blob: 11fcc2a4d00d79bf8d3a5a1024c43ee98748478c [file] [log] [blame] [edit]
//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/SymbolTable.h"
#include <cassert>
#include <mlir/Analysis/DataFlow/LivenessAnalysis.h>
#include <llvm/Support/DebugLog.h>
#include <mlir/Analysis/DataFlow/SparseAnalysis.h>
#include <mlir/Analysis/DataFlow/Utils.h>
#include <mlir/Analysis/DataFlowFramework.h>
#include <mlir/IR/Operation.h>
#include <mlir/IR/Value.h>
#include <mlir/Interfaces/CallInterfaces.h>
#include <mlir/Interfaces/SideEffectInterfaces.h>
#include <mlir/Support/LLVM.h>
#define DEBUG_TYPE "liveness-analysis"
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// Liveness
//===----------------------------------------------------------------------===//
void Liveness::print(raw_ostream &os) const {
os << (isLive ? "live" : "not live");
}
ChangeResult Liveness::markLive() {
bool wasLive = isLive;
isLive = true;
return wasLive ? ChangeResult::NoChange : ChangeResult::Change;
}
ChangeResult Liveness::meet(const AbstractSparseLattice &other) {
const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
}
//===----------------------------------------------------------------------===//
// LivenessAnalysis
//===----------------------------------------------------------------------===//
/// For every value, liveness analysis determines whether or not it is "live".
///
/// A value is considered "live" iff it:
/// (1) has memory effects OR
/// (2) is returned by a public function OR
/// (3) is used to compute a value of type (1) or (2) OR
/// (4) is returned by a return-like op whose parent isn't a callable
/// nor a RegionBranchOpInterface (e.g.: linalg.yield, gpu.yield,...)
/// These ops have their own semantics, so we conservatively mark the
/// the yield value as live.
/// It is also to be noted that a value could be of multiple types (1/2/3) at
/// the same time.
///
/// A value "has memory effects" iff it:
/// (1.a) is an operand of an op with memory effects OR
/// (1.b) is a non-forwarded branch operand and its branch op could take the
/// control to a block that has an op with memory effects OR
/// (1.c) is a non-forwarded branch operand and its branch op could result
/// in different live result OR
/// (1.d) is a non-forwarded call operand.
///
/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
/// computed in the absence of `A`. Thus, in this implementation, we say that
/// value `A` is used to compute value `B` iff:
/// (3.a) `B` is a result of an op with operand `A` OR
/// (3.b) `A` is used to compute some value `C` and `C` is used to compute
/// `B`.
LogicalResult
LivenessAnalysis::visitOperation(Operation *op, ArrayRef<Liveness *> operands,
ArrayRef<const Liveness *> results) {
LDBG() << "[visitOperation] Enter: "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
// This marks values of type (1.a) and (4) liveness as "live".
if (!wouldOpBeTriviallyDead(op)) {
LDBG() << "[visitOperation] Operation has memory effects or is "
"return-like, marking operands live";
for (auto *operand : operands) {
LDBG() << " [visitOperation] Marking operand live: " << operand << " ("
<< operand->isLive << ")";
propagateIfChanged(operand, operand->markLive());
}
}
// This marks values of type (3) liveness as "live".
bool foundLiveResult = false;
for (const Liveness *r : results) {
if (r->isLive && !foundLiveResult) {
LDBG() << "[visitOperation] Found live result, "
"meeting all operands with result: "
<< r;
// It is assumed that each operand is used to compute each result of an
// op. Thus, if at least one result is live, each operand is live.
for (Liveness *operand : operands) {
LDBG() << " [visitOperation] Meeting operand: " << operand
<< " with result: " << r;
meet(operand, *r);
}
foundLiveResult = true;
}
LDBG() << "[visitOperation] Adding dependency for result: " << r
<< " after op: " << OpWithFlags(op, OpPrintingFlags().skipRegions());
addDependency(const_cast<Liveness *>(r), getProgramPointAfter(op));
}
return success();
}
void LivenessAnalysis::visitBranchOperand(OpOperand &operand) {
Operation *op = operand.getOwner();
LDBG() << "Visiting branch operand: " << operand.get()
<< " in op: " << OpWithFlags(op, OpPrintingFlags().skipRegions());
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded branch operand of a `RegionBranchOpInterface`,
// `BranchOpInterface`, `RegionBranchTerminatorOpInterface` or return-like op.
assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
isa<RegionBranchTerminatorOpInterface>(op)) &&
"expected the op to be `RegionBranchOpInterface`, "
"`BranchOpInterface` or `RegionBranchTerminatorOpInterface`");
// The lattices of the non-forwarded branch operands don't get updated like
// the forwarded branch operands or the non-branch operands. Thus they need
// to be handled separately. This is where we handle them.
// 1. BranchOpInterface: We cannot track all successor blocks. Therefore, we
// conservatively consider the non-forwarded operand of the branch operation
// live. We can just call visitOperation, which treats any terminator as live.
