blob: 0fe31d000237d8b8788079f444988ab91ef37798 [file] [log] [blame] [edit]
//===-- MathToXeVM.cpp - conversion from Math to XeVM ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MathToXeVM/MathToXeVM.h"
#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/Pass/Pass.h"
#include "llvm/Support/FormatVariadic.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTMATHTOXEVM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
#define DEBUG_TYPE "math-to-xevm"
/// Convert math ops marked with `fast` (`afn`) to native OpenCL intrinsics.
template <typename Op>
struct ConvertNativeFuncPattern final : public OpConversionPattern<Op> {
ConvertNativeFuncPattern(MLIRContext *context, StringRef nativeFunc,
PatternBenefit benefit = 1)
: OpConversionPattern<Op>(context, benefit), nativeFunc(nativeFunc) {}
LogicalResult
matchAndRewrite(Op op, typename Op::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!isSPIRVCompatibleFloatOrVec(op.getType()))
return failure();
arith::FastMathFlags fastFlags = op.getFastmath();
if (!arith::bitEnumContainsAll(fastFlags, arith::FastMathFlags::afn))
return rewriter.notifyMatchFailure(op, "not a fastmath `afn` operation");
SmallVector<Type, 1> operandTypes;
for (auto operand : adaptor.getOperands()) {
Type opTy = operand.getType();
// This pass only supports operations on vectors that are already in SPIRV
// supported vector sizes: Distributing unsupported vector sizes to SPIRV
// supported vector sizes are done in other blocking optimization passes.
if (!isSPIRVCompatibleFloatOrVec(opTy))
return rewriter.notifyMatchFailure(
op, llvm::formatv("incompatible operand type: '{0}'", opTy));
operandTypes.push_back(opTy);
}
auto moduleOp = op->template getParentWithTrait<OpTrait::SymbolTable>();
auto funcOpRes = LLVM::lookupOrCreateFn(
rewriter, moduleOp, getMangledNativeFuncName(operandTypes),
operandTypes, op.getType());
assert(!failed(funcOpRes));
LLVM::LLVMFuncOp funcOp = funcOpRes.value();
auto callOp = rewriter.replaceOpWithNewOp<LLVM::CallOp>(
op, funcOp, adaptor.getOperands());
// Preserve fastmath flags in our MLIR op when converting to llvm function
// calls, in order to allow further fastmath optimizations: We thus need to
// convert arith fastmath attrs into attrs recognized by llvm.
arith::AttrConvertFastMathToLLVM<Op, LLVM::CallOp> fastAttrConverter(op);
mlir::NamedAttribute fastAttr = fastAttrConverter.getAttrs()[0];
callOp->setAttr(fastAttr.getName(), fastAttr.getValue());
return success();
}
inline bool isSPIRVCompatibleFloatOrVec(Type type) const {
if (type.isFloat())
return true;
if (auto vecType = dyn_cast<VectorType>(type)) {
if (!vecType.getElementType().isFloat())
return false;
// SPIRV distinguishes between vectors and matrices: OpenCL native math
// intrsinics are not compatible with matrices.
ArrayRef<int64_t> shape = vecType.getShape();
if (shape.size() != 1)
return false;
// SPIRV only allows vectors of size 2, 3, 4, 8, 16.
if (shape[0] == 2 || shape[0] == 3 || shape[0] == 4 || shape[0] == 8 ||
shape[0] == 16)
return true;
}
return false;
}
inline std::string
getMangledNativeFuncName(const ArrayRef<Type> operandTypes) const {
std::string mangledFuncName =
"_Z" + std::to_string(nativeFunc.size()) + nativeFunc.str();
auto appendFloatToMangledFunc = [&mangledFuncName](Type type) {
if (type.isF32())
mangledFuncName += "f";
else if (type.isF16())
mangledFuncName += "Dh";
else if (type.isF64())
mangledFuncName += "d";
};
for (auto type : operandTypes) {
if (auto vecType = dyn_cast<VectorType>(type)) {
mangledFuncName += "Dv" + std::to_string(vecType.getShape()[0]) + "_";
appendFloatToMangledFunc(vecType.getElementType());
} else
appendFloatToMangledFunc(type);
}
return mangledFuncName;
}
const StringRef nativeFunc;
};
void mlir::populateMathToXeVMConversionPatterns(RewritePatternSet &patterns,
bool convertArith) {
patterns.add<ConvertNativeFuncPattern<math::ExpOp>>(patterns.getContext(),
"__spirv_ocl_native_exp");
patterns.add<ConvertNativeFuncPattern<math::CosOp>>(patterns.getContext(),
"__spirv_ocl_native_cos");
patterns.add<ConvertNativeFuncPattern<math::Exp2Op>>(
patterns.getContext(), "__spirv_ocl_native_exp2");
patterns.add<ConvertNativeFuncPattern<math::LogOp>>(patterns.getContext(),
"__spirv_ocl_native_log");
patterns.add<ConvertNativeFuncPattern<math::Log2Op>>(
patterns.getContext(), "__spirv_ocl_native_log2");
patterns.add<ConvertNativeFuncPattern<math::Log10Op>>(
patterns.getContext(), "__spirv_ocl_native_log10");
patterns.add<ConvertNativeFuncPattern<math::PowFOp>>(
patterns.getContext(), "__spirv_ocl_native_powr");
patterns.add<ConvertNativeFuncPattern<math::RsqrtOp>>(
patterns.getContext(), "__spirv_ocl_native_rsqrt");
patterns.add<ConvertNativeFuncPattern<math::SinOp>>(patterns.getContext(),
"__spirv_ocl_native_sin");
patterns.add<ConvertNativeFuncPattern<math::SqrtOp>>(
patterns.getContext(), "__spirv_ocl_native_sqrt");
patterns.add<ConvertNativeFuncPattern<math::TanOp>>(patterns.getContext(),
"__spirv_ocl_native_tan");
if (convertArith)
patterns.add<ConvertNativeFuncPattern<arith::DivFOp>>(
patterns.getContext(), "__spirv_ocl_native_divide");
}
namespace {
struct ConvertMathToXeVMPass
: public impl::ConvertMathToXeVMBase<ConvertMathToXeVMPass> {
using Base::Base;
void runOnOperation() override;
};
} // namespace
void ConvertMathToXeVMPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
populateMathToXeVMConversionPatterns(patterns, convertArith);
ConversionTarget target(getContext());
target.addLegalDialect<BuiltinDialect, LLVM::LLVMDialect>();
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}