| //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the TargetInstrInfo class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/BinaryFormat/Dwarf.h" | 
 | #include "llvm/CodeGen/MachineCombinerPattern.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/MachineScheduler.h" | 
 | #include "llvm/CodeGen/MachineTraceMetrics.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" | 
 | #include "llvm/CodeGen/StackMaps.h" | 
 | #include "llvm/CodeGen/TargetFrameLowering.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSchedule.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DebugInfoMetadata.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/MC/MCInstrItineraries.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> DisableHazardRecognizer( | 
 |   "disable-sched-hazard", cl::Hidden, cl::init(false), | 
 |   cl::desc("Disable hazard detection during preRA scheduling")); | 
 |  | 
 | static cl::opt<bool> EnableAccReassociation( | 
 |     "acc-reassoc", cl::Hidden, cl::init(true), | 
 |     cl::desc("Enable reassociation of accumulation chains")); | 
 |  | 
 | static cl::opt<unsigned int> | 
 |     MinAccumulatorDepth("acc-min-depth", cl::Hidden, cl::init(8), | 
 |                         cl::desc("Minimum length of accumulator chains " | 
 |                                  "required for the optimization to kick in")); | 
 |  | 
 | static cl::opt<unsigned int> MaxAccumulatorWidth( | 
 |     "acc-max-width", cl::Hidden, cl::init(3), | 
 |     cl::desc("Maximum number of branches in the accumulator tree")); | 
 |  | 
 | TargetInstrInfo::~TargetInstrInfo() = default; | 
 |  | 
 | const TargetRegisterClass* | 
 | TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, | 
 |                              const TargetRegisterInfo *TRI, | 
 |                              const MachineFunction &MF) const { | 
 |   if (OpNum >= MCID.getNumOperands()) | 
 |     return nullptr; | 
 |  | 
 |   short RegClass = MCID.operands()[OpNum].RegClass; | 
 |   if (MCID.operands()[OpNum].isLookupPtrRegClass()) | 
 |     return TRI->getPointerRegClass(MF, RegClass); | 
 |  | 
 |   // Instructions like INSERT_SUBREG do not have fixed register classes. | 
 |   if (RegClass < 0) | 
 |     return nullptr; | 
 |  | 
 |   // Otherwise just look it up normally. | 
 |   return TRI->getRegClass(RegClass); | 
 | } | 
 |  | 
 | /// insertNoop - Insert a noop into the instruction stream at the specified | 
 | /// point. | 
 | void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, | 
 |                                  MachineBasicBlock::iterator MI) const { | 
 |   llvm_unreachable("Target didn't implement insertNoop!"); | 
 | } | 
 |  | 
 | /// insertNoops - Insert noops into the instruction stream at the specified | 
 | /// point. | 
 | void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB, | 
 |                                   MachineBasicBlock::iterator MI, | 
 |                                   unsigned Quantity) const { | 
 |   for (unsigned i = 0; i < Quantity; ++i) | 
 |     insertNoop(MBB, MI); | 
 | } | 
 |  | 
 | static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { | 
 |   return strncmp(Str, MAI.getCommentString().data(), | 
 |                  MAI.getCommentString().size()) == 0; | 
 | } | 
 |  | 
 | /// Measure the specified inline asm to determine an approximation of its | 
 | /// length. | 
 | /// Comments (which run till the next SeparatorString or newline) do not | 
 | /// count as an instruction. | 
 | /// Any other non-whitespace text is considered an instruction, with | 
 | /// multiple instructions separated by SeparatorString or newlines. | 
 | /// Variable-length instructions are not handled here; this function | 
 | /// may be overloaded in the target code to do that. | 
 | /// We implement a special case of the .space directive which takes only a | 
 | /// single integer argument in base 10 that is the size in bytes. This is a | 
 | /// restricted form of the GAS directive in that we only interpret | 
 | /// simple--i.e. not a logical or arithmetic expression--size values without | 
 | /// the optional fill value. This is primarily used for creating arbitrary | 
 | /// sized inline asm blocks for testing purposes. | 
 | unsigned TargetInstrInfo::getInlineAsmLength( | 
 |   const char *Str, | 
 |   const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { | 
 |   // Count the number of instructions in the asm. | 
 |   bool AtInsnStart = true; | 
 |   unsigned Length = 0; | 
 |   const unsigned MaxInstLength = MAI.getMaxInstLength(STI); | 
 |   for (; *Str; ++Str) { | 
 |     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), | 
 |                                 strlen(MAI.getSeparatorString())) == 0) { | 
 |       AtInsnStart = true; | 
 |     } else if (isAsmComment(Str, MAI)) { | 
 |       // Stop counting as an instruction after a comment until the next | 
 |       // separator. | 
 |       AtInsnStart = false; | 
 |     } | 
 |  | 
 |     if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) { | 
 |       unsigned AddLength = MaxInstLength; | 
 |       if (strncmp(Str, ".space", 6) == 0) { | 
 |         char *EStr; | 
 |         int SpaceSize; | 
 |         SpaceSize = strtol(Str + 6, &EStr, 10); | 
 |         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; | 
 |         while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr))) | 
 |           ++EStr; | 
 |         if (*EStr == '\0' || *EStr == '\n' || | 
 |             isAsmComment(EStr, MAI)) // Successfully parsed .space argument | 
 |           AddLength = SpaceSize; | 
 |       } | 
 |       Length += AddLength; | 
 |       AtInsnStart = false; | 
 |     } | 
 |   } | 
 |  | 
 |   return Length; | 
 | } | 
 |  | 
 | /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything | 
 | /// after it, replacing it with an unconditional branch to NewDest. | 
 | void | 
 | TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, | 
 |                                          MachineBasicBlock *NewDest) const { | 
 |   MachineBasicBlock *MBB = Tail->getParent(); | 
 |  | 
 |   // Remove all the old successors of MBB from the CFG. | 
 |   while (!MBB->succ_empty()) | 
 |     MBB->removeSuccessor(MBB->succ_begin()); | 
 |  | 
 |   // Save off the debug loc before erasing the instruction. | 
 |   DebugLoc DL = Tail->getDebugLoc(); | 
 |  | 
 |   // Update call info and remove all the dead instructions | 
 |   // from the end of MBB. | 
 |   while (Tail != MBB->end()) { | 
 |     auto MI = Tail++; | 
 |     if (MI->shouldUpdateAdditionalCallInfo()) | 
 |       MBB->getParent()->eraseAdditionalCallInfo(&*MI); | 
 |     MBB->erase(MI); | 
 |   } | 
 |  | 
 |   // If MBB isn't immediately before MBB, insert a branch to it. | 
 |   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) | 
 |     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); | 
 |   MBB->addSuccessor(NewDest); | 
 | } | 
 |  | 
 | MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, | 
 |                                                       bool NewMI, unsigned Idx1, | 
 |                                                       unsigned Idx2) const { | 
 |   const MCInstrDesc &MCID = MI.getDesc(); | 
 |   bool HasDef = MCID.getNumDefs(); | 
 |   if (HasDef && !MI.getOperand(0).isReg()) | 
 |     // No idea how to commute this instruction. Target should implement its own. | 
 |     return nullptr; | 
 |  | 
 |   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; | 
 |   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; | 
 |   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && | 
 |          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && | 
 |          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); | 
 |   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && | 
 |          "This only knows how to commute register operands so far"); | 
 |  | 
 |   Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); | 
 |   Register Reg1 = MI.getOperand(Idx1).getReg(); | 
 |   Register Reg2 = MI.getOperand(Idx2).getReg(); | 
 |   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; | 
 |   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); | 
 |   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); | 
 |   bool Reg1IsKill = MI.getOperand(Idx1).isKill(); | 
 |   bool Reg2IsKill = MI.getOperand(Idx2).isKill(); | 
 |   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); | 
 |   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); | 
 |   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); | 
 |   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); | 
 |   // Avoid calling isRenamable for virtual registers since we assert that | 
 |   // renamable property is only queried/set for physical registers. | 
 |   bool Reg1IsRenamable = | 
 |       Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false; | 
 |   bool Reg2IsRenamable = | 
 |       Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false; | 
 |  | 
 |   // For a case like this: | 
 |   //   %0.sub = INST %0.sub(tied), %1.sub, implicit-def %0 | 
 |   // we need to update the implicit-def after commuting to result in: | 
 |   //   %1.sub = INST %1.sub(tied), %0.sub, implicit-def %1 | 
 |   SmallVector<unsigned> UpdateImplicitDefIdx; | 
 |   if (HasDef && MI.hasImplicitDef()) { | 
 |     const TargetRegisterInfo *TRI = | 
 |         MI.getMF()->getSubtarget().getRegisterInfo(); | 
 |     for (auto [OpNo, MO] : llvm::enumerate(MI.implicit_operands())) { | 
 |       Register ImplReg = MO.getReg(); | 
 |       if ((ImplReg.isVirtual() && ImplReg == Reg0) || | 
 |           (ImplReg.isPhysical() && Reg0.isPhysical() && | 
 |            TRI->isSubRegisterEq(ImplReg, Reg0))) | 
 |         UpdateImplicitDefIdx.push_back(OpNo + MI.getNumExplicitOperands()); | 
 |     } | 
 |   } | 
 |  | 
 |   // If destination is tied to either of the commuted source register, then | 
 |   // it must be updated. | 
 |   if (HasDef && Reg0 == Reg1 && | 
 |       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { | 
 |     Reg2IsKill = false; | 
 |     Reg0 = Reg2; | 
 |     SubReg0 = SubReg2; | 
 |   } else if (HasDef && Reg0 == Reg2 && | 
 |              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { | 
 |     Reg1IsKill = false; | 
 |     Reg0 = Reg1; | 
 |     SubReg0 = SubReg1; | 
 |   } | 
 |  | 
 |   MachineInstr *CommutedMI = nullptr; | 
 |   if (NewMI) { | 
 |     // Create a new instruction. | 
 |     MachineFunction &MF = *MI.getMF(); | 
 |     CommutedMI = MF.CloneMachineInstr(&MI); | 
 |   } else { | 
 |     CommutedMI = &MI; | 
 |   } | 
 |  | 
 |   if (HasDef) { | 
 |     CommutedMI->getOperand(0).setReg(Reg0); | 
 |     CommutedMI->getOperand(0).setSubReg(SubReg0); | 
 |     for (unsigned Idx : UpdateImplicitDefIdx) | 
 |       CommutedMI->getOperand(Idx).setReg(Reg0); | 
 |   } | 
 |   CommutedMI->getOperand(Idx2).setReg(Reg1); | 
 |   CommutedMI->getOperand(Idx1).setReg(Reg2); | 
 |   CommutedMI->getOperand(Idx2).setSubReg(SubReg1); | 
 |   CommutedMI->getOperand(Idx1).setSubReg(SubReg2); | 
 |   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); | 
 |   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); | 
 |   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); | 
 |   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); | 
 |   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); | 
 |   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); | 
 |   // Avoid calling setIsRenamable for virtual registers since we assert that | 
 |   // renamable property is only queried/set for physical registers. | 
 |   if (Reg1.isPhysical()) | 
 |     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); | 
 |   if (Reg2.isPhysical()) | 
 |     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); | 
