | 
|  | .Case("DebugDirectivesOnly", DebugDirectivesOnly) | 
|  | .Default(std::nullopt); | 
|  | } | 
|  |  | 
|  | std::optional<DICompileUnit::DebugNameTableKind> | 
|  | DICompileUnit::getNameTableKind(StringRef Str) { | 
|  | return StringSwitch<std::optional<DebugNameTableKind>>(Str) | 
|  | .Case("Default", DebugNameTableKind::Default) | 
|  | .Case("GNU", DebugNameTableKind::GNU) | 
|  | .Case("Apple", DebugNameTableKind::Apple) | 
|  | .Case("None", DebugNameTableKind::None) | 
|  | .Default(std::nullopt); | 
|  | } | 
|  |  | 
|  | const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) { | 
|  | switch (EK) { | 
|  | case NoDebug: | 
|  | return "NoDebug"; | 
|  | case FullDebug: | 
|  | return "FullDebug"; | 
|  | case LineTablesOnly: | 
|  | return "LineTablesOnly"; | 
|  | case DebugDirectivesOnly: | 
|  | return "DebugDirectivesOnly"; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) { | 
|  | switch (NTK) { | 
|  | case DebugNameTableKind::Default: | 
|  | return nullptr; | 
|  | case DebugNameTableKind::GNU: | 
|  | return "GNU"; | 
|  | case DebugNameTableKind::Apple: | 
|  | return "Apple"; | 
|  | case DebugNameTableKind::None: | 
|  | return "None"; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line, | 
|  | unsigned ScopeLine, unsigned VirtualIndex, | 
|  | int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, | 
|  | bool UsesKeyInstructions, ArrayRef<Metadata *> Ops) | 
|  | : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops), | 
|  | Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex), | 
|  | ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) { | 
|  | static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range"); | 
|  | SubclassData1 = UsesKeyInstructions; | 
|  | } | 
|  | DISubprogram::DISPFlags | 
|  | DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, | 
|  | unsigned Virtuality, bool IsMainSubprogram) { | 
|  | // We're assuming virtuality is the low-order field. | 
|  | static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) && | 
|  | int(SPFlagPureVirtual) == | 
|  | int(dwarf::DW_VIRTUALITY_pure_virtual), | 
|  | "Virtuality constant mismatch"); | 
|  | return static_cast<DISPFlags>( | 
|  | (Virtuality & SPFlagVirtuality) | | 
|  | (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) | | 
|  | (IsDefinition ? SPFlagDefinition : SPFlagZero) | | 
|  | (IsOptimized ? SPFlagOptimized : SPFlagZero) | | 
|  | (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero)); | 
|  | } | 
|  |  | 
|  | DISubprogram *DILocalScope::getSubprogram() const { | 
|  | if (auto *Block = dyn_cast<DILexicalBlockBase>(this)) | 
|  | return Block->getScope()->getSubprogram(); | 
|  | return const_cast<DISubprogram *>(cast<DISubprogram>(this)); | 
|  | } | 
|  |  | 
|  | DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const { | 
|  | if (auto *File = dyn_cast<DILexicalBlockFile>(this)) | 
|  | return File->getScope()->getNonLexicalBlockFileScope(); | 
|  | return const_cast<DILocalScope *>(this); | 
|  | } | 
|  |  | 
|  | DILocalScope *DILocalScope::cloneScopeForSubprogram( | 
|  | DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, | 
|  | DenseMap<const MDNode *, MDNode *> &Cache) { | 
|  | SmallVector<DIScope *> ScopeChain; | 
|  | DIScope *CachedResult = nullptr; | 
|  |  | 
|  | for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope); | 
|  | Scope = Scope->getScope()) { | 
|  | if (auto It = Cache.find(Scope); It != Cache.end()) { | 
|  | CachedResult = cast<DIScope>(It->second); | 
|  | break; | 
|  | } | 
|  | ScopeChain.push_back(Scope); | 
|  | } | 
|  |  | 
|  | // Recreate the scope chain, bottom-up, starting at the new subprogram (or a | 
|  | // cached result). | 
|  | DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP; | 
|  | for (DIScope *ScopeToUpdate : reverse(ScopeChain)) { | 
|  | UpdatedScope = cloneAndReplaceParentScope( | 
|  | cast<DILexicalBlockBase>(ScopeToUpdate), UpdatedScope); | 
|  | Cache[ScopeToUpdate] = UpdatedScope; | 
|  | } | 
|  |  | 
|  | return cast<DILocalScope>(UpdatedScope); | 
|  | } | 
|  |  | 
|  | DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) { | 
|  | return StringSwitch<DISPFlags>(Flag) | 
|  | #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME) | 
|  | #include "llvm/IR/DebugInfoFlags.def" | 
|  | .Default(SPFlagZero); | 
|  | } | 
|  |  | 
|  | StringRef DISubprogram::getFlagString(DISPFlags Flag) { | 
|  | switch (Flag) { | 
|  | // Appease a warning. | 
|  | case SPFlagVirtuality: | 
|  | return ""; | 
|  | #define HANDLE_DISP_FLAG(ID, NAME)                                             \ | 
|  | case SPFlag##NAME:                                                           \ | 
|  | return "DISPFlag" #NAME; | 
|  | #include "llvm/IR/DebugInfoFlags.def" | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | DISubprogram::DISPFlags | 
|  | DISubprogram::splitFlags(DISPFlags Flags, | 
|  | SmallVectorImpl<DISPFlags> &SplitFlags) { | 
|  | // Multi-bit fields can require special handling. In our case, however, the | 
|  | // only multi-bit field is virtuality, and all its values happen to be | 
|  | // single-bit values, so the right behavior just falls out. | 
|  | #define HANDLE_DISP_FLAG(ID, NAME)                                             \ | 
|  | if (DISPFlags Bit = Flags & SPFlag##NAME) {                                  \ | 
|  | SplitFlags.push_back(Bit);                                                 \ | 
|  | Flags &= ~Bit;                                                             \ | 
|  | } | 
|  | #include "llvm/IR/DebugInfoFlags.def" | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | DISubprogram *DISubprogram::getImpl( | 
|  | LLVMContext &Context, Metadata *Scope, MDString *Name, | 
|  | MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type, | 
|  | unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex, | 
|  | int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit, | 
|  | Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes, | 
|  | Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName, | 
|  | bool UsesKeyInstructions, StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | assert(isCanonical(LinkageName) && "Expected canonical MDString"); | 
|  | assert(isCanonical(TargetFuncName) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DISubprogram, | 
|  | (Scope, Name, LinkageName, File, Line, Type, ScopeLine, | 
|  | ContainingType, VirtualIndex, ThisAdjustment, Flags, | 
|  | SPFlags, Unit, TemplateParams, Declaration, | 
|  | RetainedNodes, ThrownTypes, Annotations, | 
|  | TargetFuncName, UsesKeyInstructions)); | 
|  | SmallVector<Metadata *, 13> Ops = { | 
