blob: 1d72d0bdada031ba16b85a01bd6bcb15c32b62dd [file] [log] [blame] [edit]
//===-- SparcSubtarget.cpp - SPARC Subtarget Information ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SPARC specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "SparcSubtarget.h"
#include "SparcSelectionDAGInfo.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#define DEBUG_TYPE "sparc-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "SparcGenSubtargetInfo.inc"
void SparcSubtarget::anchor() { }
SparcSubtarget &SparcSubtarget::initializeSubtargetDependencies(
StringRef CPU, StringRef TuneCPU, StringRef FS) {
const Triple &TT = getTargetTriple();
// Determine default and user specified characteristics
std::string CPUName = std::string(CPU);
if (CPUName.empty())
CPUName = TT.isSPARC64() ? "v9" : "v8";
if (TuneCPU.empty())
TuneCPU = CPUName;
// Parse features string.
ParseSubtargetFeatures(CPUName, TuneCPU, FS);
if (!Is64Bit && TT.isSPARC64()) {
FeatureBitset Features = getFeatureBits();
setFeatureBits(Features.set(Sparc::Feature64Bit));
Is64Bit = true;
}
// Popc is a v9-only instruction.
if (!IsV9)
UsePopc = false;
return *this;
}
SparcSubtarget::SparcSubtarget(const StringRef &CPU, const StringRef &TuneCPU,
const StringRef &FS, const TargetMachine &TM)
: SparcGenSubtargetInfo(TM.getTargetTriple(), CPU, TuneCPU, FS),
ReserveRegister(TM.getMCRegisterInfo()->getNumRegs()),
InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
TLInfo(TM, *this), FrameLowering(*this) {
TSInfo = std::make_unique<SparcSelectionDAGInfo>();
}
SparcSubtarget::~SparcSubtarget() = default;
const SelectionDAGTargetInfo *SparcSubtarget::getSelectionDAGInfo() const {
return TSInfo.get();
}
void SparcSubtarget::initLibcallLoweringInfo(LibcallLoweringInfo &Info) const {
if (hasHardQuad())
return;
// Setup Runtime library names.
if (is64Bit() && !useSoftFloat()) {
Info.setLibcallImpl(RTLIB::ADD_F128, RTLIB::impl__Qp_add);
Info.setLibcallImpl(RTLIB::SUB_F128, RTLIB::impl__Qp_sub);
Info.setLibcallImpl(RTLIB::MUL_F128, RTLIB::impl__Qp_mul);
Info.setLibcallImpl(RTLIB::DIV_F128, RTLIB::impl__Qp_div);
Info.setLibcallImpl(RTLIB::SQRT_F128, RTLIB::impl__Qp_sqrt);
Info.setLibcallImpl(RTLIB::FPTOSINT_F128_I32, RTLIB::impl__Qp_qtoi);
Info.setLibcallImpl(RTLIB::FPTOUINT_F128_I32, RTLIB::impl__Qp_qtoui);
Info.setLibcallImpl(RTLIB::SINTTOFP_I32_F128, RTLIB::impl__Qp_itoq);
Info.setLibcallImpl(RTLIB::UINTTOFP_I32_F128, RTLIB::impl__Qp_uitoq);
Info.setLibcallImpl(RTLIB::FPTOSINT_F128_I64, RTLIB::impl__Qp_qtox);
Info.setLibcallImpl(RTLIB::FPTOUINT_F128_I64, RTLIB::impl__Qp_qtoux);
Info.setLibcallImpl(RTLIB::SINTTOFP_I64_F128, RTLIB::impl__Qp_xtoq);
Info.setLibcallImpl(RTLIB::UINTTOFP_I64_F128, RTLIB::impl__Qp_uxtoq);
Info.setLibcallImpl(RTLIB::FPEXT_F32_F128, RTLIB::impl__Qp_stoq);
Info.setLibcallImpl(RTLIB::FPEXT_F64_F128, RTLIB::impl__Qp_dtoq);
Info.setLibcallImpl(RTLIB::FPROUND_F128_F32, RTLIB::impl__Qp_qtos);
Info.setLibcallImpl(RTLIB::FPROUND_F128_F64, RTLIB::impl__Qp_qtod);
} else if (!useSoftFloat()) {
Info.setLibcallImpl(RTLIB::ADD_F128, RTLIB::impl__Q_add);
Info.setLibcallImpl(RTLIB::SUB_F128, RTLIB::impl__Q_sub);
Info.setLibcallImpl(RTLIB::MUL_F128, RTLIB::impl__Q_mul);
Info.setLibcallImpl(RTLIB::DIV_F128, RTLIB::impl__Q_div);
Info.setLibcallImpl(RTLIB::SQRT_F128, RTLIB::impl__Q_sqrt);
Info.setLibcallImpl(RTLIB::FPTOSINT_F128_I32, RTLIB::impl__Q_qtoi);
Info.setLibcallImpl(RTLIB::FPTOUINT_F128_I32, RTLIB::impl__Q_qtou);
Info.setLibcallImpl(RTLIB::SINTTOFP_I32_F128, RTLIB::impl__Q_itoq);
Info.setLibcallImpl(RTLIB::UINTTOFP_I32_F128, RTLIB::impl__Q_utoq);
Info.setLibcallImpl(RTLIB::FPEXT_F32_F128, RTLIB::impl__Q_stoq);
Info.setLibcallImpl(RTLIB::FPEXT_F64_F128, RTLIB::impl__Q_dtoq);
Info.setLibcallImpl(RTLIB::FPROUND_F128_F32, RTLIB::impl__Q_qtos);
Info.setLibcallImpl(RTLIB::FPROUND_F128_F64, RTLIB::impl__Q_qtod);
}
}
int SparcSubtarget::getAdjustedFrameSize(int frameSize) const {
if (is64Bit()) {
// All 64-bit stack frames must be 16-byte aligned, and must reserve space
// for spilling the 16 window registers at %sp+BIAS..%sp+BIAS+128.
frameSize += 128;
// Frames with calls must also reserve space for 6 outgoing arguments
// whether they are used or not. LowerCall_64 takes care of that.
frameSize = alignTo(frameSize, 16);
} else {
// Emit the correct save instruction based on the number of bytes in
// the frame. Minimum stack frame size according to V8 ABI is:
// 16 words for register window spill
// 1 word for address of returned aggregate-value
// + 6 words for passing parameters on the stack
// ----------
// 23 words * 4 bytes per word = 92 bytes
frameSize += 92;
// Round up to next doubleword boundary -- a double-word boundary
// is required by the ABI.
frameSize = alignTo(frameSize, 8);
}
return frameSize;
}
bool SparcSubtarget::enableMachineScheduler() const {
return true;
}