 |   return CommutedMI; | 
 | } | 
 |  | 
 | MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, | 
 |                                                   unsigned OpIdx1, | 
 |                                                   unsigned OpIdx2) const { | 
 |   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose | 
 |   // any commutable operand, which is done in findCommutedOpIndices() method | 
 |   // called below. | 
 |   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && | 
 |       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { | 
 |     assert(MI.isCommutable() && | 
 |            "Precondition violation: MI must be commutable."); | 
 |     return nullptr; | 
 |   } | 
 |   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, | 
 |                                            unsigned &ResultIdx2, | 
 |                                            unsigned CommutableOpIdx1, | 
 |                                            unsigned CommutableOpIdx2) { | 
 |   if (ResultIdx1 == CommuteAnyOperandIndex && | 
 |       ResultIdx2 == CommuteAnyOperandIndex) { | 
 |     ResultIdx1 = CommutableOpIdx1; | 
 |     ResultIdx2 = CommutableOpIdx2; | 
 |   } else if (ResultIdx1 == CommuteAnyOperandIndex) { | 
 |     if (ResultIdx2 == CommutableOpIdx1) | 
 |       ResultIdx1 = CommutableOpIdx2; | 
 |     else if (ResultIdx2 == CommutableOpIdx2) | 
 |       ResultIdx1 = CommutableOpIdx1; | 
 |     else | 
 |       return false; | 
 |   } else if (ResultIdx2 == CommuteAnyOperandIndex) { | 
 |     if (ResultIdx1 == CommutableOpIdx1) | 
 |       ResultIdx2 = CommutableOpIdx2; | 
 |     else if (ResultIdx1 == CommutableOpIdx2) | 
 |       ResultIdx2 = CommutableOpIdx1; | 
 |     else | 
 |       return false; | 
 |   } else | 
 |     // Check that the result operand indices match the given commutable | 
 |     // operand indices. | 
 |     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || | 
 |            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, | 
 |                                             unsigned &SrcOpIdx1, | 
 |                                             unsigned &SrcOpIdx2) const { | 
 |   assert(!MI.isBundle() && | 
 |          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); | 
 |  | 
 |   const MCInstrDesc &MCID = MI.getDesc(); | 
 |   if (!MCID.isCommutable()) | 
 |     return false; | 
 |  | 
 |   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this | 
 |   // is not true, then the target must implement this. | 
 |   unsigned CommutableOpIdx1 = MCID.getNumDefs(); | 
 |   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; | 
 |   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, | 
 |                             CommutableOpIdx1, CommutableOpIdx2)) | 
 |     return false; | 
 |  | 
 |   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) | 
 |     // No idea. | 
 |     return false; | 
 |   return true; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { | 
 |   if (!MI.isTerminator()) return false; | 
 |  | 
 |   // Conditional branch is a special case. | 
 |   if (MI.isBranch() && !MI.isBarrier()) | 
 |     return true; | 
 |   if (!MI.isPredicable()) | 
 |     return true; | 
 |   return !isPredicated(MI); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::PredicateInstruction( | 
 |     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { | 
 |   bool MadeChange = false; | 
 |  | 
 |   assert(!MI.isBundle() && | 
 |          "TargetInstrInfo::PredicateInstruction() can't handle bundles"); | 
 |  | 
 |   const MCInstrDesc &MCID = MI.getDesc(); | 
 |   if (!MI.isPredicable()) | 
 |     return false; | 
 |  | 
 |   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     if (MCID.operands()[i].isPredicate()) { | 
 |       MachineOperand &MO = MI.getOperand(i); | 
 |       if (MO.isReg()) { | 
 |         MO.setReg(Pred[j].getReg()); | 
 |         MadeChange = true; | 
 |       } else if (MO.isImm()) { | 
 |         MO.setImm(Pred[j].getImm()); | 
 |         MadeChange = true; | 
 |       } else if (MO.isMBB()) { | 
 |         MO.setMBB(Pred[j].getMBB()); | 
 |         MadeChange = true; | 
 |       } | 
 |       ++j; | 
 |     } | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::hasLoadFromStackSlot( | 
 |     const MachineInstr &MI, | 
 |     SmallVectorImpl<const MachineMemOperand *> &Accesses) const { | 
 |   size_t StartSize = Accesses.size(); | 
 |   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), | 
 |                                   oe = MI.memoperands_end(); | 
 |        o != oe; ++o) { | 
 |     if ((*o)->isLoad() && | 
 |         isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) | 
 |       Accesses.push_back(*o); | 
 |   } | 
 |   return Accesses.size() != StartSize; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::hasStoreToStackSlot( | 
 |     const MachineInstr &MI, | 
 |     SmallVectorImpl<const MachineMemOperand *> &Accesses) const { | 
 |   size_t StartSize = Accesses.size(); | 
 |   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), | 
 |                                   oe = MI.memoperands_end(); | 
 |        o != oe; ++o) { | 
 |     if ((*o)->isStore() && | 
 |         isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) | 
 |       Accesses.push_back(*o); | 
 |   } | 
 |   return Accesses.size() != StartSize; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, | 
 |                                         unsigned SubIdx, unsigned &Size, | 
 |                                         unsigned &Offset, | 
 |                                         const MachineFunction &MF) const { | 
 |   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
 |   if (!SubIdx) { | 
 |     Size = TRI->getSpillSize(*RC); | 
 |     Offset = 0; | 
 |     return true; | 
 |   } | 
 |   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); | 
 |   // Convert bit size to byte size. | 
 |   if (BitSize % 8) | 
 |     return false; | 
 |  | 
 |   int BitOffset = TRI->getSubRegIdxOffset(SubIdx); | 
 |   if (BitOffset < 0 || BitOffset % 8) | 
 |     return false; | 
 |  | 
 |   Size = BitSize / 8; | 
 |   Offset = (unsigned)BitOffset / 8; | 
 |  | 
 |   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); | 
 |  | 
 |   if (!MF.getDataLayout().isLittleEndian()) { | 
 |     Offset = TRI->getSpillSize(*RC) - (Offset + Size); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, | 
 |                                     MachineBasicBlock::iterator I, | 
 |                                     Register DestReg, unsigned SubIdx, | 
 |                                     const MachineInstr &Orig, | 
 |                                     const TargetRegisterInfo &TRI) const { | 
 |   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); | 
 |   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
 |   MBB.insert(I, MI); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, | 
 |                                        const MachineInstr &MI1, | 
 |                                        const MachineRegisterInfo *MRI) const { | 
 |   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | 
 | } | 
 |  | 
 | MachineInstr & | 
 | TargetInstrInfo::duplicate(MachineBasicBlock &MBB, | 
 |                            MachineBasicBlock::iterator InsertBefore, | 
 |                            const MachineInstr &Orig) const { | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   // CFI instructions are marked as non-duplicable, because Darwin compact | 
 |   // unwind info emission can't handle multiple prologue setups. | 
 |   assert((!Orig.isNotDuplicable() || | 
 |           (!MF.getTarget().getTargetTriple().isOSDarwin() && | 
 |            Orig.isCFIInstruction())) && | 
 |          "Instruction cannot be duplicated"); | 
 |  | 
 |   return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig); | 
 | } | 
 |  | 
 | // If the COPY instruction in MI can be folded to a stack operation, return | 
 | // the register class to use. | 
 | static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, | 
 |                                               const TargetInstrInfo &TII, | 
 |                                               unsigned FoldIdx) { | 
 |   assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction"); | 
 |   if (MI.getNumOperands() != 2) | 
 |     return nullptr; | 
 |   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); | 
 |  | 
 |   const MachineOperand &FoldOp = MI.getOperand(FoldIdx); | 
 |   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); | 
 |  | 
 |   if (FoldOp.getSubReg() || LiveOp.getSubReg()) | 
 |     return nullptr; | 
 |  | 
 |   Register FoldReg = FoldOp.getReg(); | 
 |   Register LiveReg = LiveOp.getReg(); | 
 |  | 
 |   assert(FoldReg.isVirtual() && "Cannot fold physregs"); | 
 |  | 
 |   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); | 
 |   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); | 
 |  | 
 |   if (LiveOp.getReg().isPhysical()) | 
 |     return RC->contains(LiveOp.getReg()) ? RC : nullptr; | 
 |  | 
 |   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) | 
 |     return RC; | 
 |  | 
 |   // FIXME: Allow folding when register classes are memory compatible. | 
 |   return nullptr; | 
 | } | 
 |  | 
 | MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); } | 
 |  | 
 | /// Try to remove the load by folding it to a register | 
 | /// operand at the use. We fold the load instructions if load defines a virtual | 
 | /// register, the virtual register is used once in the same BB, and the | 
 | /// instructions in-between do not load or store, and have no side effects. | 
 | MachineInstr *TargetInstrInfo::optimizeLoadInstr(MachineInstr &MI, | 
 |                                                  const MachineRegisterInfo *MRI, | 
 |                                                  Register &FoldAsLoadDefReg, | 
 |                                                  MachineInstr *&DefMI) const { | 
 |   // Check whether we can move DefMI here. | 
 |   DefMI = MRI->getVRegDef(FoldAsLoadDefReg); | 
 |   assert(DefMI); | 
 |   bool SawStore = false; | 
 |   if (!DefMI->isSafeToMove(SawStore)) | 
 |     return nullptr; | 
 |  | 
 |   // Collect information about virtual register operands of MI. | 
 |   SmallVector<unsigned, 1> SrcOperandIds; | 
 |   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     if (!MO.isReg()) | 
 |       continue; | 
 |     Register Reg = MO.getReg(); | 
 |     if (Reg != FoldAsLoadDefReg) | 
 |       continue; | 
 |     // Do not fold if we have a subreg use or a def. | 
 |     if (MO.getSubReg() || MO.isDef()) | 
 |       return nullptr; | 
 |     SrcOperandIds.push_back(i); | 
 |   } | 
 |   if (SrcOperandIds.empty()) | 
 |     return nullptr; | 
 |  | 
 |   // Check whether we can fold the def into SrcOperandId. | 
 |   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { | 
 |     FoldAsLoadDefReg = 0; | 
 |     return FoldMI; | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | std::pair<unsigned, unsigned> | 
 | TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const { | 
 |   switch (MI.getOpcode()) { | 
 |   case TargetOpcode::STACKMAP: | 
 |     // StackMapLiveValues are foldable | 
 |     return std::make_pair(0, StackMapOpers(&MI).getVarIdx()); | 
 |   case TargetOpcode::PATCHPOINT: | 
 |     // For PatchPoint, the call args are not foldable (even if reported in the | 
 |     // stackmap e.g. via anyregcc). | 
 |     return std::make_pair(0, PatchPointOpers(&MI).getVarIdx()); | 
 |   case TargetOpcode::STATEPOINT: | 
 |     // For statepoints, fold deopt and gc arguments, but not call arguments. | 
 |     return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx()); | 
 |   default: | 
 |     llvm_unreachable("unexpected stackmap opcode"); | 
 |   } | 
 | } | 
 |  | 