|  | File,           Scope,          Name,        LinkageName, | 
|  | Type,           Unit,           Declaration, RetainedNodes, | 
|  | ContainingType, TemplateParams, ThrownTypes, Annotations, | 
|  | TargetFuncName}; | 
|  | if (!TargetFuncName) { | 
|  | Ops.pop_back(); | 
|  | if (!Annotations) { | 
|  | Ops.pop_back(); | 
|  | if (!ThrownTypes) { | 
|  | Ops.pop_back(); | 
|  | if (!TemplateParams) { | 
|  | Ops.pop_back(); | 
|  | if (!ContainingType) | 
|  | Ops.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | DEFINE_GETIMPL_STORE_N(DISubprogram, | 
|  | (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, | 
|  | SPFlags, UsesKeyInstructions), | 
|  | Ops, Ops.size()); | 
|  | } | 
|  |  | 
|  | bool DISubprogram::describes(const Function *F) const { | 
|  | assert(F && "Invalid function"); | 
|  | return F->getSubprogram() == this; | 
|  | } | 
|  | DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID, | 
|  | StorageType Storage, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {} | 
|  |  | 
|  | DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope, | 
|  | Metadata *File, unsigned Line, | 
|  | unsigned Column, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | // Fixup column. | 
|  | adjustColumn(Column); | 
|  |  | 
|  | assert(Scope && "Expected scope"); | 
|  | DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column)); | 
|  | Metadata *Ops[] = {File, Scope}; | 
|  | DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops); | 
|  | } | 
|  |  | 
|  | DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context, | 
|  | Metadata *Scope, Metadata *File, | 
|  | unsigned Discriminator, | 
|  | StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | assert(Scope && "Expected scope"); | 
|  | DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator)); | 
|  | Metadata *Ops[] = {File, Scope}; | 
|  | DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops); | 
|  | } | 
|  |  | 
|  | DINamespace::DINamespace(LLVMContext &Context, StorageType Storage, | 
|  | bool ExportSymbols, ArrayRef<Metadata *> Ops) | 
|  | : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) { | 
|  | SubclassData1 = ExportSymbols; | 
|  | } | 
|  | DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope, | 
|  | MDString *Name, bool ExportSymbols, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols)); | 
|  | // The nullptr is for DIScope's File operand. This should be refactored. | 
|  | Metadata *Ops[] = {nullptr, Scope, Name}; | 
|  | DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops); | 
|  | } | 
|  |  | 
|  | DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage, | 
|  | unsigned LineNo, ArrayRef<Metadata *> Ops) | 
|  | : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block, | 
|  | Ops) { | 
|  | SubclassData32 = LineNo; | 
|  | } | 
|  | DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope, | 
|  | Metadata *Decl, MDString *Name, | 
|  | Metadata *File, unsigned LineNo, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo)); | 
|  | // The nullptr is for DIScope's File operand. This should be refactored. | 
|  | Metadata *Ops[] = {Scope, Decl, Name, File}; | 
|  | DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops); | 
|  | } | 
|  |  | 
|  | DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo, | 
|  | bool IsDecl, ArrayRef<Metadata *> Ops) | 
|  | : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) { | 
|  | SubclassData1 = IsDecl; | 
|  | SubclassData32 = LineNo; | 
|  | } | 
|  | DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File, | 
|  | Metadata *Scope, MDString *Name, | 
|  | MDString *ConfigurationMacros, | 
|  | MDString *IncludePath, MDString *APINotesFile, | 
|  | unsigned LineNo, bool IsDecl, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros, | 
|  | IncludePath, APINotesFile, LineNo, IsDecl)); | 
|  | Metadata *Ops[] = {File,        Scope,       Name, ConfigurationMacros, | 
|  | IncludePath, APINotesFile}; | 
|  | DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops); | 
|  | } | 
|  | DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context, | 
|  | StorageType Storage, | 
|  | bool IsDefault, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage, | 
|  | dwarf::DW_TAG_template_type_parameter, IsDefault, | 
|  | Ops) {} | 
|  |  | 
|  | DITemplateTypeParameter * | 
|  | DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name, | 
|  | Metadata *Type, bool isDefault, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault)); | 
|  | Metadata *Ops[] = {Name, Type}; | 
|  | DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops); | 
|  | } | 
|  |  | 
|  | DITemplateValueParameter *DITemplateValueParameter::getImpl( | 
|  | LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type, | 
|  | bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter, | 
|  | (Tag, Name, Type, isDefault, Value)); | 
|  | Metadata *Ops[] = {Name, Type, Value}; | 
|  | DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops); | 
|  | } | 
|  |  | 
|  | DIGlobalVariable * | 
|  | DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, | 
|  | MDString *LinkageName, Metadata *File, unsigned Line, | 
|  | Metadata *Type, bool IsLocalToUnit, bool IsDefinition, | 
|  | Metadata *StaticDataMemberDeclaration, | 
|  | Metadata *TemplateParams, uint32_t AlignInBits, | 
|  | Metadata *Annotations, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | assert(isCanonical(LinkageName) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP( | 
|  | DIGlobalVariable, | 
|  | (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition, | 
|  | StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations)); | 
|  | Metadata *Ops[] = {Scope, | 
|  | Name, | 
|  | File, | 
|  | Type, | 
|  | Name, | 
|  | LinkageName, | 
|  | StaticDataMemberDeclaration, | 
|  | TemplateParams, | 
|  | Annotations}; | 
|  | DEFINE_GETIMPL_STORE(DIGlobalVariable, | 
|  | (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops); | 
|  | } | 
|  |  | 
|  | DILocalVariable * | 
|  | DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, | 
|  | Metadata *File, unsigned Line, Metadata *Type, | 
|  | unsigned Arg, DIFlags Flags, uint32_t AlignInBits, | 
|  | Metadata *Annotations, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | // 64K ought to be enough for any frontend. | 
|  | assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits"); | 
|  |  | 
|  | assert(Scope && "Expected scope"); | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg, | 
|  | Flags, AlignInBits, Annotations)); | 
|  | Metadata *Ops[] = {Scope, Name, File, Type, Annotations}; | 