// 2. RegionBranchOpInterface: We can simply visit it as a normal operation
// with this operand. The operand is live if the results of the op are used,
// or if it has any recursive memory side effects (which visitOperation will
// check).
// 3. RegionBranchOpTerminatorInterface, the operand is live if the
// surrounding RegionBranchOp is live, so we call visitOperation on the
// surrounding op, but with the operand that we are looking at.
auto *visitOp =
isa<RegionBranchTerminatorOpInterface>(op) ? op->getParentOp() : op;
Liveness *operandLiveness[] = {getLatticeElement(operand.get())};
SmallVector<const Liveness *, 4> resultsLiveness;
for (const Value result : visitOp->getResults())
resultsLiveness.push_back(getLatticeElement(result));
LDBG() << "Visiting operation for non-forwarded branch operand: "
<< OpWithFlags(visitOp, OpPrintingFlags().skipRegions());
(void)visitOperation(visitOp, operandLiveness, resultsLiveness);
}
void LivenessAnalysis::visitCallOperand(OpOperand &operand) {
LDBG() << "Visiting call operand: " << operand.get()
<< " in op: " << *operand.getOwner();
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded call operand of an op implementing `CallOpInterface`.
assert(isa<CallOpInterface>(operand.getOwner()) &&
"expected the op to implement `CallOpInterface`");
// The lattices of the non-forwarded call operands don't get updated like the
// forwarded call operands or the non-call operands. Thus they need to be
// handled separately. This is where we handle them.
// This marks values of type (1.c) liveness as "live". A non-forwarded
// call operand is live.
Liveness *operandLiveness = getLatticeElement(operand.get());
LDBG() << "Marking call operand live: " << operand.get();
propagateIfChanged(operandLiveness, operandLiveness->markLive());
}
void LivenessAnalysis::visitNonControlFlowArguments(
RegionSuccessor &successor, ArrayRef<BlockArgument> arguments) {
Operation *parentOp = successor.getSuccessor()->getParentOp();
LDBG() << "visitNonControlFlowArguments visit the region # "
<< successor.getSuccessor()->getRegionNumber() << "of "
<< OpWithFlags(parentOp, OpPrintingFlags().skipRegions());
auto valuesToLattices = [&](Value value) { return getLatticeElement(value); };
SmallVector<Liveness *> argumentLattices =
llvm::map_to_vector(arguments, valuesToLattices);
SmallVector<Liveness *> parentResultLattices =
llvm::map_to_vector(parentOp->getResults(), valuesToLattices);
for (Liveness *resultLattice : parentResultLattices) {
if (resultLattice->isLive) {
for (Liveness *argumentLattice : argumentLattices) {
LDBG() << "make lattice: " << argumentLattice << " live";
propagateIfChanged(argumentLattice, argumentLattice->markLive());
}
return;
}
}
(void)visitOperation(parentOp, argumentLattices, parentResultLattices);
}
void LivenessAnalysis::setToExitState(Liveness *lattice) {
LDBG() << "setToExitState for lattice: " << lattice;
if (lattice->isLive) {
LDBG() << "Lattice already live, nothing to do";
return;
}
// This marks values of type (2) liveness as "live".
LDBG() << "Marking lattice live due to exit state";
(void)lattice->markLive();
propagateIfChanged(lattice, ChangeResult::Change);
}
//===----------------------------------------------------------------------===//
// RunLivenessAnalysis
//===----------------------------------------------------------------------===//
RunLivenessAnalysis::RunLivenessAnalysis(Operation *op) {
LDBG() << "Constructing RunLivenessAnalysis for op: " << op->getName();
SymbolTableCollection symbolTable;
loadBaselineAnalyses(solver);
solver.load<LivenessAnalysis>(symbolTable);
LDBG() << "Initializing and running solver";
(void)solver.initializeAndRun(op);
LDBG() << "RunLivenessAnalysis initialized for op: " << op->getName()
<< " check on unreachable code now:";
// The framework doesn't visit operations in dead blocks, so we need to
// explicitly mark them as dead.
op->walk([&](Operation *op) {
for (auto result : llvm::enumerate(op->getResults())) {
if (getLiveness(result.value()))
continue;
LDBG() << "Result: " << result.index() << " of "
<< OpWithFlags(op, OpPrintingFlags().skipRegions())
<< " has no liveness info (unreachable), mark dead";
solver.getOrCreateState<Liveness>(result.value());
}
for (auto &region : op->getRegions()) {
for (auto &block : region) {
for (auto blockArg : llvm::enumerate(block.getArguments())) {
if (getLiveness(blockArg.value()))
continue;
LDBG() << "Block argument: " << blockArg.index() << " of "
<< OpWithFlags(op, OpPrintingFlags().skipRegions())
<< " has no liveness info, mark dead";
solver.getOrCreateState<Liveness>(blockArg.value());
}
}
}
});
}
const Liveness *RunLivenessAnalysis::getLiveness(Value val) {
return solver.lookupState<Liveness>(val);
}