 | static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, | 
 |                                     ArrayRef<unsigned> Ops, int FrameIndex, | 
 |                                     const TargetInstrInfo &TII) { | 
 |   unsigned StartIdx = 0; | 
 |   unsigned NumDefs = 0; | 
 |   // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint. | 
 |   std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI); | 
 |  | 
 |   unsigned DefToFoldIdx = MI.getNumOperands(); | 
 |  | 
 |   // Return false if any operands requested for folding are not foldable (not | 
 |   // part of the stackmap's live values). | 
 |   for (unsigned Op : Ops) { | 
 |     if (Op < NumDefs) { | 
 |       assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs"); | 
 |       DefToFoldIdx = Op; | 
 |     } else if (Op < StartIdx) { | 
 |       return nullptr; | 
 |     } | 
 |     if (MI.getOperand(Op).isTied()) | 
 |       return nullptr; | 
 |   } | 
 |  | 
 |   MachineInstr *NewMI = | 
 |       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); | 
 |   MachineInstrBuilder MIB(MF, NewMI); | 
 |  | 
 |   // No need to fold return, the meta data, and function arguments | 
 |   for (unsigned i = 0; i < StartIdx; ++i) | 
 |     if (i != DefToFoldIdx) | 
 |       MIB.add(MI.getOperand(i)); | 
 |  | 
 |   for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) { | 
 |     MachineOperand &MO = MI.getOperand(i); | 
 |     unsigned TiedTo = e; | 
 |     (void)MI.isRegTiedToDefOperand(i, &TiedTo); | 
 |  | 
 |     if (is_contained(Ops, i)) { | 
 |       assert(TiedTo == e && "Cannot fold tied operands"); | 
 |       unsigned SpillSize; | 
 |       unsigned SpillOffset; | 
 |       // Compute the spill slot size and offset. | 
 |       const TargetRegisterClass *RC = | 
 |         MF.getRegInfo().getRegClass(MO.getReg()); | 
 |       bool Valid = | 
 |           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); | 
 |       if (!Valid) | 
 |         report_fatal_error("cannot spill patchpoint subregister operand"); | 
 |       MIB.addImm(StackMaps::IndirectMemRefOp); | 
 |       MIB.addImm(SpillSize); | 
 |       MIB.addFrameIndex(FrameIndex); | 
 |       MIB.addImm(SpillOffset); | 
 |     } else { | 
 |       MIB.add(MO); | 
 |       if (TiedTo < e) { | 
 |         assert(TiedTo < NumDefs && "Bad tied operand"); | 
 |         if (TiedTo > DefToFoldIdx) | 
 |           --TiedTo; | 
 |         NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1); | 
 |       } | 
 |     } | 
 |   } | 
 |   return NewMI; | 
 | } | 
 |  | 
 | static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI, | 
 |                                     const TargetInstrInfo &TII) { | 
 |   // If the machine operand is tied, untie it first. | 
 |   if (MI->getOperand(OpNo).isTied()) { | 
 |     unsigned TiedTo = MI->findTiedOperandIdx(OpNo); | 
 |     MI->untieRegOperand(OpNo); | 
 |     // Intentional recursion! | 
 |     foldInlineAsmMemOperand(MI, TiedTo, FI, TII); | 
 |   } | 
 |  | 
 |   SmallVector<MachineOperand, 5> NewOps; | 
 |   TII.getFrameIndexOperands(NewOps, FI); | 
 |   assert(!NewOps.empty() && "getFrameIndexOperands didn't create any operands"); | 
 |   MI->removeOperand(OpNo); | 
 |   MI->insert(MI->operands_begin() + OpNo, NewOps); | 
 |  | 
 |   // Change the previous operand to a MemKind InlineAsm::Flag. The second param | 
 |   // is the per-target number of operands that represent the memory operand | 
 |   // excluding this one (MD). This includes MO. | 
 |   InlineAsm::Flag F(InlineAsm::Kind::Mem, NewOps.size()); | 
 |   F.setMemConstraint(InlineAsm::ConstraintCode::m); | 
 |   MachineOperand &MD = MI->getOperand(OpNo - 1); | 
 |   MD.setImm(F); | 
 | } | 
 |  | 
 | // Returns nullptr if not possible to fold. | 
 | static MachineInstr *foldInlineAsmMemOperand(MachineInstr &MI, | 
 |                                              ArrayRef<unsigned> Ops, int FI, | 
 |                                              const TargetInstrInfo &TII) { | 
 |   assert(MI.isInlineAsm() && "wrong opcode"); | 
 |   if (Ops.size() > 1) | 
 |     return nullptr; | 
 |   unsigned Op = Ops[0]; | 
 |   assert(Op && "should never be first operand"); | 
 |   assert(MI.getOperand(Op).isReg() && "shouldn't be folding non-reg operands"); | 
 |  | 
 |   if (!MI.mayFoldInlineAsmRegOp(Op)) | 
 |     return nullptr; | 
 |  | 
 |   MachineInstr &NewMI = TII.duplicate(*MI.getParent(), MI.getIterator(), MI); | 
 |  | 
 |   foldInlineAsmMemOperand(&NewMI, Op, FI, TII); | 
 |  | 
 |   // Update mayload/maystore metadata, and memoperands. | 
 |   const VirtRegInfo &RI = | 
 |       AnalyzeVirtRegInBundle(MI, MI.getOperand(Op).getReg()); | 
 |   MachineOperand &ExtraMO = NewMI.getOperand(InlineAsm::MIOp_ExtraInfo); | 
 |   MachineMemOperand::Flags Flags = MachineMemOperand::MONone; | 
 |   if (RI.Reads) { | 
 |     ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayLoad); | 
 |     Flags |= MachineMemOperand::MOLoad; | 
 |   } | 
 |   if (RI.Writes) { | 
 |     ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayStore); | 
 |     Flags |= MachineMemOperand::MOStore; | 
 |   } | 
 |   MachineFunction *MF = NewMI.getMF(); | 
 |   const MachineFrameInfo &MFI = MF->getFrameInfo(); | 
 |   MachineMemOperand *MMO = MF->getMachineMemOperand( | 
 |       MachinePointerInfo::getFixedStack(*MF, FI), Flags, MFI.getObjectSize(FI), | 
 |       MFI.getObjectAlign(FI)); | 
 |   NewMI.addMemOperand(*MF, MMO); | 
 |  | 
 |   return &NewMI; | 
 | } | 
 |  | 
 | MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, | 
 |                                                  ArrayRef<unsigned> Ops, int FI, | 
 |                                                  LiveIntervals *LIS, | 
 |                                                  VirtRegMap *VRM) const { | 
 |   auto Flags = MachineMemOperand::MONone; | 
 |   for (unsigned OpIdx : Ops) | 
 |     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore | 
 |                                           : MachineMemOperand::MOLoad; | 
 |  | 
 |   MachineBasicBlock *MBB = MI.getParent(); | 
 |   assert(MBB && "foldMemoryOperand needs an inserted instruction"); | 
 |   MachineFunction &MF = *MBB->getParent(); | 
 |  | 
 |   // If we're not folding a load into a subreg, the size of the load is the | 
 |   // size of the spill slot. But if we are, we need to figure out what the | 
 |   // actual load size is. | 
 |   int64_t MemSize = 0; | 
 |   const MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
 |  | 
 |   if (Flags & MachineMemOperand::MOStore) { | 
 |     MemSize = MFI.getObjectSize(FI); | 
 |   } else { | 
 |     for (unsigned OpIdx : Ops) { | 
 |       int64_t OpSize = MFI.getObjectSize(FI); | 
 |  | 
 |       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { | 
 |         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); | 
 |         if (SubRegSize > 0 && !(SubRegSize % 8)) | 
 |           OpSize = SubRegSize / 8; | 
 |       } | 
 |  | 
 |       MemSize = std::max(MemSize, OpSize); | 
 |     } | 
 |   } | 
 |  | 
 |   assert(MemSize && "Did not expect a zero-sized stack slot"); | 
 |  | 
 |   MachineInstr *NewMI = nullptr; | 
 |  | 
 |   if (MI.getOpcode() == TargetOpcode::STACKMAP || | 
 |       MI.getOpcode() == TargetOpcode::PATCHPOINT || | 
 |       MI.getOpcode() == TargetOpcode::STATEPOINT) { | 
 |     // Fold stackmap/patchpoint. | 
 |     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); | 
 |     if (NewMI) | 
 |       MBB->insert(MI, NewMI); | 
 |   } else if (MI.isInlineAsm()) { | 
 |     return foldInlineAsmMemOperand(MI, Ops, FI, *this); | 
 |   } else { | 
 |     // Ask the target to do the actual folding. | 
 |     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); | 
 |   } | 
 |  | 
 |   if (NewMI) { | 
 |     NewMI->setMemRefs(MF, MI.memoperands()); | 
 |     // Add a memory operand, foldMemoryOperandImpl doesn't do that. | 
 |     assert((!(Flags & MachineMemOperand::MOStore) || | 
 |             NewMI->mayStore()) && | 
 |            "Folded a def to a non-store!"); | 
 |     assert((!(Flags & MachineMemOperand::MOLoad) || | 
 |             NewMI->mayLoad()) && | 
 |            "Folded a use to a non-load!"); | 
 |     assert(MFI.getObjectOffset(FI) != -1); | 
 |     MachineMemOperand *MMO = | 
 |         MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), | 
 |                                 Flags, MemSize, MFI.getObjectAlign(FI)); | 
 |     NewMI->addMemOperand(MF, MMO); | 
 |  | 
 |     // The pass "x86 speculative load hardening" always attaches symbols to | 
 |     // call instructions. We need copy it form old instruction. | 
 |     NewMI->cloneInstrSymbols(MF, MI); | 
 |  | 
 |     return NewMI; | 
 |   } | 
 |  | 
 |   // Straight COPY may fold as load/store. | 
 |   if (!isCopyInstr(MI) || Ops.size() != 1) | 
 |     return nullptr; | 
 |  | 
 |   const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]); | 
 |   if (!RC) | 
 |     return nullptr; | 
 |  | 
 |   const MachineOperand &MO = MI.getOperand(1 - Ops[0]); | 
 |   MachineBasicBlock::iterator Pos = MI; | 
 |   if (Flags == MachineMemOperand::MOStore) { | 
 |     if (MO.isUndef()) { | 
 |       // If this is an undef copy, we do not need to bother we inserting spill | 
 |       // code. | 
 |       BuildMI(*MBB, Pos, MI.getDebugLoc(), get(TargetOpcode::KILL)).add(MO); | 
 |     } else { | 
 |       storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI, | 
 |                           Register()); | 
 |     } | 
 |   } else | 
 |     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register()); | 
 |  | 
 |   return &*--Pos; | 
 | } | 
 |  | 
 | MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, | 
 |                                                  ArrayRef<unsigned> Ops, | 
 |                                                  MachineInstr &LoadMI, | 
 |                                                  LiveIntervals *LIS) const { | 
 |   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); | 
 | #ifndef NDEBUG | 
 |   for (unsigned OpIdx : Ops) | 
 |     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); | 
 | #endif | 
 |  | 
 |   MachineBasicBlock &MBB = *MI.getParent(); | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |  | 
 |   // Ask the target to do the actual folding. | 
 |   MachineInstr *NewMI = nullptr; | 
 |   int FrameIndex = 0; | 
 |  | 
 |   if ((MI.getOpcode() == TargetOpcode::STACKMAP || | 
 |        MI.getOpcode() == TargetOpcode::PATCHPOINT || | 
 |        MI.getOpcode() == TargetOpcode::STATEPOINT) && | 
 |       isLoadFromStackSlot(LoadMI, FrameIndex)) { | 
 |     // Fold stackmap/patchpoint. | 
 |     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); | 
 |     if (NewMI) | 
 |       NewMI = &*MBB.insert(MI, NewMI); | 
 |   } else if (MI.isInlineAsm() && isLoadFromStackSlot(LoadMI, FrameIndex)) { | 
 |     return foldInlineAsmMemOperand(MI, Ops, FrameIndex, *this); | 
 |   } else { | 
 |     // Ask the target to do the actual folding. | 
 |     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); | 
 |   } | 
 |  | 
 |   if (!NewMI) | 
 |     return nullptr; | 
 |  | 
 |   // Copy the memoperands from the load to the folded instruction. | 
 |   if (MI.memoperands_empty()) { | 
 |     NewMI->setMemRefs(MF, LoadMI.memoperands()); | 
 |   } else { | 
 |     // Handle the rare case of folding multiple loads. | 
 |     NewMI->setMemRefs(MF, MI.memoperands()); | 
 |     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), | 
 |                                     E = LoadMI.memoperands_end(); | 
 |          I != E; ++I) { | 
 |       NewMI->addMemOperand(MF, *I); | 
 |     } | 
 |   } | 
 |   return NewMI; | 
 | } | 
 |  | 
 | /// transferImplicitOperands - MI is a pseudo-instruction, and the lowered | 
 | /// replacement instructions immediately precede it.  Copy any implicit | 