|  | DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops); | 
|  | } | 
|  |  | 
|  | DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, | 
|  | signed Line, ArrayRef<Metadata *> Ops, | 
|  | uint32_t AlignInBits) | 
|  | : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) { | 
|  | SubclassData32 = AlignInBits; | 
|  | } | 
|  | std::optional<uint64_t> DIVariable::getSizeInBits() const { | 
|  | // This is used by the Verifier so be mindful of broken types. | 
|  | const Metadata *RawType = getRawType(); | 
|  | while (RawType) { | 
|  | // Try to get the size directly. | 
|  | if (auto *T = dyn_cast<DIType>(RawType)) | 
|  | if (uint64_t Size = T->getSizeInBits()) | 
|  | return Size; | 
|  |  | 
|  | if (auto *DT = dyn_cast<DIDerivedType>(RawType)) { | 
|  | // Look at the base type. | 
|  | RawType = DT->getRawBaseType(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Missing type or size. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Fail gracefully. | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line, | 
|  | unsigned Column, bool IsArtificial, | 
|  | std::optional<unsigned> CoroSuspendIdx, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) { | 
|  | this->SubclassData32 = Line; | 
|  | this->Column = Column; | 
|  | this->IsArtificial = IsArtificial; | 
|  | this->CoroSuspendIdx = CoroSuspendIdx; | 
|  | } | 
|  | DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name, | 
|  | Metadata *File, unsigned Line, unsigned Column, | 
|  | bool IsArtificial, | 
|  | std::optional<unsigned> CoroSuspendIdx, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | assert(Scope && "Expected scope"); | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP( | 
|  | DILabel, (Scope, Name, File, Line, Column, IsArtificial, CoroSuspendIdx)); | 
|  | Metadata *Ops[] = {Scope, Name, File}; | 
|  | DEFINE_GETIMPL_STORE(DILabel, (Line, Column, IsArtificial, CoroSuspendIdx), | 
|  | Ops); | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::getImpl(LLVMContext &Context, | 
|  | ArrayRef<uint64_t> Elements, | 
|  | StorageType Storage, bool ShouldCreate) { | 
|  | DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements)); | 
|  | DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements)); | 
|  | } | 
|  | bool DIExpression::isEntryValue() const { | 
|  | if (auto singleLocElts = getSingleLocationExpressionElements()) { | 
|  | return singleLocElts->size() > 0 && | 
|  | (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | bool DIExpression::startsWithDeref() const { | 
|  | if (auto singleLocElts = getSingleLocationExpressionElements()) | 
|  | return singleLocElts->size() > 0 && | 
|  | (*singleLocElts)[0] == dwarf::DW_OP_deref; | 
|  | return false; | 
|  | } | 
|  | bool DIExpression::isDeref() const { | 
|  | if (auto singleLocElts = getSingleLocationExpressionElements()) | 
|  | return singleLocElts->size() == 1 && | 
|  | (*singleLocElts)[0] == dwarf::DW_OP_deref; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | // Uniqued DIAssignID are not supported as the instance address *is* the ID. | 
|  | assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported"); | 
|  | return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage); | 
|  | } | 
|  |  | 
|  | unsigned DIExpression::ExprOperand::getSize() const { | 
|  | uint64_t Op = getOp(); | 
|  |  | 
|  | if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31) | 
|  | return 2; | 
|  |  | 
|  | switch (Op) { | 
|  | case dwarf::DW_OP_LLVM_convert: | 
|  | case dwarf::DW_OP_LLVM_fragment: | 
|  | case dwarf::DW_OP_LLVM_extract_bits_sext: | 
|  | case dwarf::DW_OP_LLVM_extract_bits_zext: | 
|  | case dwarf::DW_OP_bregx: | 
|  | return 3; | 
|  | case dwarf::DW_OP_constu: | 
|  | case dwarf::DW_OP_consts: | 
|  | case dwarf::DW_OP_deref_size: | 
|  | case dwarf::DW_OP_plus_uconst: | 
|  | case dwarf::DW_OP_LLVM_tag_offset: | 
|  | case dwarf::DW_OP_LLVM_entry_value: | 
|  | case dwarf::DW_OP_LLVM_arg: | 
|  | case dwarf::DW_OP_regx: | 
|  | return 2; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool DIExpression::isValid() const { | 
|  | for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) { | 
|  | // Check that there's space for the operand. | 
|  | if (I->get() + I->getSize() > E->get()) | 
|  | return false; | 
|  |  | 
|  | uint64_t Op = I->getOp(); | 
|  | if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) || | 
|  | (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)) | 
|  | return true; | 
|  |  | 
|  | // Check that the operand is valid. | 
|  | switch (Op) { | 
|  | default: | 
|  | return false; | 
|  | case dwarf::DW_OP_LLVM_fragment: | 
|  | // A fragment operator must appear at the end. | 
|  | return I->get() + I->getSize() == E->get(); | 
|  | case dwarf::DW_OP_stack_value: { | 
|  | // Must be the last one or followed by a DW_OP_LLVM_fragment. | 
|  | if (I->get() + I->getSize() == E->get()) | 
|  | break; | 
|  | auto J = I; | 
|  | if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case dwarf::DW_OP_swap: { | 
|  | // Must be more than one implicit element on the stack. | 
|  |  | 
|  | // FIXME: A better way to implement this would be to add a local variable | 
|  | // that keeps track of the stack depth and introduce something like a | 
|  | // DW_LLVM_OP_implicit_location as a placeholder for the location this | 
|  | // DIExpression is attached to, or else pass the number of implicit stack | 
|  | // elements into isValid. | 
|  | if (getNumElements() == 1) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | case dwarf::DW_OP_LLVM_entry_value: { | 
|  | // An entry value operator must appear at the beginning or immediately | 
|  | // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can | 
|  | // currently only be 1, because we support only entry values of a simple | 
|  | // register location. One reason for this is that we currently can't | 
|  | // calculate the size of the resulting DWARF block for other expressions. | 
|  | auto FirstOp = expr_op_begin(); | 
|  | if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0) | 
|  | ++FirstOp; | 
|  | return I->get() == FirstOp->get() && I->getArg(0) == 1; | 
|  | } | 
|  | case dwarf::DW_OP_LLVM_implicit_pointer: | 
|  | case dwarf::DW_OP_LLVM_convert: | 
|  | case dwarf::DW_OP_LLVM_arg: | 
|  | case dwarf::DW_OP_LLVM_tag_offset: | 
|  | case dwarf::DW_OP_LLVM_extract_bits_sext: | 
|  | case dwarf::DW_OP_LLVM_extract_bits_zext: | 
|  | case dwarf::DW_OP_constu: | 
|  | case dwarf::DW_OP_plus_uconst: | 
|  | case dwarf::DW_OP_plus: | 
|  | case dwarf::DW_OP_minus: | 
|  | case dwarf::DW_OP_mul: | 
|  | case dwarf::DW_OP_div: | 
|  | case dwarf::DW_OP_mod: | 
|  | case dwarf::DW_OP_or: | 
|  | case dwarf::DW_OP_and: | 
|  | case dwarf::DW_OP_xor: | 
|  | case dwarf::DW_OP_shl: | 
|  | case dwarf::DW_OP_shr: | 
|  | case dwarf::DW_OP_shra: | 
|  | case dwarf::DW_OP_deref: | 
|  | case dwarf::DW_OP_deref_size: | 
|  | case dwarf::DW_OP_xderef: | 
|  | case dwarf::DW_OP_lit0: | 
|  | case dwarf::DW_OP_not: | 
|  | case dwarf::DW_OP_dup: | 
|  | case dwarf::DW_OP_regx: | 
|  | case dwarf::DW_OP_bregx: | 
|  | case dwarf::DW_OP_push_object_address: | 
|  | case dwarf::DW_OP_over: | 
|  | case dwarf::DW_OP_consts: | 
|  | case dwarf::DW_OP_eq: | 
|  | case dwarf::DW_OP_ne: | 
|  | case dwarf::DW_OP_gt: | 
|  | case dwarf::DW_OP_ge: | 
|  | case dwarf::DW_OP_lt: | 
|  | case dwarf::DW_OP_le: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DIExpression::isImplicit() const { | 
|  | if (!isValid()) | 
|  | return false; | 
|  |  | 
|  | if (getNumElements() == 0) | 
|  | return false; | 
|  |  | 
|  | for (const auto &It : expr_ops()) { | 
|  | switch (It.getOp()) { | 
|  | default: | 
|  | break; | 
|  | case dwarf::DW_OP_stack_value: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool DIExpression::isComplex() const { | 
|  | if (!isValid()) | 
|  | return false; | 
|  |  | 
|  | if (getNumElements() == 0) | 
|  | return false; | 
|  |  | 
|  | // If there are any elements other than fragment or tag_offset, then some | 
|  | // kind of complex computation occurs. | 
|  | for (const auto &It : expr_ops()) { | 
|  | switch (It.getOp()) { | 
|  | case dwarf::DW_OP_LLVM_tag_offset: | 
|  | case dwarf::DW_OP_LLVM_fragment: | 
|  | case dwarf::DW_OP_LLVM_arg: | 
|  | continue; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool DIExpression::isSingleLocationExpression() const { | 
|  | if (!isValid()) | 
|  | return false; | 
|  |  | 
|  | if (getNumElements() == 0) | 
|  | return true; | 
|  |  | 
|  | auto ExprOpBegin = expr_ops().begin(); | 
|  | auto ExprOpEnd = expr_ops().end(); | 
|  | if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) { | 
|  | if (ExprOpBegin->getArg(0) != 0) | 
|  | return false; | 
|  | ++ExprOpBegin; | 
|  | } | 
|  |  | 
|  | return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) { | 
|  | return Op.getOp() == dwarf::DW_OP_LLVM_arg; | 
|  | }); | 
|  | } | 
|  |  | 
|  | std::optional<ArrayRef<uint64_t>> | 
|  | DIExpression::getSingleLocationExpressionElements() const { | 
|  | // Check for `isValid` covered by `isSingleLocationExpression`. | 
|  | if (!isSingleLocationExpression()) | 
|  | return std::nullopt; | 
|  |  | 
|  | // An empty expression is already non-variadic. | 
|  | if (!getNumElements()) | 
|  | return ArrayRef<uint64_t>(); | 
|  |  | 
|  | // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do | 
|  | // anything. | 
|  | if (getElements()[0] == dwarf::DW_OP_LLVM_arg) | 
|  | return getElements().drop_front(2); | 
|  | return getElements(); | 
|  | } | 
|  |  | 
|  | const DIExpression * | 
|  | DIExpression::convertToUndefExpression(const DIExpression *Expr) { | 
|  | SmallVector<uint64_t, 3> UndefOps; | 
|  | if (auto FragmentInfo = Expr->getFragmentInfo()) { | 
|  | UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits, | 
|  | FragmentInfo->SizeInBits}); | 
|  | } | 
|  | return DIExpression::get(Expr->getContext(), UndefOps); | 
|  | } | 
|  |  | 
|  | const DIExpression * | 
|  | DIExpression::convertToVariadicExpression(const DIExpression *Expr) { | 
|  | if (any_of(Expr->expr_ops(), [](auto ExprOp) { | 
|  | return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; | 
|  | })) | 
|  | return Expr; | 
|  | SmallVector<uint64_t> NewOps; | 
|  | NewOps.reserve(Expr->getNumElements() + 2); | 
|  | NewOps.append({dwarf::DW_OP_LLVM_arg, 0}); | 
|  | NewOps.append(Expr->elements_begin(), Expr->elements_end()); | 
|  | return DIExpression::get(Expr->getContext(), NewOps); | 
|  | } | 
|  |  | 
|  | std::optional<const DIExpression *> | 
|  | DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) { | 
|  | if (!Expr) | 
|  | return std::nullopt; | 
|  |  | 
|  | if (auto Elts = Expr->getSingleLocationExpressionElements()) | 
|  | return DIExpression::get(Expr->getContext(), *Elts); | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops, | 
|  | const DIExpression *Expr, | 
|  | bool IsIndirect) { | 
|  | // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0` | 
|  | // to the existing expression ops. | 
|  | if (none_of(Expr->expr_ops(), [](auto ExprOp) { | 
|  | return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg; | 
|  | })) | 
|  | Ops.append({dwarf::DW_OP_LLVM_arg, 0}); | 
|  | // If Expr is not indirect, we only need to insert the expression elements and | 
|  | // we're done. | 
|  | if (!IsIndirect) { | 
|  | Ops.append(Expr->elements_begin(), Expr->elements_end()); | 
|  | return; | 
|  | } | 
|  | // If Expr is indirect, insert the implied DW_OP_deref at the end of the | 
|  | // expression but before DW_OP_{stack_value, LLVM_fragment} if they are | 
|  | // present. | 
|  | for (auto Op : Expr->expr_ops()) { | 
|  | if (Op.getOp() == dwarf::DW_OP_stack_value || | 
|  | Op.getOp() == dwarf::DW_OP_LLVM_fragment) { | 
|  | Ops.push_back(dwarf::DW_OP_deref); | 
|  | IsIndirect = false; | 
|  | } | 
|  | Op.appendToVector(Ops); | 
|  | } | 
|  | if (IsIndirect) | 
|  | Ops.push_back(dwarf::DW_OP_deref); | 
|  | } | 
|  |  | 
|  | bool DIExpression::isEqualExpression(const DIExpression *FirstExpr, | 
|  | bool FirstIndirect, | 
|  | const DIExpression *SecondExpr, | 
|  | bool SecondIndirect) { | 
|  | SmallVector<uint64_t> FirstOps; | 
|  | DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect); | 
|  | SmallVector<uint64_t> SecondOps; | 
|  | DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr, | 
|  | SecondIndirect); | 
|  | return FirstOps == SecondOps; | 
|  | } | 
|  |  | 
|  | std::optional<DIExpression::FragmentInfo> | 
|  | DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) { | 
|  | for (auto I = Start; I != End; ++I) | 
|  | if (I->getOp() == dwarf::DW_OP_LLVM_fragment) { | 
|  | DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)}; | 
|  | return Info; | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) { | 
|  | std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits(); | 
|  | std::optional<uint64_t> ActiveBits = InitialActiveBits; | 
|  | for (auto Op : expr_ops()) { | 
|  | switch (Op.getOp()) { | 
|  | default: | 
|  | // We assume the worst case for anything we don't currently handle and | 
|  | // revert to the initial active bits. | 
|  | ActiveBits = InitialActiveBits; | 
|  | break; | 
|  | case dwarf::DW_OP_LLVM_extract_bits_zext: | 