 | /// operands from MI to the replacement instruction. | 
 | static void transferImplicitOperands(MachineInstr *MI, | 
 |                                      const TargetRegisterInfo *TRI) { | 
 |   MachineBasicBlock::iterator CopyMI = MI; | 
 |   --CopyMI; | 
 |  | 
 |   Register DstReg = MI->getOperand(0).getReg(); | 
 |   for (const MachineOperand &MO : MI->implicit_operands()) { | 
 |     CopyMI->addOperand(MO); | 
 |  | 
 |     // Be conservative about preserving kills when subregister defs are | 
 |     // involved. If there was implicit kill of a super-register overlapping the | 
 |     // copy result, we would kill the subregisters previous copies defined. | 
 |  | 
 |     if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg())) | 
 |       CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false); | 
 |   } | 
 | } | 
 |  | 
 | void TargetInstrInfo::lowerCopy(MachineInstr *MI, | 
 |                                 const TargetRegisterInfo *TRI) const { | 
 |   if (MI->allDefsAreDead()) { | 
 |     MI->setDesc(get(TargetOpcode::KILL)); | 
 |     return; | 
 |   } | 
 |  | 
 |   MachineOperand &DstMO = MI->getOperand(0); | 
 |   MachineOperand &SrcMO = MI->getOperand(1); | 
 |  | 
 |   bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg()); | 
 |   if (IdentityCopy || SrcMO.isUndef()) { | 
 |     // No need to insert an identity copy instruction, but replace with a KILL | 
 |     // if liveness is changed. | 
 |     if (SrcMO.isUndef() || MI->getNumOperands() > 2) { | 
 |       // We must make sure the super-register gets killed. Replace the | 
 |       // instruction with KILL. | 
 |       MI->setDesc(get(TargetOpcode::KILL)); | 
 |       return; | 
 |     } | 
 |     // Vanilla identity copy. | 
 |     MI->eraseFromParent(); | 
 |     return; | 
 |   } | 
 |  | 
 |   copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(), | 
 |               SrcMO.getReg(), SrcMO.isKill(), | 
 |               DstMO.getReg().isPhysical() ? DstMO.isRenamable() : false, | 
 |               SrcMO.getReg().isPhysical() ? SrcMO.isRenamable() : false); | 
 |  | 
 |   if (MI->getNumOperands() > 2) | 
 |     transferImplicitOperands(MI, TRI); | 
 |   MI->eraseFromParent(); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::hasReassociableOperands( | 
 |     const MachineInstr &Inst, const MachineBasicBlock *MBB) const { | 
 |   const MachineOperand &Op1 = Inst.getOperand(1); | 
 |   const MachineOperand &Op2 = Inst.getOperand(2); | 
 |   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
 |  | 
 |   // We need virtual register definitions for the operands that we will | 
 |   // reassociate. | 
 |   MachineInstr *MI1 = nullptr; | 
 |   MachineInstr *MI2 = nullptr; | 
 |   if (Op1.isReg() && Op1.getReg().isVirtual()) | 
 |     MI1 = MRI.getUniqueVRegDef(Op1.getReg()); | 
 |   if (Op2.isReg() && Op2.getReg().isVirtual()) | 
 |     MI2 = MRI.getUniqueVRegDef(Op2.getReg()); | 
 |  | 
 |   // And at least one operand must be defined in MBB. | 
 |   return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1, | 
 |                                                unsigned Opcode2) const { | 
 |   return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, | 
 |                                              bool &Commuted) const { | 
 |   const MachineBasicBlock *MBB = Inst.getParent(); | 
 |   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
 |   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); | 
 |   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); | 
 |   unsigned Opcode = Inst.getOpcode(); | 
 |  | 
 |   // If only one operand has the same or inverse opcode and it's the second | 
 |   // source operand, the operands must be commuted. | 
 |   Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && | 
 |              areOpcodesEqualOrInverse(Opcode, MI2->getOpcode()); | 
 |   if (Commuted) | 
 |     std::swap(MI1, MI2); | 
 |  | 
 |   // 1. The previous instruction must be the same type as Inst. | 
 |   // 2. The previous instruction must also be associative/commutative or be the | 
 |   //    inverse of such an operation (this can be different even for | 
 |   //    instructions with the same opcode if traits like fast-math-flags are | 
 |   //    included). | 
 |   // 3. The previous instruction must have virtual register definitions for its | 
 |   //    operands in the same basic block as Inst. | 
 |   // 4. The previous instruction's result must only be used by Inst. | 
 |   return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && | 
 |          (isAssociativeAndCommutative(*MI1) || | 
 |           isAssociativeAndCommutative(*MI1, /* Invert */ true)) && | 
 |          hasReassociableOperands(*MI1, MBB) && | 
 |          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); | 
 | } | 
 |  | 
 | // 1. The operation must be associative and commutative or be the inverse of | 
 | //    such an operation. | 
 | // 2. The instruction must have virtual register definitions for its | 
 | //    operands in the same basic block. | 
 | // 3. The instruction must have a reassociable sibling. | 
 | bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, | 
 |                                                bool &Commuted) const { | 
 |   return (isAssociativeAndCommutative(Inst) || | 
 |           isAssociativeAndCommutative(Inst, /* Invert */ true)) && | 
 |          hasReassociableOperands(Inst, Inst.getParent()) && | 
 |          hasReassociableSibling(Inst, Commuted); | 
 | } | 
 |  | 
 | // Utility routine that checks if \param MO is defined by an | 
 | // \param CombineOpc instruction in the basic block \param MBB. | 
 | // If \param CombineOpc is not provided, the OpCode check will | 
 | // be skipped. | 
 | static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO, | 
 |                        unsigned CombineOpc = 0) { | 
 |   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
 |   MachineInstr *MI = nullptr; | 
 |  | 
 |   if (MO.isReg() && MO.getReg().isVirtual()) | 
 |     MI = MRI.getUniqueVRegDef(MO.getReg()); | 
 |   // And it needs to be in the trace (otherwise, it won't have a depth). | 
 |   if (!MI || MI->getParent() != &MBB || | 
 |       (MI->getOpcode() != CombineOpc && CombineOpc != 0)) | 
 |     return false; | 
 |   // Must only used by the user we combine with. | 
 |   if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // A chain of accumulation instructions will be selected IFF: | 
 | //    1. All the accumulation instructions in the chain have the same opcode, | 
 | //       besides the first that has a slightly different opcode because it does | 
 | //       not accumulate into a register. | 
 | //    2. All the instructions in the chain are combinable (have a single use | 
 | //       which itself is part of the chain). | 
 | //    3. Meets the required minimum length. | 
 | void TargetInstrInfo::getAccumulatorChain( | 
 |     MachineInstr *CurrentInstr, SmallVectorImpl<Register> &Chain) const { | 
 |   // Walk up the chain of accumulation instructions and collect them in the | 
 |   // vector. | 
 |   MachineBasicBlock &MBB = *CurrentInstr->getParent(); | 
 |   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
 |   unsigned AccumulatorOpcode = CurrentInstr->getOpcode(); | 
 |   std::optional<unsigned> ChainStartOpCode = | 
 |       getAccumulationStartOpcode(AccumulatorOpcode); | 
 |  | 
 |   if (!ChainStartOpCode.has_value()) | 
 |     return; | 
 |  | 
 |   // Push the first accumulator result to the start of the chain. | 
 |   Chain.push_back(CurrentInstr->getOperand(0).getReg()); | 
 |  | 
 |   // Collect the accumulator input register from all instructions in the chain. | 
 |   while (CurrentInstr && | 
 |          canCombine(MBB, CurrentInstr->getOperand(1), AccumulatorOpcode)) { | 
 |     Chain.push_back(CurrentInstr->getOperand(1).getReg()); | 
 |     CurrentInstr = MRI.getUniqueVRegDef(CurrentInstr->getOperand(1).getReg()); | 
 |   } | 
 |  | 
 |   // Add the instruction at the top of the chain. | 
 |   if (CurrentInstr->getOpcode() == AccumulatorOpcode && | 
 |       canCombine(MBB, CurrentInstr->getOperand(1))) | 
 |     Chain.push_back(CurrentInstr->getOperand(1).getReg()); | 
 | } | 
 |  | 
 | /// Find chains of accumulations that can be rewritten as a tree for increased | 
 | /// ILP. | 
 | bool TargetInstrInfo::getAccumulatorReassociationPatterns( | 
 |     MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns) const { | 
 |   if (!EnableAccReassociation) | 
 |     return false; | 
 |  | 
 |   unsigned Opc = Root.getOpcode(); | 
 |   if (!isAccumulationOpcode(Opc)) | 
 |     return false; | 
 |  | 
 |   // Verify that this is the end of the chain. | 
 |   MachineBasicBlock &MBB = *Root.getParent(); | 
 |   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
 |   if (!MRI.hasOneNonDBGUser(Root.getOperand(0).getReg())) | 
 |     return false; | 
 |  | 
 |   auto User = MRI.use_instr_begin(Root.getOperand(0).getReg()); | 
 |   if (User->getOpcode() == Opc) | 
 |     return false; | 
 |  | 
 |   // Walk up the use chain and collect the reduction chain. | 
 |   SmallVector<Register, 32> Chain; | 
 |   getAccumulatorChain(&Root, Chain); | 
 |  | 
 |   // Reject chains which are too short to be worth modifying. | 
 |   if (Chain.size() < MinAccumulatorDepth) | 
 |     return false; | 
 |  | 
 |   // Check if the MBB this instruction is a part of contains any other chains. | 
 |   // If so, don't apply it. | 
 |   SmallSet<Register, 32> ReductionChain(llvm::from_range, Chain); | 
 |   for (const auto &I : MBB) { | 
 |     if (I.getOpcode() == Opc && | 
 |         !ReductionChain.contains(I.getOperand(0).getReg())) | 
 |       return false; | 
 |   } | 
 |  | 
 |   Patterns.push_back(MachineCombinerPattern::ACC_CHAIN); | 
 |   return true; | 
 | } | 
 |  | 
 | // Reduce branches of the accumulator tree by adding them together. | 
 | void TargetInstrInfo::reduceAccumulatorTree( | 
 |     SmallVectorImpl<Register> &RegistersToReduce, | 
 |     SmallVectorImpl<MachineInstr *> &InsInstrs, MachineFunction &MF, | 
 |     MachineInstr &Root, MachineRegisterInfo &MRI, | 
 |     DenseMap<Register, unsigned> &InstrIdxForVirtReg, | 
 |     Register ResultReg) const { | 
 |   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); | 
 |   SmallVector<Register, 8> NewRegs; | 
 |  | 
 |   // Get the opcode for the reduction instruction we will need to build. | 
 |   // If for some reason it is not defined, early exit and don't apply this. | 
 |   unsigned ReduceOpCode = getReduceOpcodeForAccumulator(Root.getOpcode()); | 
 |  | 
 |   for (unsigned int i = 1; i <= (RegistersToReduce.size() / 2); i += 2) { | 
 |     auto RHS = RegistersToReduce[i - 1]; | 
 |     auto LHS = RegistersToReduce[i]; | 
 |     Register Dest; | 
 |     // If we are reducing 2 registers, reuse the original result register. | 
 |     if (RegistersToReduce.size() == 2) | 
 |       Dest = ResultReg; | 
 |     // Otherwise, create a new virtual register to hold the partial sum. | 
 |     else { | 
 |       auto NewVR = MRI.createVirtualRegister( | 
 |           MRI.getRegClass(Root.getOperand(0).getReg())); | 
 |       Dest = NewVR; | 
 |       NewRegs.push_back(Dest); | 
 |       InstrIdxForVirtReg.insert(std::make_pair(Dest, InsInstrs.size())); | 
 |     } | 
 |  | 
 |     // Create the new reduction instruction. | 
 |     MachineInstrBuilder MIB = | 
 |         BuildMI(MF, MIMetadata(Root), TII->get(ReduceOpCode), Dest) | 
 |             .addReg(RHS, getKillRegState(true)) | 
 |             .addReg(LHS, getKillRegState(true)); | 
 |     // Copy any flags needed from the original instruction. | 
 |     MIB->setFlags(Root.getFlags()); | 
 |     InsInstrs.push_back(MIB); | 
 |   } | 
 |  | 
 |   // If the number of registers to reduce is odd, add the remaining register to | 