|  | case dwarf::DW_OP_LLVM_extract_bits_sext: { | 
|  | // We can't handle an extract whose sign doesn't match that of the | 
|  | // variable. | 
|  | std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness(); | 
|  | bool VarSigned = (VarSign == DIBasicType::Signedness::Signed); | 
|  | bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext); | 
|  | if (!VarSign || VarSigned != OpSigned) { | 
|  | ActiveBits = InitialActiveBits; | 
|  | break; | 
|  | } | 
|  | [[fallthrough]]; | 
|  | } | 
|  | case dwarf::DW_OP_LLVM_fragment: | 
|  | // Extract or fragment narrows the active bits | 
|  | if (ActiveBits) | 
|  | ActiveBits = std::min(*ActiveBits, Op.getArg(1)); | 
|  | else | 
|  | ActiveBits = Op.getArg(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ActiveBits; | 
|  | } | 
|  |  | 
|  | void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops, | 
|  | int64_t Offset) { | 
|  | if (Offset > 0) { | 
|  | Ops.push_back(dwarf::DW_OP_plus_uconst); | 
|  | Ops.push_back(Offset); | 
|  | } else if (Offset < 0) { | 
|  | Ops.push_back(dwarf::DW_OP_constu); | 
|  | // Avoid UB when encountering LLONG_MIN, because in 2's complement | 
|  | // abs(LLONG_MIN) is LLONG_MAX+1. | 
|  | uint64_t AbsMinusOne = -(Offset+1); | 
|  | Ops.push_back(AbsMinusOne + 1); | 
|  | Ops.push_back(dwarf::DW_OP_minus); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool DIExpression::extractIfOffset(int64_t &Offset) const { | 
|  | auto SingleLocEltsOpt = getSingleLocationExpressionElements(); | 
|  | if (!SingleLocEltsOpt) | 
|  | return false; | 
|  | auto SingleLocElts = *SingleLocEltsOpt; | 
|  |  | 
|  | if (SingleLocElts.size() == 0) { | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SingleLocElts.size() == 2 && | 
|  | SingleLocElts[0] == dwarf::DW_OP_plus_uconst) { | 
|  | Offset = SingleLocElts[1]; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) { | 
|  | if (SingleLocElts[2] == dwarf::DW_OP_plus) { | 
|  | Offset = SingleLocElts[1]; | 
|  | return true; | 
|  | } | 
|  | if (SingleLocElts[2] == dwarf::DW_OP_minus) { | 
|  | Offset = -SingleLocElts[1]; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool DIExpression::extractLeadingOffset( | 
|  | int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const { | 
|  | OffsetInBytes = 0; | 
|  | RemainingOps.clear(); | 
|  |  | 
|  | auto SingleLocEltsOpt = getSingleLocationExpressionElements(); | 
|  | if (!SingleLocEltsOpt) | 
|  | return false; | 
|  |  | 
|  | auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end()); | 
|  | auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin()); | 
|  | while (ExprOpIt != ExprOpEnd) { | 
|  | uint64_t Op = ExprOpIt->getOp(); | 
|  | if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size || | 
|  | Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment || | 
|  | Op == dwarf::DW_OP_LLVM_extract_bits_zext || | 
|  | Op == dwarf::DW_OP_LLVM_extract_bits_sext) { | 
|  | break; | 
|  | } else if (Op == dwarf::DW_OP_plus_uconst) { | 
|  | OffsetInBytes += ExprOpIt->getArg(0); | 
|  | } else if (Op == dwarf::DW_OP_constu) { | 
|  | uint64_t Value = ExprOpIt->getArg(0); | 
|  | ++ExprOpIt; | 
|  | if (ExprOpIt->getOp() == dwarf::DW_OP_plus) | 
|  | OffsetInBytes += Value; | 
|  | else if (ExprOpIt->getOp() == dwarf::DW_OP_minus) | 
|  | OffsetInBytes -= Value; | 
|  | else | 
|  | return false; | 
|  | } else { | 
|  | // Not a const plus/minus operation or deref. | 
|  | return false; | 
|  | } | 
|  | ++ExprOpIt; | 
|  | } | 
|  | RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DIExpression::hasAllLocationOps(unsigned N) const { | 
|  | SmallDenseSet<uint64_t, 4> SeenOps; | 
|  | for (auto ExprOp : expr_ops()) | 
|  | if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) | 
|  | SeenOps.insert(ExprOp.getArg(0)); | 
|  | for (uint64_t Idx = 0; Idx < N; ++Idx) | 
|  | if (!SeenOps.contains(Idx)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr, | 
|  | unsigned &AddrClass) { | 
|  | // FIXME: This seems fragile. Nothing that verifies that these elements | 
|  | // actually map to ops and not operands. | 
|  | auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements(); | 
|  | if (!SingleLocEltsOpt) | 
|  | return nullptr; | 
|  | auto SingleLocElts = *SingleLocEltsOpt; | 
|  |  | 
|  | const unsigned PatternSize = 4; | 
|  | if (SingleLocElts.size() >= PatternSize && | 
|  | SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu && | 
|  | SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap && | 
|  | SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) { | 
|  | AddrClass = SingleLocElts[PatternSize - 3]; | 
|  |  | 
|  | if (SingleLocElts.size() == PatternSize) | 
|  | return nullptr; | 
|  | return DIExpression::get( | 
|  | Expr->getContext(), | 
|  | ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize)); | 
|  | } | 
|  | return Expr; | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags, | 
|  | int64_t Offset) { | 
|  | SmallVector<uint64_t, 8> Ops; | 
|  | if (Flags & DIExpression::DerefBefore) | 
|  | Ops.push_back(dwarf::DW_OP_deref); | 
|  |  | 
|  | appendOffset(Ops, Offset); | 
|  | if (Flags & DIExpression::DerefAfter) | 
|  | Ops.push_back(dwarf::DW_OP_deref); | 
|  |  | 
|  | bool StackValue = Flags & DIExpression::StackValue; | 
|  | bool EntryValue = Flags & DIExpression::EntryValue; | 
|  |  | 
|  | return prependOpcodes(Expr, Ops, StackValue, EntryValue); | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr, | 
|  | ArrayRef<uint64_t> Ops, | 
|  | unsigned ArgNo, bool StackValue) { | 
|  | assert(Expr && "Can't add ops to this expression"); | 
|  |  | 
|  | // Handle non-variadic intrinsics by prepending the opcodes. | 
|  | if (!any_of(Expr->expr_ops(), | 
|  | [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) { | 
|  | assert(ArgNo == 0 && | 
|  | "Location Index must be 0 for a non-variadic expression."); | 
|  | SmallVector<uint64_t, 8> NewOps(Ops); | 
|  | return DIExpression::prependOpcodes(Expr, NewOps, StackValue); | 
|  | } | 
|  |  | 
|  | SmallVector<uint64_t, 8> NewOps; | 
|  | for (auto Op : Expr->expr_ops()) { | 
|  | // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. | 
|  | if (StackValue) { | 
|  | if (Op.getOp() == dwarf::DW_OP_stack_value) | 
|  | StackValue = false; | 
|  | else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { | 
|  | NewOps.push_back(dwarf::DW_OP_stack_value); | 
|  | StackValue = false; | 
|  | } | 
|  | } | 
|  | Op.appendToVector(NewOps); | 
|  | if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo) | 
|  | llvm::append_range(NewOps, Ops); | 
|  | } | 
|  | if (StackValue) | 
|  | NewOps.push_back(dwarf::DW_OP_stack_value); | 
|  |  | 
|  | return DIExpression::get(Expr->getContext(), NewOps); | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::replaceArg(const DIExpression *Expr, | 
|  | uint64_t OldArg, uint64_t NewArg) { | 
|  | assert(Expr && "Can't replace args in this expression"); | 
|  |  | 
|  | SmallVector<uint64_t, 8> NewOps; | 
|  |  | 
|  | for (auto Op : Expr->expr_ops()) { | 
|  | if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) { | 
|  | Op.appendToVector(NewOps); | 
|  | continue; | 
|  | } | 
|  | NewOps.push_back(dwarf::DW_OP_LLVM_arg); | 
|  | uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0); | 
|  | // OldArg has been deleted from the Op list, so decrement all indices | 
|  | // greater than it. | 
|  | if (Arg > OldArg) | 
|  | --Arg; | 
|  | NewOps.push_back(Arg); | 
|  | } | 
|  | return DIExpression::get(Expr->getContext(), NewOps); | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr, | 
|  | SmallVectorImpl<uint64_t> &Ops, | 
|  | bool StackValue, bool EntryValue) { | 
|  | assert(Expr && "Can't prepend ops to this expression"); | 
|  |  | 
|  | if (EntryValue) { | 
|  | Ops.push_back(dwarf::DW_OP_LLVM_entry_value); | 
|  | // Use a block size of 1 for the target register operand.  The | 
|  | // DWARF backend currently cannot emit entry values with a block | 
|  | // size > 1. | 
|  | Ops.push_back(1); | 
|  | } | 
|  |  | 
|  | // If there are no ops to prepend, do not even add the DW_OP_stack_value. | 
|  | if (Ops.empty()) | 
|  | StackValue = false; | 
|  | for (auto Op : Expr->expr_ops()) { | 
|  | // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment. | 
|  | if (StackValue) { | 
|  | if (Op.getOp() == dwarf::DW_OP_stack_value) | 
|  | StackValue = false; | 
|  | else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { | 
|  | Ops.push_back(dwarf::DW_OP_stack_value); | 
|  | StackValue = false; | 
|  | } | 
|  | } | 
|  | Op.appendToVector(Ops); | 
|  | } | 
|  | if (StackValue) | 
|  | Ops.push_back(dwarf::DW_OP_stack_value); | 
|  | return DIExpression::get(Expr->getContext(), Ops); | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::append(const DIExpression *Expr, | 
|  | ArrayRef<uint64_t> Ops) { | 
|  | assert(Expr && !Ops.empty() && "Can't append ops to this expression"); | 
|  |  | 
|  | // Copy Expr's current op list. | 
|  | SmallVector<uint64_t, 16> NewOps; | 
|  | for (auto Op : Expr->expr_ops()) { | 
|  | // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}. | 
|  | if (Op.getOp() == dwarf::DW_OP_stack_value || | 
|  | Op.getOp() == dwarf::DW_OP_LLVM_fragment) { | 
|  | NewOps.append(Ops.begin(), Ops.end()); | 
|  |  | 
|  | // Ensure that the new opcodes are only appended once. | 
|  | Ops = {}; | 
|  | } | 
|  | Op.appendToVector(NewOps); | 
|  | } | 
|  | NewOps.append(Ops.begin(), Ops.end()); | 
|  | auto *result = | 
|  | DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath(); | 
|  | assert(result->isValid() && "concatenated expression is not valid"); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::appendToStack(const DIExpression *Expr, | 
|  | ArrayRef<uint64_t> Ops) { | 
|  | assert(Expr && !Ops.empty() && "Can't append ops to this expression"); | 
|  | assert(std::none_of(expr_op_iterator(Ops.begin()), | 
|  | expr_op_iterator(Ops.end()), | 
|  | [](auto Op) { | 
|  | return Op.getOp() == dwarf::DW_OP_stack_value || | 
|  | Op.getOp() == dwarf::DW_OP_LLVM_fragment; | 
|  | }) && | 
|  | "Can't append this op"); | 
|  |  | 
|  | // Append a DW_OP_deref after Expr's current op list if it's non-empty and | 
|  | // has no DW_OP_stack_value. | 
|  | // | 
|  | // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?. | 
|  | std::optional<FragmentInfo> FI = Expr->getFragmentInfo(); | 
|  | unsigned DropUntilStackValue = FI ? 3 : 0; | 
|  | ArrayRef<uint64_t> ExprOpsBeforeFragment = | 
|  | Expr->getElements().drop_back(DropUntilStackValue); | 
|  | bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) && | 
|  | (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value); | 
|  | bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty(); | 
|  |  | 
|  | // Append a DW_OP_deref after Expr's current op list if needed, then append | 
|  | // the new ops, and finally ensure that a single DW_OP_stack_value is present. | 
|  | SmallVector<uint64_t, 16> NewOps; | 
|  | if (NeedsDeref) | 
|  | NewOps.push_back(dwarf::DW_OP_deref); | 
|  | NewOps.append(Ops.begin(), Ops.end()); | 
|  | if (NeedsStackValue) | 
|  | NewOps.push_back(dwarf::DW_OP_stack_value); | 
|  | return DIExpression::append(Expr, NewOps); | 
|  | } | 
|  |  | 
|  | std::optional<DIExpression *> DIExpression::createFragmentExpression( | 
|  | const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) { | 
|  | SmallVector<uint64_t, 8> Ops; | 
|  | // Track whether it's safe to split the value at the top of the DWARF stack, | 
|  | // assuming that it'll be used as an implicit location value. | 
|  | bool CanSplitValue = true; | 
|  | // Track whether we need to add a fragment expression to the end of Expr. | 
|  | bool EmitFragment = true; | 
|  | // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment. | 
|  | if (Expr) { | 
|  | for (auto Op : Expr->expr_ops()) { | 
|  | switch (Op.getOp()) { | 
|  | default: | 
|  | break; | 
|  | case dwarf::DW_OP_shr: | 
|  | case dwarf::DW_OP_shra: | 
|  | case dwarf::DW_OP_shl: | 
|  | case dwarf::DW_OP_plus: | 
|  | case dwarf::DW_OP_plus_uconst: | 
|  | case dwarf::DW_OP_minus: | 
|  | // We can't safely split arithmetic or shift operations into multiple | 
|  | // fragments because we can't express carry-over between fragments. | 
|  | // | 
|  | // FIXME: We *could* preserve the lowest fragment of a constant offset | 
|  | // operation if the offset fits into SizeInBits. | 
|  | CanSplitValue = false; | 
|  | break; | 
|  | case dwarf::DW_OP_deref: | 
|  | case dwarf::DW_OP_deref_size: | 
|  | case dwarf::DW_OP_deref_type: | 
|  | case dwarf::DW_OP_xderef: | 
|  | case dwarf::DW_OP_xderef_size: | 
|  | case dwarf::DW_OP_xderef_type: | 
|  | // Preceeding arithmetic operations have been applied to compute an | 
|  | // address. It's okay to split the value loaded from that address. | 
|  | CanSplitValue = true; | 
|  | break; | 
|  | case dwarf::DW_OP_stack_value: | 
|  | // Bail if this expression computes a value that cannot be split. | 
|  | if (!CanSplitValue) | 
|  | return std::nullopt; | 
|  | break; | 
|  | case dwarf::DW_OP_LLVM_fragment: { | 
|  | // If we've decided we don't need a fragment then give up if we see that | 
|  | // there's already a fragment expression. | 
|  | // FIXME: We could probably do better here | 