 |   // the vector of registers to reduce. | 
 |   if (RegistersToReduce.size() % 2 != 0) | 
 |     NewRegs.push_back(RegistersToReduce[RegistersToReduce.size() - 1]); | 
 |  | 
 |   RegistersToReduce = NewRegs; | 
 | } | 
 |  | 
 | // The concept of the reassociation pass is that these operations can benefit | 
 | // from this kind of transformation: | 
 | // | 
 | // A = ? op ? | 
 | // B = A op X (Prev) | 
 | // C = B op Y (Root) | 
 | // --> | 
 | // A = ? op ? | 
 | // B = X op Y | 
 | // C = A op B | 
 | // | 
 | // breaking the dependency between A and B, allowing them to be executed in | 
 | // parallel (or back-to-back in a pipeline) instead of depending on each other. | 
 |  | 
 | // FIXME: This has the potential to be expensive (compile time) while not | 
 | // improving the code at all. Some ways to limit the overhead: | 
 | // 1. Track successful transforms; bail out if hit rate gets too low. | 
 | // 2. Only enable at -O3 or some other non-default optimization level. | 
 | // 3. Pre-screen pattern candidates here: if an operand of the previous | 
 | //    instruction is known to not increase the critical path, then don't match | 
 | //    that pattern. | 
 | bool TargetInstrInfo::getMachineCombinerPatterns( | 
 |     MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns, | 
 |     bool DoRegPressureReduce) const { | 
 |   bool Commute; | 
 |   if (isReassociationCandidate(Root, Commute)) { | 
 |     // We found a sequence of instructions that may be suitable for a | 
 |     // reassociation of operands to increase ILP. Specify each commutation | 
 |     // possibility for the Prev instruction in the sequence and let the | 
 |     // machine combiner decide if changing the operands is worthwhile. | 
 |     if (Commute) { | 
 |       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); | 
 |       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); | 
 |     } else { | 
 |       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); | 
 |       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); | 
 |     } | 
 |     return true; | 
 |   } | 
 |   if (getAccumulatorReassociationPatterns(Root, Patterns)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Return true when a code sequence can improve loop throughput. | 
 | bool TargetInstrInfo::isThroughputPattern(unsigned Pattern) const { | 
 |   return false; | 
 | } | 
 |  | 
 | CombinerObjective | 
 | TargetInstrInfo::getCombinerObjective(unsigned Pattern) const { | 
 |   switch (Pattern) { | 
 |   case MachineCombinerPattern::ACC_CHAIN: | 
 |     return CombinerObjective::MustReduceDepth; | 
 |   default: | 
 |     return CombinerObjective::Default; | 
 |   } | 
 | } | 
 |  | 
 | std::pair<unsigned, unsigned> | 
 | TargetInstrInfo::getReassociationOpcodes(unsigned Pattern, | 
 |                                          const MachineInstr &Root, | 
 |                                          const MachineInstr &Prev) const { | 
 |   bool AssocCommutRoot = isAssociativeAndCommutative(Root); | 
 |   bool AssocCommutPrev = isAssociativeAndCommutative(Prev); | 
 |  | 
 |   // Early exit if both opcodes are associative and commutative. It's a trivial | 
 |   // reassociation when we only change operands order. In this case opcodes are | 
 |   // not required to have inverse versions. | 
 |   if (AssocCommutRoot && AssocCommutPrev) { | 
 |     assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal"); | 
 |     return std::make_pair(Root.getOpcode(), Root.getOpcode()); | 
 |   } | 
 |  | 
 |   // At least one instruction is not associative or commutative. | 
 |   // Since we have matched one of the reassociation patterns, we expect that the | 
 |   // instructions' opcodes are equal or one of them is the inversion of the | 
 |   // other. | 
 |   assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) && | 
 |          "Incorrectly matched pattern"); | 
 |   unsigned AssocCommutOpcode = Root.getOpcode(); | 
 |   unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode()); | 
 |   if (!AssocCommutRoot) | 
 |     std::swap(AssocCommutOpcode, InverseOpcode); | 
 |  | 
 |   // The transformation rule (`+` is any associative and commutative binary | 
 |   // operation, `-` is the inverse): | 
 |   // REASSOC_AX_BY: | 
 |   //   (A + X) + Y => A + (X + Y) | 
 |   //   (A + X) - Y => A + (X - Y) | 
 |   //   (A - X) + Y => A - (X - Y) | 
 |   //   (A - X) - Y => A - (X + Y) | 
 |   // REASSOC_XA_BY: | 
 |   //   (X + A) + Y => (X + Y) + A | 
 |   //   (X + A) - Y => (X - Y) + A | 
 |   //   (X - A) + Y => (X + Y) - A | 
 |   //   (X - A) - Y => (X - Y) - A | 
 |   // REASSOC_AX_YB: | 
 |   //   Y + (A + X) => (Y + X) + A | 
 |   //   Y - (A + X) => (Y - X) - A | 
 |   //   Y + (A - X) => (Y - X) + A | 
 |   //   Y - (A - X) => (Y + X) - A | 
 |   // REASSOC_XA_YB: | 
 |   //   Y + (X + A) => (Y + X) + A | 
 |   //   Y - (X + A) => (Y - X) - A | 
 |   //   Y + (X - A) => (Y + X) - A | 
 |   //   Y - (X - A) => (Y - X) + A | 
 |   switch (Pattern) { | 
 |   default: | 
 |     llvm_unreachable("Unexpected pattern"); | 
 |   case MachineCombinerPattern::REASSOC_AX_BY: | 
 |     if (!AssocCommutRoot && AssocCommutPrev) | 
 |       return {AssocCommutOpcode, InverseOpcode}; | 
 |     if (AssocCommutRoot && !AssocCommutPrev) | 
 |       return {InverseOpcode, InverseOpcode}; | 
 |     if (!AssocCommutRoot && !AssocCommutPrev) | 
 |       return {InverseOpcode, AssocCommutOpcode}; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_XA_BY: | 
 |     if (!AssocCommutRoot && AssocCommutPrev) | 
 |       return {AssocCommutOpcode, InverseOpcode}; | 
 |     if (AssocCommutRoot && !AssocCommutPrev) | 
 |       return {InverseOpcode, AssocCommutOpcode}; | 
 |     if (!AssocCommutRoot && !AssocCommutPrev) | 
 |       return {InverseOpcode, InverseOpcode}; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_AX_YB: | 
 |     if (!AssocCommutRoot && AssocCommutPrev) | 
 |       return {InverseOpcode, InverseOpcode}; | 
 |     if (AssocCommutRoot && !AssocCommutPrev) | 
 |       return {AssocCommutOpcode, InverseOpcode}; | 
 |     if (!AssocCommutRoot && !AssocCommutPrev) | 
 |       return {InverseOpcode, AssocCommutOpcode}; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_XA_YB: | 
 |     if (!AssocCommutRoot && AssocCommutPrev) | 
 |       return {InverseOpcode, InverseOpcode}; | 
 |     if (AssocCommutRoot && !AssocCommutPrev) | 
 |       return {InverseOpcode, AssocCommutOpcode}; | 
 |     if (!AssocCommutRoot && !AssocCommutPrev) | 
 |       return {AssocCommutOpcode, InverseOpcode}; | 
 |     break; | 
 |   } | 
 |   llvm_unreachable("Unhandled combination"); | 
 | } | 
 |  | 
 | // Return a pair of boolean flags showing if the new root and new prev operands | 
 | // must be swapped. See visual example of the rule in | 
 | // TargetInstrInfo::getReassociationOpcodes. | 
 | static std::pair<bool, bool> mustSwapOperands(unsigned Pattern) { | 
 |   switch (Pattern) { | 
 |   default: | 
 |     llvm_unreachable("Unexpected pattern"); | 
 |   case MachineCombinerPattern::REASSOC_AX_BY: | 
 |     return {false, false}; | 
 |   case MachineCombinerPattern::REASSOC_XA_BY: | 
 |     return {true, false}; | 
 |   case MachineCombinerPattern::REASSOC_AX_YB: | 
 |     return {true, true}; | 
 |   case MachineCombinerPattern::REASSOC_XA_YB: | 
 |     return {true, true}; | 
 |   } | 
 | } | 
 |  | 
 | void TargetInstrInfo::getReassociateOperandIndices( | 
 |     const MachineInstr &Root, unsigned Pattern, | 
 |     std::array<unsigned, 5> &OperandIndices) const { | 
 |   switch (Pattern) { | 
 |   case MachineCombinerPattern::REASSOC_AX_BY: | 
 |     OperandIndices = {1, 1, 1, 2, 2}; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_AX_YB: | 
 |     OperandIndices = {2, 1, 2, 2, 1}; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_XA_BY: | 
 |     OperandIndices = {1, 2, 1, 1, 2}; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_XA_YB: | 
 |     OperandIndices = {2, 2, 2, 1, 1}; | 
 |     break; | 
 |   default: | 
 |     llvm_unreachable("unexpected MachineCombinerPattern"); | 
 |   } | 
 | } | 
 |  | 
 | /// Attempt the reassociation transformation to reduce critical path length. | 
 | /// See the above comments before getMachineCombinerPatterns(). | 
 | void TargetInstrInfo::reassociateOps( | 
 |     MachineInstr &Root, MachineInstr &Prev, unsigned Pattern, | 
 |     SmallVectorImpl<MachineInstr *> &InsInstrs, | 
 |     SmallVectorImpl<MachineInstr *> &DelInstrs, | 
 |     ArrayRef<unsigned> OperandIndices, | 
 |     DenseMap<Register, unsigned> &InstrIdxForVirtReg) const { | 
 |   MachineFunction *MF = Root.getMF(); | 
 |   MachineRegisterInfo &MRI = MF->getRegInfo(); | 
 |   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); | 
 |   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
 |   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); | 
 |  | 
 |   MachineOperand &OpA = Prev.getOperand(OperandIndices[1]); | 
 |   MachineOperand &OpB = Root.getOperand(OperandIndices[2]); | 
 |   MachineOperand &OpX = Prev.getOperand(OperandIndices[3]); | 
 |   MachineOperand &OpY = Root.getOperand(OperandIndices[4]); | 
 |   MachineOperand &OpC = Root.getOperand(0); | 
 |  | 
 |   Register RegA = OpA.getReg(); | 
 |   Register RegB = OpB.getReg(); | 
 |   Register RegX = OpX.getReg(); | 
 |   Register RegY = OpY.getReg(); | 
 |   Register RegC = OpC.getReg(); | 
 |  | 
 |   if (RegA.isVirtual()) | 
 |     MRI.constrainRegClass(RegA, RC); | 
 |   if (RegB.isVirtual()) | 
 |     MRI.constrainRegClass(RegB, RC); | 
 |   if (RegX.isVirtual()) | 
 |     MRI.constrainRegClass(RegX, RC); | 
 |   if (RegY.isVirtual()) | 
 |     MRI.constrainRegClass(RegY, RC); | 
 |   if (RegC.isVirtual()) | 
 |     MRI.constrainRegClass(RegC, RC); | 
 |  | 
 |   // Create a new virtual register for the result of (X op Y) instead of | 
 |   // recycling RegB because the MachineCombiner's computation of the critical | 
 |   // path requires a new register definition rather than an existing one. | 
 |   Register NewVR = MRI.createVirtualRegister(RC); | 
 |   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); | 
 |  | 
 |   auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev); | 
 |   bool KillA = OpA.isKill(); | 
 |   bool KillX = OpX.isKill(); | 
 |   bool KillY = OpY.isKill(); | 
 |   bool KillNewVR = true; | 
 |  | 
 |   auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern); | 
 |  | 
 |   if (SwapPrevOperands) { | 
 |     std::swap(RegX, RegY); | 
 |     std::swap(KillX, KillY); | 
 |   } | 
 |  | 
 |   unsigned PrevFirstOpIdx, PrevSecondOpIdx; | 
 |   unsigned RootFirstOpIdx, RootSecondOpIdx; | 
 |   switch (Pattern) { | 
 |   case MachineCombinerPattern::REASSOC_AX_BY: | 
 |     PrevFirstOpIdx = OperandIndices[1]; | 
 |     PrevSecondOpIdx = OperandIndices[3]; | 
 |     RootFirstOpIdx = OperandIndices[2]; | 
 |     RootSecondOpIdx = OperandIndices[4]; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_AX_YB: | 
 |     PrevFirstOpIdx = OperandIndices[1]; | 
 |     PrevSecondOpIdx = OperandIndices[3]; | 
 |     RootFirstOpIdx = OperandIndices[4]; | 
 |     RootSecondOpIdx = OperandIndices[2]; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_XA_BY: | 
 |     PrevFirstOpIdx = OperandIndices[3]; | 
 |     PrevSecondOpIdx = OperandIndices[1]; | 
 |     RootFirstOpIdx = OperandIndices[2]; | 
 |     RootSecondOpIdx = OperandIndices[4]; | 
 |     break; | 
 |   case MachineCombinerPattern::REASSOC_XA_YB: | 
 |     PrevFirstOpIdx = OperandIndices[3]; | 
 |     PrevSecondOpIdx = OperandIndices[1]; | 
 |     RootFirstOpIdx = OperandIndices[4]; | 
 |     RootSecondOpIdx = OperandIndices[2]; | 
 |     break; | 
 |   default: | 
 |     llvm_unreachable("unexpected MachineCombinerPattern"); | 
 |   } | 