|  | if (!EmitFragment) | 
|  | return std::nullopt; | 
|  | // Make the new offset point into the existing fragment. | 
|  | uint64_t FragmentOffsetInBits = Op.getArg(0); | 
|  | uint64_t FragmentSizeInBits = Op.getArg(1); | 
|  | (void)FragmentSizeInBits; | 
|  | assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) && | 
|  | "new fragment outside of original fragment"); | 
|  | OffsetInBits += FragmentOffsetInBits; | 
|  | continue; | 
|  | } | 
|  | case dwarf::DW_OP_LLVM_extract_bits_zext: | 
|  | case dwarf::DW_OP_LLVM_extract_bits_sext: { | 
|  | // If we're extracting bits from inside of the fragment that we're | 
|  | // creating then we don't have a fragment after all, and just need to | 
|  | // adjust the offset that we're extracting from. | 
|  | uint64_t ExtractOffsetInBits = Op.getArg(0); | 
|  | uint64_t ExtractSizeInBits = Op.getArg(1); | 
|  | if (ExtractOffsetInBits >= OffsetInBits && | 
|  | ExtractOffsetInBits + ExtractSizeInBits <= | 
|  | OffsetInBits + SizeInBits) { | 
|  | Ops.push_back(Op.getOp()); | 
|  | Ops.push_back(ExtractOffsetInBits - OffsetInBits); | 
|  | Ops.push_back(ExtractSizeInBits); | 
|  | EmitFragment = false; | 
|  | continue; | 
|  | } | 
|  | // If the extracted bits aren't fully contained within the fragment then | 
|  | // give up. | 
|  | // FIXME: We could probably do better here | 
|  | return std::nullopt; | 
|  | } | 
|  | } | 
|  | Op.appendToVector(Ops); | 
|  | } | 
|  | } | 
|  | assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split"); | 
|  | assert(Expr && "Unknown DIExpression"); | 
|  | if (EmitFragment) { | 
|  | Ops.push_back(dwarf::DW_OP_LLVM_fragment); | 
|  | Ops.push_back(OffsetInBits); | 
|  | Ops.push_back(SizeInBits); | 
|  | } | 
|  | return DIExpression::get(Expr->getContext(), Ops); | 
|  | } | 
|  |  | 
|  | /// See declaration for more info. | 
|  | bool DIExpression::calculateFragmentIntersect( | 
|  | const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits, | 
|  | uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits, | 
|  | int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag, | 
|  | std::optional<DIExpression::FragmentInfo> &Result, | 
|  | int64_t &OffsetFromLocationInBits) { | 
|  |  | 
|  | if (VarFrag.SizeInBits == 0) | 
|  | return false; // Variable size is unknown. | 
|  |  | 
|  | // Difference between mem slice start and the dbg location start. | 
|  | // 0   4   8   12   16 ... | 
|  | // |       | | 
|  | // dbg location start | 
|  | //         | | 
|  | //         mem slice start | 
|  | // Here MemStartRelToDbgStartInBits is 8. Note this can be negative. | 
|  | int64_t MemStartRelToDbgStartInBits; | 
|  | { | 
|  | auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL); | 
|  | if (!MemOffsetFromDbgInBytes) | 
|  | return false; // Can't calculate difference in addresses. | 
|  | // Difference between the pointers. | 
|  | MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8; | 
|  | // Add the difference of the offsets. | 
|  | MemStartRelToDbgStartInBits += | 
|  | SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits); | 
|  | } | 
|  |  | 
|  | // Out-param. Invert offset to get offset from debug location. | 
|  | OffsetFromLocationInBits = -MemStartRelToDbgStartInBits; | 
|  |  | 
|  | // Check if the variable fragment sits outside (before) this memory slice. | 
|  | int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits; | 
|  | if (MemEndRelToDbgStart < 0) { | 
|  | Result = {0, 0}; // Out-param. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Work towards creating SliceOfVariable which is the bits of the variable | 
|  | // that the memory region covers. | 
|  | // 0   4   8   12   16 ... | 
|  | // |       | | 
|  | // dbg location start with VarFrag offset=32 | 
|  | //         | | 
|  | //         mem slice start: SliceOfVariable offset=40 | 
|  | int64_t MemStartRelToVarInBits = | 
|  | MemStartRelToDbgStartInBits + VarFrag.OffsetInBits; | 
|  | int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits; | 
|  | // If the memory region starts before the debug location the fragment | 
|  | // offset would be negative, which we can't encode. Limit those to 0. This | 
|  | // is fine because those bits necessarily don't overlap with the existing | 
|  | // variable fragment. | 
|  | int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits); | 
|  | int64_t MemFragSize = | 
|  | std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart); | 
|  | DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart); | 
|  |  | 
|  | // Intersect the memory region fragment with the variable location fragment. | 
|  | DIExpression::FragmentInfo TrimmedSliceOfVariable = | 
|  | DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag); | 
|  | if (TrimmedSliceOfVariable == VarFrag) | 
|  | Result = std::nullopt; // Out-param. | 
|  | else | 
|  | Result = TrimmedSliceOfVariable; // Out-param. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::pair<DIExpression *, const ConstantInt *> | 
|  | DIExpression::constantFold(const ConstantInt *CI) { | 
|  | // Copy the APInt so we can modify it. | 
|  | APInt NewInt = CI->getValue(); | 
|  | SmallVector<uint64_t, 8> Ops; | 
|  |  | 
|  | // Fold operators only at the beginning of the expression. | 
|  | bool First = true; | 
|  | bool Changed = false; | 
|  | for (auto Op : expr_ops()) { | 
|  | switch (Op.getOp()) { | 
|  | default: | 
|  | // We fold only the leading part of the expression; if we get to a part | 
|  | // that we're going to copy unchanged, and haven't done any folding, | 
|  | // then the entire expression is unchanged and we can return early. | 
|  | if (!Changed) | 
|  | return {this, CI}; | 
|  | First = false; | 
|  | break; | 
|  | case dwarf::DW_OP_LLVM_convert: | 
|  | if (!First) | 
|  | break; | 
|  | Changed = true; | 
|  | if (Op.getArg(1) == dwarf::DW_ATE_signed) | 
|  | NewInt = NewInt.sextOrTrunc(Op.getArg(0)); | 
|  | else { | 
|  | assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand"); | 
|  | NewInt = NewInt.zextOrTrunc(Op.getArg(0)); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | Op.appendToVector(Ops); | 
|  | } | 
|  | if (!Changed) | 
|  | return {this, CI}; | 
|  | return {DIExpression::get(getContext(), Ops), | 
|  | ConstantInt::get(getContext(), NewInt)}; | 
|  | } | 
|  |  | 
|  | uint64_t DIExpression::getNumLocationOperands() const { | 
|  | uint64_t Result = 0; | 
|  | for (auto ExprOp : expr_ops()) | 
|  | if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg) | 
|  | Result = std::max(Result, ExprOp.getArg(0) + 1); | 
|  | assert(hasAllLocationOps(Result) && | 