 |  | 
 |   // Basically BuildMI but doesn't add implicit operands by default. | 
 |   auto buildMINoImplicit = [](MachineFunction &MF, const MIMetadata &MIMD, | 
 |                               const MCInstrDesc &MCID, Register DestReg) { | 
 |     return MachineInstrBuilder( | 
 |                MF, MF.CreateMachineInstr(MCID, MIMD.getDL(), /*NoImpl=*/true)) | 
 |         .copyMIMetadata(MIMD) | 
 |         .addReg(DestReg, RegState::Define); | 
 |   }; | 
 |  | 
 |   // Create new instructions for insertion. | 
 |   MachineInstrBuilder MIB1 = | 
 |       buildMINoImplicit(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR); | 
 |   for (const auto &MO : Prev.explicit_operands()) { | 
 |     unsigned Idx = MO.getOperandNo(); | 
 |     // Skip the result operand we'd already added. | 
 |     if (Idx == 0) | 
 |       continue; | 
 |     if (Idx == PrevFirstOpIdx) | 
 |       MIB1.addReg(RegX, getKillRegState(KillX)); | 
 |     else if (Idx == PrevSecondOpIdx) | 
 |       MIB1.addReg(RegY, getKillRegState(KillY)); | 
 |     else | 
 |       MIB1.add(MO); | 
 |   } | 
 |   MIB1.copyImplicitOps(Prev); | 
 |  | 
 |   if (SwapRootOperands) { | 
 |     std::swap(RegA, NewVR); | 
 |     std::swap(KillA, KillNewVR); | 
 |   } | 
 |  | 
 |   MachineInstrBuilder MIB2 = | 
 |       buildMINoImplicit(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC); | 
 |   for (const auto &MO : Root.explicit_operands()) { | 
 |     unsigned Idx = MO.getOperandNo(); | 
 |     // Skip the result operand. | 
 |     if (Idx == 0) | 
 |       continue; | 
 |     if (Idx == RootFirstOpIdx) | 
 |       MIB2 = MIB2.addReg(RegA, getKillRegState(KillA)); | 
 |     else if (Idx == RootSecondOpIdx) | 
 |       MIB2 = MIB2.addReg(NewVR, getKillRegState(KillNewVR)); | 
 |     else | 
 |       MIB2 = MIB2.add(MO); | 
 |   } | 
 |   MIB2.copyImplicitOps(Root); | 
 |  | 
 |   // Propagate FP flags from the original instructions. | 
 |   // But clear poison-generating flags because those may not be valid now. | 
 |   // TODO: There should be a helper function for copying only fast-math-flags. | 
 |   uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags(); | 
 |   MIB1->setFlags(IntersectedFlags); | 
 |   MIB1->clearFlag(MachineInstr::MIFlag::NoSWrap); | 
 |   MIB1->clearFlag(MachineInstr::MIFlag::NoUWrap); | 
 |   MIB1->clearFlag(MachineInstr::MIFlag::IsExact); | 
 |  | 
 |   MIB2->setFlags(IntersectedFlags); | 
 |   MIB2->clearFlag(MachineInstr::MIFlag::NoSWrap); | 
 |   MIB2->clearFlag(MachineInstr::MIFlag::NoUWrap); | 
 |   MIB2->clearFlag(MachineInstr::MIFlag::IsExact); | 
 |  | 
 |   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); | 
 |  | 
 |   // Record new instructions for insertion and old instructions for deletion. | 
 |   InsInstrs.push_back(MIB1); | 
 |   InsInstrs.push_back(MIB2); | 
 |   DelInstrs.push_back(&Prev); | 
 |   DelInstrs.push_back(&Root); | 
 |  | 
 |   // We transformed: | 
 |   // B = A op X (Prev) | 
 |   // C = B op Y (Root) | 
 |   // Into: | 
 |   // B = X op Y (MIB1) | 
 |   // C = A op B (MIB2) | 
 |   // C has the same value as before, B doesn't; as such, keep the debug number | 
 |   // of C but not of B. | 
 |   if (unsigned OldRootNum = Root.peekDebugInstrNum()) | 
 |     MIB2.getInstr()->setDebugInstrNum(OldRootNum); | 
 | } | 
 |  | 
 | void TargetInstrInfo::genAlternativeCodeSequence( | 
 |     MachineInstr &Root, unsigned Pattern, | 
 |     SmallVectorImpl<MachineInstr *> &InsInstrs, | 
 |     SmallVectorImpl<MachineInstr *> &DelInstrs, | 
 |     DenseMap<Register, unsigned> &InstIdxForVirtReg) const { | 
 |   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); | 
 |   MachineBasicBlock &MBB = *Root.getParent(); | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); | 
 |  | 
 |   switch (Pattern) { | 
 |   case MachineCombinerPattern::REASSOC_AX_BY: | 
 |   case MachineCombinerPattern::REASSOC_AX_YB: | 
 |   case MachineCombinerPattern::REASSOC_XA_BY: | 
 |   case MachineCombinerPattern::REASSOC_XA_YB: { | 
 |     // Select the previous instruction in the sequence based on the input | 
 |     // pattern. | 
 |     std::array<unsigned, 5> OperandIndices; | 
 |     getReassociateOperandIndices(Root, Pattern, OperandIndices); | 
 |     MachineInstr *Prev = | 
 |         MRI.getUniqueVRegDef(Root.getOperand(OperandIndices[0]).getReg()); | 
 |  | 
 |     // Don't reassociate if Prev and Root are in different blocks. | 
 |     if (Prev->getParent() != Root.getParent()) | 
 |       return; | 
 |  | 
 |     reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, OperandIndices, | 
 |                    InstIdxForVirtReg); | 
 |     break; | 
 |   } | 
 |   case MachineCombinerPattern::ACC_CHAIN: { | 
 |     SmallVector<Register, 32> ChainRegs; | 
 |     getAccumulatorChain(&Root, ChainRegs); | 
 |     unsigned int Depth = ChainRegs.size(); | 
 |     assert(MaxAccumulatorWidth > 1 && | 
 |            "Max accumulator width set to illegal value"); | 
 |     unsigned int MaxWidth = Log2_32(Depth) < MaxAccumulatorWidth | 
 |                                 ? Log2_32(Depth) | 
 |                                 : MaxAccumulatorWidth; | 
 |  | 
 |     // Walk down the chain and rewrite it as a tree. | 
 |     for (auto IndexedReg : llvm::enumerate(llvm::reverse(ChainRegs))) { | 
 |       // No need to rewrite the first node, it is already perfect as it is. | 
 |       if (IndexedReg.index() == 0) | 
 |         continue; | 
 |  | 
 |       MachineInstr *Instr = MRI.getUniqueVRegDef(IndexedReg.value()); | 
 |       MachineInstrBuilder MIB; | 
 |       Register AccReg; | 
 |       if (IndexedReg.index() < MaxWidth) { | 
 |         // Now we need to create new instructions for the first row. | 
 |         AccReg = Instr->getOperand(0).getReg(); | 
 |         unsigned OpCode = getAccumulationStartOpcode(Root.getOpcode()); | 
 |  | 
 |         MIB = BuildMI(MF, MIMetadata(*Instr), TII->get(OpCode), AccReg) | 
 |                   .addReg(Instr->getOperand(2).getReg(), | 
 |                           getKillRegState(Instr->getOperand(2).isKill())) | 
 |                   .addReg(Instr->getOperand(3).getReg(), | 
 |                           getKillRegState(Instr->getOperand(3).isKill())); | 
 |       } else { | 
 |         // For the remaining cases, we need to use an output register of one of | 
 |         // the newly inserted instuctions as operand 1 | 
 |         AccReg = Instr->getOperand(0).getReg() == Root.getOperand(0).getReg() | 
 |                      ? MRI.createVirtualRegister( | 
 |                            MRI.getRegClass(Root.getOperand(0).getReg())) | 
 |                      : Instr->getOperand(0).getReg(); | 
 |         assert(IndexedReg.index() >= MaxWidth); | 
 |         auto AccumulatorInput = | 
 |             ChainRegs[Depth - (IndexedReg.index() - MaxWidth) - 1]; | 
 |         MIB = BuildMI(MF, MIMetadata(*Instr), TII->get(Instr->getOpcode()), | 
 |                       AccReg) | 
 |                   .addReg(AccumulatorInput, getKillRegState(true)) | 
 |                   .addReg(Instr->getOperand(2).getReg(), | 
 |                           getKillRegState(Instr->getOperand(2).isKill())) | 
 |                   .addReg(Instr->getOperand(3).getReg(), | 
 |                           getKillRegState(Instr->getOperand(3).isKill())); | 
 |       } | 
 |  | 
 |       MIB->setFlags(Instr->getFlags()); | 
 |       InstIdxForVirtReg.insert(std::make_pair(AccReg, InsInstrs.size())); | 
 |       InsInstrs.push_back(MIB); | 
 |       DelInstrs.push_back(Instr); | 
 |     } | 
 |  | 
 |     SmallVector<Register, 8> RegistersToReduce; | 
 |     for (unsigned i = (InsInstrs.size() - MaxWidth); i < InsInstrs.size(); | 
 |          ++i) { | 
 |       auto Reg = InsInstrs[i]->getOperand(0).getReg(); | 
 |       RegistersToReduce.push_back(Reg); | 
 |     } | 
 |  | 
 |     while (RegistersToReduce.size() > 1) | 
 |       reduceAccumulatorTree(RegistersToReduce, InsInstrs, MF, Root, MRI, | 
 |                             InstIdxForVirtReg, Root.getOperand(0).getReg()); | 
 |  | 
 |     break; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const { | 
 |   return MachineTraceStrategy::TS_MinInstrCount; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::isReallyTriviallyReMaterializable( | 
 |     const MachineInstr &MI) const { | 
 |   const MachineFunction &MF = *MI.getMF(); | 
 |   const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |  | 
 |   // Remat clients assume operand 0 is the defined register. | 
 |   if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) | 
 |     return false; | 
 |   Register DefReg = MI.getOperand(0).getReg(); | 
 |  | 
 |   // A sub-register definition can only be rematerialized if the instruction | 
 |   // doesn't read the other parts of the register.  Otherwise it is really a | 
 |   // read-modify-write operation on the full virtual register which cannot be | 
 |   // moved safely. | 
 |   if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() && | 
 |       MI.readsVirtualRegister(DefReg)) | 
 |     return false; | 
 |  | 
 |   // A load from a fixed stack slot can be rematerialized. This may be | 
 |   // redundant with subsequent checks, but it's target-independent, | 
 |   // simple, and a common case. | 
 |   int FrameIdx = 0; | 
 |   if (isLoadFromStackSlot(MI, FrameIdx) && | 
 |       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) | 
 |     return true; | 
 |  | 
 |   // Avoid instructions obviously unsafe for remat. | 
 |   if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || | 
 |       MI.hasUnmodeledSideEffects()) | 
 |     return false; | 
 |  | 
 |   // Don't remat inline asm. We have no idea how expensive it is | 
 |   // even if it's side effect free. | 
 |   if (MI.isInlineAsm()) | 
 |     return false; | 
 |  | 
 |   // Avoid instructions which load from potentially varying memory. | 
 |   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) | 
 |     return false; | 
 |  | 
 |   // If any of the registers accessed are non-constant, conservatively assume | 
 |   // the instruction is not rematerializable. | 
 |   for (const MachineOperand &MO : MI.operands()) { | 
 |     if (!MO.isReg()) continue; | 
 |     Register Reg = MO.getReg(); | 
 |     if (Reg == 0) | 
 |       continue; | 
 |  | 
 |     // Check for a well-behaved physical register. | 
 |     if (Reg.isPhysical()) { | 
 |       if (MO.isUse()) { | 
 |         // If the physreg has no defs anywhere, it's just an ambient register | 
 |         // and we can freely move its uses. Alternatively, if it's allocatable, | 
 |         // it could get allocated to something with a def during allocation. | 
 |         if (!MRI.isConstantPhysReg(Reg)) | 
 |           return false; | 
 |       } else { | 
 |         // A physreg def. We can't remat it. | 
 |         return false; | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Only allow one virtual-register def.  There may be multiple defs of the | 
 |     // same virtual register, though. | 
 |     if (MO.isDef() && Reg != DefReg) | 
 |       return false; | 
 |  | 
 |     // Don't allow any virtual-register uses. Rematting an instruction with | 
 |     // virtual register uses would length the live ranges of the uses, which | 
 |     // is not necessarily a good idea, certainly not "trivial". | 
 |     if (MO.isUse()) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Everything checked out. | 
 |   return true; | 
 | } | 
 |  | 
 | int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { | 
 |   const MachineFunction *MF = MI.getMF(); | 
 |   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); | 
 |   bool StackGrowsDown = | 
 |     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; | 
 |  | 
 |   unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); | 