|  | "Expression is missing one or more location operands."); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | std::optional<DIExpression::SignedOrUnsignedConstant> | 
|  | DIExpression::isConstant() const { | 
|  |  | 
|  | // Recognize signed and unsigned constants. | 
|  | // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value | 
|  | // (DW_OP_LLVM_fragment of Len). | 
|  | // An unsigned constant can be represented as | 
|  | // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len). | 
|  |  | 
|  | if ((getNumElements() != 2 && getNumElements() != 3 && | 
|  | getNumElements() != 6) || | 
|  | (getElement(0) != dwarf::DW_OP_consts && | 
|  | getElement(0) != dwarf::DW_OP_constu)) | 
|  | return std::nullopt; | 
|  |  | 
|  | if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts) | 
|  | return SignedOrUnsignedConstant::SignedConstant; | 
|  |  | 
|  | if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) || | 
|  | (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value || | 
|  | getElement(3) != dwarf::DW_OP_LLVM_fragment))) | 
|  | return std::nullopt; | 
|  | return getElement(0) == dwarf::DW_OP_constu | 
|  | ? SignedOrUnsignedConstant::UnsignedConstant | 
|  | : SignedOrUnsignedConstant::SignedConstant; | 
|  | } | 
|  |  | 
|  | DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize, | 
|  | bool Signed) { | 
|  | dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned; | 
|  | DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK, | 
|  | dwarf::DW_OP_LLVM_convert, ToSize, TK}}; | 
|  | return Ops; | 
|  | } | 
|  |  | 
|  | DIExpression *DIExpression::appendExt(const DIExpression *Expr, | 
|  | unsigned FromSize, unsigned ToSize, | 
|  | bool Signed) { | 
|  | return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed)); | 
|  | } | 
|  |  | 
|  | DIGlobalVariableExpression * | 
|  | DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable, | 
|  | Metadata *Expression, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression)); | 
|  | Metadata *Ops[] = {Variable, Expression}; | 
|  | DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops); | 
|  | } | 
|  | DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage, | 
|  | unsigned Line, unsigned Attributes, | 
|  | ArrayRef<Metadata *> Ops) | 
|  | : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops), | 
|  | Line(Line), Attributes(Attributes) {} | 
|  |  | 
|  | DIObjCProperty *DIObjCProperty::getImpl( | 
|  | LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line, | 
|  | MDString *GetterName, MDString *SetterName, unsigned Attributes, | 
|  | Metadata *Type, StorageType Storage, bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | assert(isCanonical(GetterName) && "Expected canonical MDString"); | 
|  | assert(isCanonical(SetterName) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName, | 
|  | SetterName, Attributes, Type)); | 
|  | Metadata *Ops[] = {Name, File, GetterName, SetterName, Type}; | 
|  | DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops); | 
|  | } | 
|  |  | 
|  | DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag, | 
|  | Metadata *Scope, Metadata *Entity, | 
|  | Metadata *File, unsigned Line, | 
|  | MDString *Name, Metadata *Elements, | 
|  | StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIImportedEntity, | 
|  | (Tag, Scope, Entity, File, Line, Name, Elements)); | 
|  | Metadata *Ops[] = {Scope, Entity, Name, File, Elements}; | 
|  | DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops); | 
|  | } | 
|  |  | 
|  | DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line, | 
|  | MDString *Name, MDString *Value, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | assert(isCanonical(Name) && "Expected canonical MDString"); | 
|  | DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value)); | 
|  | Metadata *Ops[] = {Name, Value}; | 
|  | DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops); | 
|  | } | 
|  |  | 
|  | DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType, | 
|  | unsigned Line, Metadata *File, | 
|  | Metadata *Elements, StorageType Storage, | 
|  | bool ShouldCreate) { | 
|  | DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements)); | 
|  | Metadata *Ops[] = {File, Elements}; | 
|  | DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops); | 
|  | } | 
|  |  | 
|  | DIArgList *DIArgList::get(LLVMContext &Context, | 
|  | ArrayRef<ValueAsMetadata *> Args) { | 
|  | auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args)); | 
|  | if (ExistingIt != Context.pImpl->DIArgLists.end()) | 
|  | return *ExistingIt; | 
|  | DIArgList *NewArgList = new DIArgList(Context, Args); | 
|  | Context.pImpl->DIArgLists.insert(NewArgList); | 
|  | return NewArgList; | 
|  | } | 
|  |  | 
|  | void DIArgList::handleChangedOperand(void *Ref, Metadata *New) { | 
|  | ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref); | 
|  | assert((!New || isa<ValueAsMetadata>(New)) && | 
|  | "DIArgList must be passed a ValueAsMetadata"); | 
|  | untrack(); | 
|  | // We need to update the set storage once the Args are updated since they | 
|  | // form the key to the DIArgLists store. | 
|  | getContext().pImpl->DIArgLists.erase(this); | 
|  | ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New); | 
|  | for (ValueAsMetadata *&VM : Args) { | 
|  | if (&VM == OldVMPtr) { | 
|  | if (NewVM) | 
|  | VM = NewVM; | 
|  | else | 
|  | VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType())); | 
|  | } | 
|  | } | 
|  | // We've changed the contents of this DIArgList, and the set storage may | 
|  | // already contain a DIArgList with our new set of args; if it does, then we | 
|  | // must RAUW this with the existing DIArgList, otherwise we simply insert this | 
|  | // back into the set storage. | 
|  | DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this); | 
|  | if (ExistingArgList) { | 
|  | replaceAllUsesWith(ExistingArgList); | 
|  | // Clear this here so we don't try to untrack in the destructor. | 
|  | Args.clear(); | 
|  | delete this; | 
|  | return; | 
|  | } | 
|  | getContext().pImpl->DIArgLists.insert(this); | 
|  | track(); | 
|  | } | 
|  | void DIArgList::track() { | 
|  | for (ValueAsMetadata *&VAM : Args) | 
|  | if (VAM) | 
|  | MetadataTracking::track(&VAM, *VAM, *this); | 
|  | } | 
|  | void DIArgList::untrack() { | 
|  | for (ValueAsMetadata *&VAM : Args) | 
|  | if (VAM) | 
|  | MetadataTracking::untrack(&VAM, *VAM); | 
|  | } | 
|  | void DIArgList::dropAllReferences(bool Untrack) { | 
|  | if (Untrack) | 
|  | untrack(); | 
|  | Args.clear(); | 
|  | ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false); | 
|  | } |