 |   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); | 
 |  | 
 |   if (!isFrameInstr(MI)) | 
 |     return 0; | 
 |  | 
 |   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); | 
 |  | 
 |   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || | 
 |       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) | 
 |     SPAdj = -SPAdj; | 
 |  | 
 |   return SPAdj; | 
 | } | 
 |  | 
 | /// isSchedulingBoundary - Test if the given instruction should be | 
 | /// considered a scheduling boundary. This primarily includes labels | 
 | /// and terminators. | 
 | bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, | 
 |                                            const MachineBasicBlock *MBB, | 
 |                                            const MachineFunction &MF) const { | 
 |   // Terminators and labels can't be scheduled around. | 
 |   if (MI.isTerminator() || MI.isPosition()) | 
 |     return true; | 
 |  | 
 |   // INLINEASM_BR can jump to another block | 
 |   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) | 
 |     return true; | 
 |  | 
 |   // Don't attempt to schedule around any instruction that defines | 
 |   // a stack-oriented pointer, as it's unlikely to be profitable. This | 
 |   // saves compile time, because it doesn't require every single | 
 |   // stack slot reference to depend on the instruction that does the | 
 |   // modification. | 
 |   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); | 
 |   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
 |   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); | 
 | } | 
 |  | 
 | // Provide a global flag for disabling the PreRA hazard recognizer that targets | 
 | // may choose to honor. | 
 | bool TargetInstrInfo::usePreRAHazardRecognizer() const { | 
 |   return !DisableHazardRecognizer; | 
 | } | 
 |  | 
 | // Default implementation of CreateTargetRAHazardRecognizer. | 
 | ScheduleHazardRecognizer *TargetInstrInfo:: | 
 | CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, | 
 |                              const ScheduleDAG *DAG) const { | 
 |   // Dummy hazard recognizer allows all instructions to issue. | 
 |   return new ScheduleHazardRecognizer(); | 
 | } | 
 |  | 
 | // Default implementation of CreateTargetMIHazardRecognizer. | 
 | ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer( | 
 |     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { | 
 |   return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); | 
 | } | 
 |  | 
 | // Default implementation of CreateTargetPostRAHazardRecognizer. | 
 | ScheduleHazardRecognizer *TargetInstrInfo:: | 
 | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
 |                                    const ScheduleDAG *DAG) const { | 
 |   return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); | 
 | } | 
 |  | 
 | // Default implementation of getMemOperandWithOffset. | 
 | bool TargetInstrInfo::getMemOperandWithOffset( | 
 |     const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, | 
 |     bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const { | 
 |   SmallVector<const MachineOperand *, 4> BaseOps; | 
 |   LocationSize Width = LocationSize::precise(0); | 
 |   if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable, | 
 |                                      Width, TRI) || | 
 |       BaseOps.size() != 1) | 
 |     return false; | 
 |   BaseOp = BaseOps.front(); | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  SelectionDAG latency interface. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | std::optional<unsigned> | 
 | TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, | 
 |                                    SDNode *DefNode, unsigned DefIdx, | 
 |                                    SDNode *UseNode, unsigned UseIdx) const { | 
 |   if (!ItinData || ItinData->isEmpty()) | 
 |     return std::nullopt; | 
 |  | 
 |   if (!DefNode->isMachineOpcode()) | 
 |     return std::nullopt; | 
 |  | 
 |   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); | 
 |   if (!UseNode->isMachineOpcode()) | 
 |     return ItinData->getOperandCycle(DefClass, DefIdx); | 
 |   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); | 
 |   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
 | } | 
 |  | 
 | unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
 |                                           SDNode *N) const { | 
 |   if (!ItinData || ItinData->isEmpty()) | 
 |     return 1; | 
 |  | 
 |   if (!N->isMachineOpcode()) | 
 |     return 1; | 
 |  | 
 |   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  MachineInstr latency interface. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, | 
 |                                          const MachineInstr &MI) const { | 
 |   if (!ItinData || ItinData->isEmpty()) | 
 |     return 1; | 
 |  | 
 |   unsigned Class = MI.getDesc().getSchedClass(); | 
 |   int UOps = ItinData->Itineraries[Class].NumMicroOps; | 
 |   if (UOps >= 0) | 
 |     return UOps; | 
 |  | 
 |   // The # of u-ops is dynamically determined. The specific target should | 
 |   // override this function to return the right number. | 
 |   return 1; | 
 | } | 
 |  | 
 | /// Return the default expected latency for a def based on it's opcode. | 
 | unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, | 
 |                                             const MachineInstr &DefMI) const { | 
 |   if (DefMI.isTransient()) | 
 |     return 0; | 
 |   if (DefMI.mayLoad()) | 
 |     return SchedModel.LoadLatency; | 
 |   if (isHighLatencyDef(DefMI.getOpcode())) | 
 |     return SchedModel.HighLatency; | 
 |   return 1; | 
 | } | 
 |  | 
 | unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { | 
 |   return 0; | 
 | } | 
 |  | 
 | unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, | 
 |                                           const MachineInstr &MI, | 
 |                                           unsigned *PredCost) const { | 
 |   // Default to one cycle for no itinerary. However, an "empty" itinerary may | 
 |   // still have a MinLatency property, which getStageLatency checks. | 
 |   if (!ItinData) | 
 |     return MI.mayLoad() ? 2 : 1; | 
 |  | 
 |   return ItinData->getStageLatency(MI.getDesc().getSchedClass()); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, | 
 |                                        const MachineInstr &DefMI, | 
 |                                        unsigned DefIdx) const { | 
 |   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); | 
 |   if (!ItinData || ItinData->isEmpty()) | 
 |     return false; | 
 |  | 
 |   unsigned DefClass = DefMI.getDesc().getSchedClass(); | 
 |   std::optional<unsigned> DefCycle = | 
 |       ItinData->getOperandCycle(DefClass, DefIdx); | 
 |   return DefCycle && DefCycle <= 1U; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::isFunctionSafeToSplit(const MachineFunction &MF) const { | 
 |   // TODO: We don't split functions where a section attribute has been set | 
 |   // since the split part may not be placed in a contiguous region. It may also | 
 |   // be more beneficial to augment the linker to ensure contiguous layout of | 
 |   // split functions within the same section as specified by the attribute. | 
 |   if (MF.getFunction().hasSection()) | 
 |     return false; | 
 |  | 
 |   // We don't want to proceed further for cold functions | 
 |   // or functions of unknown hotness. Lukewarm functions have no prefix. | 
 |   std::optional<StringRef> SectionPrefix = MF.getFunction().getSectionPrefix(); | 
 |   if (SectionPrefix && | 
 |       (*SectionPrefix == "unlikely" || *SectionPrefix == "unknown")) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | std::optional<ParamLoadedValue> | 
 | TargetInstrInfo::describeLoadedValue(const MachineInstr &MI, | 
 |                                      Register Reg) const { | 
 |   const MachineFunction *MF = MI.getMF(); | 
 |   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); | 
 |   DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {}); | 
 |   int64_t Offset; | 
 |   bool OffsetIsScalable; | 
 |  | 
 |   // To simplify the sub-register handling, verify that we only need to | 
 |   // consider physical registers. | 
 |   assert(MF->getProperties().hasNoVRegs()); | 
 |  | 
 |   if (auto DestSrc = isCopyInstr(MI)) { | 
 |     Register DestReg = DestSrc->Destination->getReg(); | 
 |  | 
 |     // If the copy destination is the forwarding reg, describe the forwarding | 
 |     // reg using the copy source as the backup location. Example: | 
 |     // | 
 |     //   x0 = MOV x7 | 
 |     //   call callee(x0)      ; x0 described as x7 | 
 |     if (Reg == DestReg) | 
 |       return ParamLoadedValue(*DestSrc->Source, Expr); | 
 |  | 
 |     // If the target's hook couldn't describe this copy, give up. | 
 |     return std::nullopt; | 
 |   } else if (auto RegImm = isAddImmediate(MI, Reg)) { | 
 |     Register SrcReg = RegImm->Reg; | 
 |     Offset = RegImm->Imm; | 
 |     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); | 
 |     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); | 
 |   } else if (MI.hasOneMemOperand()) { | 
 |     // Only describe memory which provably does not escape the function. As | 
 |     // described in llvm.org/PR43343, escaped memory may be clobbered by the | 
 |     // callee (or by another thread). | 
 |     const auto &TII = MF->getSubtarget().getInstrInfo(); | 
 |     const MachineFrameInfo &MFI = MF->getFrameInfo(); | 
 |     const MachineMemOperand *MMO = MI.memoperands()[0]; | 
 |     const PseudoSourceValue *PSV = MMO->getPseudoValue(); | 
 |  | 
 |     // If the address points to "special" memory (e.g. a spill slot), it's | 
 |     // sufficient to check that it isn't aliased by any high-level IR value. | 
 |     if (!PSV || PSV->mayAlias(&MFI)) | 
 |       return std::nullopt; | 
 |  | 
 |     const MachineOperand *BaseOp; | 
 |     if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, | 
 |                                       TRI)) | 
 |       return std::nullopt; | 
 |  | 
 |     // FIXME: Scalable offsets are not yet handled in the offset code below. | 
 |     if (OffsetIsScalable) | 
 |       return std::nullopt; | 
 |  | 
 |     // TODO: Can currently only handle mem instructions with a single define. | 
 |     // An example from the x86 target: | 
 |     //    ... | 
 |     //    DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx | 
 |     //    ... | 
 |     // | 
 |     if (MI.getNumExplicitDefs() != 1) | 
 |       return std::nullopt; | 
 |  | 
 |     // TODO: In what way do we need to take Reg into consideration here? | 
 |  | 
 |     SmallVector<uint64_t, 8> Ops; | 
 |     DIExpression::appendOffset(Ops, Offset); | 
 |     Ops.push_back(dwarf::DW_OP_deref_size); | 
 |     Ops.push_back(MMO->getSize().hasValue() ? MMO->getSize().getValue() | 
 |                                             : ~UINT64_C(0)); | 
 |     Expr = DIExpression::prependOpcodes(Expr, Ops); | 
 |     return ParamLoadedValue(*BaseOp, Expr); | 
 |   } | 
 |  | 
 |   return std::nullopt; | 
 | } | 
 |  | 
 | // Get the call frame size just before MI. | 
 | unsigned TargetInstrInfo::getCallFrameSizeAt(MachineInstr &MI) const { | 
 |   // Search backwards from MI for the most recent call frame instruction. | 
 |   MachineBasicBlock *MBB = MI.getParent(); | 
 |   for (auto &AdjI : reverse(make_range(MBB->instr_begin(), MI.getIterator()))) { | 
 |     if (AdjI.getOpcode() == getCallFrameSetupOpcode()) | 
 |       return getFrameTotalSize(AdjI); | 
 |     if (AdjI.getOpcode() == getCallFrameDestroyOpcode()) | 
 |       return 0; | 
 |   } | 
 |  | 
 |   // If none was found, use the call frame size from the start of the basic | 
 |   // block. | 
 |   return MBB->getCallFrameSize(); | 
 | } | 
 |  | 
 | /// Both DefMI and UseMI must be valid.  By default, call directly to the | 
 | /// itinerary. This may be overriden by the target. | 
 | std::optional<unsigned> TargetInstrInfo::getOperandLatency( | 
 |     const InstrItineraryData *ItinData, const MachineInstr &DefMI, | 
 |     unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { | 
 |   unsigned DefClass = DefMI.getDesc().getSchedClass(); | 
 |   unsigned UseClass = UseMI.getDesc().getSchedClass(); | 
 |   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::getRegSequenceInputs( | 
 |     const MachineInstr &MI, unsigned DefIdx, | 
 |     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { | 
 |   assert((MI.isRegSequence() || | 
 |           MI.isRegSequenceLike()) && "Instruction do not have the proper type"); | 
 |  | 
 |   if (!MI.isRegSequence()) | 
 |     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); | 
 |  | 
 |   // We are looking at: | 
 |   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... | 
 |   assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); | 
 |   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; | 
 |        OpIdx += 2) { | 
 |     const MachineOperand &MOReg = MI.getOperand(OpIdx); | 
 |     if (MOReg.isUndef()) | 
 |       continue; | 
 |     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); | 
 |     assert(MOSubIdx.isImm() && | 
 |            "One of the subindex of the reg_sequence is not an immediate"); | 
 |     // Record Reg:SubReg, SubIdx. | 
 |     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), | 
 |                                             (unsigned)MOSubIdx.getImm())); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::getExtractSubregInputs( | 
 |     const MachineInstr &MI, unsigned DefIdx, | 
 |     RegSubRegPairAndIdx &InputReg) const { | 
 |   assert((MI.isExtractSubreg() || | 
 |       MI.isExtractSubregLike()) && "Instruction do not have the proper type"); | 
 |  | 
 |   if (!MI.isExtractSubreg()) | 
 |     return getExtractSubregLikeInputs(MI, DefIdx, InputReg); | 
 |  | 
 |   // We are looking at: | 
 |   // Def = EXTRACT_SUBREG v0.sub1, sub0. | 
 |   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); | 
 |   const MachineOperand &MOReg = MI.getOperand(1); | 
 |   if (MOReg.isUndef()) | 
 |     return false; | 
 |   const MachineOperand &MOSubIdx = MI.getOperand(2); | 
 |   assert(MOSubIdx.isImm() && | 
 |          "The subindex of the extract_subreg is not an immediate"); | 
 |  | 
 |   InputReg.Reg = MOReg.getReg(); | 
 |   InputReg.SubReg = MOReg.getSubReg(); | 
 |   InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); | 
 |   return true; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::getInsertSubregInputs( | 
 |     const MachineInstr &MI, unsigned DefIdx, | 
 |     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { | 
 |   assert((MI.isInsertSubreg() || | 
 |       MI.isInsertSubregLike()) && "Instruction do not have the proper type"); | 
 |  | 
 |   if (!MI.isInsertSubreg()) | 
 |     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); | 
 |  | 
 |   // We are looking at: | 
 |   // Def = INSERT_SEQUENCE v0, v1, sub0. | 
 |   assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); | 
 |   const MachineOperand &MOBaseReg = MI.getOperand(1); | 
 |   const MachineOperand &MOInsertedReg = MI.getOperand(2); | 
 |   if (MOInsertedReg.isUndef()) | 
 |     return false; | 
 |   const MachineOperand &MOSubIdx = MI.getOperand(3); | 
 |   assert(MOSubIdx.isImm() && | 
 |          "One of the subindex of the reg_sequence is not an immediate"); | 
 |   BaseReg.Reg = MOBaseReg.getReg(); | 
 |   BaseReg.SubReg = MOBaseReg.getSubReg(); | 
 |  | 
 |   InsertedReg.Reg = MOInsertedReg.getReg(); | 
 |   InsertedReg.SubReg = MOInsertedReg.getSubReg(); | 
 |   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); | 
 |   return true; | 
 | } | 
 |  | 
 | // Returns a MIRPrinter comment for this machine operand. | 
 | std::string TargetInstrInfo::createMIROperandComment( | 
 |     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, | 
 |     const TargetRegisterInfo *TRI) const { | 
 |  | 
 |   if (!MI.isInlineAsm()) | 
 |     return ""; | 
 |  | 
 |   std::string Flags; | 
 |   raw_string_ostream OS(Flags); | 
 |  | 
 |   if (OpIdx == InlineAsm::MIOp_ExtraInfo) { | 
 |     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack | 
 |     unsigned ExtraInfo = Op.getImm(); | 
 |     bool First = true; | 
 |     for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) { | 
 |       if (!First) | 
 |         OS << " "; | 
 |       First = false; | 
 |       OS << Info; | 
 |     } | 
 |  | 
 |     return Flags; | 
 |   } | 
 |  | 
 |   int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx); | 
 |   if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx) | 
 |     return ""; | 
 |  | 
 |   assert(Op.isImm() && "Expected flag operand to be an immediate"); | 
 |   // Pretty print the inline asm operand descriptor. | 
 |   unsigned Flag = Op.getImm(); | 
 |   const InlineAsm::Flag F(Flag); | 
 |   OS << F.getKindName(); | 
 |  | 
 |   unsigned RCID; | 
 |   if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) { | 
 |     if (TRI) { | 
 |       OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); | 
 |     } else | 
 |       OS << ":RC" << RCID; | 
 |   } | 
 |  | 
 |   if (F.isMemKind()) { | 
 |     InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); | 
 |     OS << ":" << InlineAsm::getMemConstraintName(MCID); | 
 |   } | 
 |  | 
 |   unsigned TiedTo; | 
 |   if (F.isUseOperandTiedToDef(TiedTo)) | 
 |     OS << " tiedto:$" << TiedTo; | 
 |  | 
 |   if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) && | 
 |       F.getRegMayBeFolded()) | 
 |     OS << " foldable"; | 
 |  | 
 |   return Flags; | 
 | } | 
 |  | 
 | TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default; | 
 |  | 
 | void TargetInstrInfo::mergeOutliningCandidateAttributes( | 
 |     Function &F, std::vector<outliner::Candidate> &Candidates) const { | 
 |   // Include target features from an arbitrary candidate for the outlined | 
 |   // function. This makes sure the outlined function knows what kinds of | 
 |   // instructions are going into it. This is fine, since all parent functions | 
 |   // must necessarily support the instructions that are in the outlined region. | 
 |   outliner::Candidate &FirstCand = Candidates.front(); | 
 |   const Function &ParentFn = FirstCand.getMF()->getFunction(); | 
 |   if (ParentFn.hasFnAttribute("target-features")) | 
 |     F.addFnAttr(ParentFn.getFnAttribute("target-features")); | 
 |   if (ParentFn.hasFnAttribute("target-cpu")) | 
 |     F.addFnAttr(ParentFn.getFnAttribute("target-cpu")); | 
 |  | 
 |   // Set nounwind, so we don't generate eh_frame. | 
 |   if (llvm::all_of(Candidates, [](const outliner::Candidate &C) { | 
 |         return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind); | 
 |       })) | 
 |     F.addFnAttr(Attribute::NoUnwind); | 
 | } | 
 |  | 
 | outliner::InstrType | 
 | TargetInstrInfo::getOutliningType(const MachineModuleInfo &MMI, | 
 |                                   MachineBasicBlock::iterator &MIT, | 
 |                                   unsigned Flags) const { | 
 |   MachineInstr &MI = *MIT; | 
 |  | 
 |   // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets | 
 |   // have support for outlining those. Special-case that here. | 
 |   if (MI.isCFIInstruction()) | 
 |     // Just go right to the target implementation. | 
 |     return getOutliningTypeImpl(MMI, MIT, Flags); | 
 |  | 
 |   // Be conservative about inline assembly. | 
 |   if (MI.isInlineAsm()) | 
 |     return outliner::InstrType::Illegal; | 
 |  | 
 |   // Labels generally can't safely be outlined. | 
 |   if (MI.isLabel()) | 
 |     return outliner::InstrType::Illegal; | 
 |  | 
 |   // Don't let debug instructions impact analysis. | 
 |   if (MI.isDebugInstr()) | 
 |     return outliner::InstrType::Invisible; | 
 |  | 
 |   // Some other special cases. | 
 |   switch (MI.getOpcode()) { | 
 |     case TargetOpcode::IMPLICIT_DEF: | 
 |     case TargetOpcode::KILL: | 
 |     case TargetOpcode::LIFETIME_START: | 
 |     case TargetOpcode::LIFETIME_END: | 
 |       return outliner::InstrType::Invisible; | 
 |     default: | 
 |       break; | 
 |   } | 
 |  | 
 |   // Is this a terminator for a basic block? | 
 |   if (MI.isTerminator()) { | 
 |     // If this is a branch to another block, we can't outline it. | 
 |     if (!MI.getParent()->succ_empty()) | 
 |       return outliner::InstrType::Illegal; | 
 |  | 
 |     // Don't outline if the branch is not unconditional. | 
 |     if (isPredicated(MI)) | 
 |       return outliner::InstrType::Illegal; | 
 |   } | 
 |  | 
 |   // Make sure none of the operands of this instruction do anything that | 
 |   // might break if they're moved outside their current function. | 
 |   // This includes MachineBasicBlock references, BlockAddressses, | 
 |   // Constant pool indices and jump table indices. | 
 |   // | 
 |   // A quick note on MO_TargetIndex: | 
 |   // This doesn't seem to be used in any of the architectures that the | 
 |   // MachineOutliner supports, but it was still filtered out in all of them. | 
 |   // There was one exception (RISC-V), but MO_TargetIndex also isn't used there. | 
 |   // As such, this check is removed both here and in the target-specific | 
 |   // implementations. Instead, we assert to make sure this doesn't | 
 |   // catch anyone off-guard somewhere down the line. | 
 |   for (const MachineOperand &MOP : MI.operands()) { | 
 |     // If you hit this assertion, please remove it and adjust | 
 |     // `getOutliningTypeImpl` for your target appropriately if necessary. | 
 |     // Adding the assertion back to other supported architectures | 
 |     // would be nice too :) | 
 |     assert(!MOP.isTargetIndex() && "This isn't used quite yet!"); | 
 |  | 
 |     // CFI instructions should already have been filtered out at this point. | 
 |     assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!"); | 
 |  | 
 |     // PrologEpilogInserter should've already run at this point. | 
 |     assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!"); | 
 |  | 
 |     if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI()) | 
 |       return outliner::InstrType::Illegal; | 
 |   } | 
 |  | 
 |   // If we don't know, delegate to the target-specific hook. | 
 |   return getOutliningTypeImpl(MMI, MIT, Flags); | 
 | } | 
 |  | 
 | bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, | 
 |                                              unsigned &Flags) const { | 
 |   // Some instrumentations create special TargetOpcode at the start which | 
 |   // expands to special code sequences which must be present. | 
 |   auto First = MBB.getFirstNonDebugInstr(); | 
 |   if (First == MBB.end()) | 
 |     return true; | 
 |  | 
 |   if (First->getOpcode() == TargetOpcode::FENTRY_CALL || | 
 |       First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER) | 
 |     return false; | 
 |  | 
 |   // Some instrumentations create special pseudo-instructions at or just before | 
 |   // the end that must be present. | 
 |   auto Last = MBB.getLastNonDebugInstr(); | 
 |   if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET || | 
 |       Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) | 
 |     return false; | 
 |  | 
 |   if (Last != First && Last->isReturn()) { | 
 |     --Last; | 
 |     if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT || | 
 |         Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool TargetInstrInfo::isGlobalMemoryObject(const MachineInstr *MI) const { | 
 |   return MI->isCall() || MI->hasUnmodeledSideEffects() || | 
 |          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad()); | 
 | } |