blob: f9f7d4eacf948a0838d5288c00f4c1c0a1006e80 [file] [log] [blame]
//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "TestOps.h"
#include "TestTypes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ScopeExit.h"
using namespace mlir;
using namespace test;
// Native function for testing NativeCodeCall
static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
rewriter.create<OpI>(loc, input);
}
static void handleNoResultOp(PatternRewriter &rewriter,
OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(),
op.getOperand());
}
static bool getFirstI32Result(Operation *op, Value &value) {
if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
return false;
value = op->getResult(0);
return true;
}
static Value bindNativeCodeCallResult(Value value) { return value; }
static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
Value input2) {
return SmallVector<Value, 2>({input2, input1});
}
// Test that natives calls are only called once during rewrites.
// OpM_Test will return Pi, increased by 1 for each subsequent calls.
// This let us check the number of times OpM_Test was called by inspecting
// the returned value in the MLIR output.
static int64_t opMIncreasingValue = 314159265;
static Attribute opMTest(PatternRewriter &rewriter, Value val) {
int64_t i = opMIncreasingValue++;
return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
}
namespace {
#include "TestPatterns.inc"
} // namespace
//===----------------------------------------------------------------------===//
// Test Reduce Pattern Interface
//===----------------------------------------------------------------------===//
void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
populateWithGenerated(patterns);
}
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct FoldingPattern : public RewritePattern {
public:
FoldingPattern(MLIRContext *context)
: RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
/*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Exercise createOrFold API for a single-result operation that is folded
// upon construction. The operation being created has an in-place folder,
// and it should be still present in the output. Furthermore, the folder
// should not crash when attempting to recover the (unchanged) operation
// result.
Value result = rewriter.createOrFold<TestOpInPlaceFold>(
op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0));
assert(result);
rewriter.replaceOp(op, result);
return success();
}
};
/// This pattern creates a foldable operation at the entry point of the block.
/// This tests the situation where the operation folder will need to replace an
/// operation with a previously created constant that does not initially
/// dominate the operation to replace.
struct FolderInsertBeforePreviouslyFoldedConstantPattern
: public OpRewritePattern<TestCastOp> {
public:
using OpRewritePattern<TestCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestCastOp op,
PatternRewriter &rewriter) const override {
if (!op->hasAttr("test_fold_before_previously_folded_op"))
return failure();
rewriter.setInsertionPointToStart(op->getBlock());
auto constOp = rewriter.create<arith::ConstantOp>(
op.getLoc(), rewriter.getBoolAttr(true));
rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
Value(constOp));
return success();
}
};
/// This pattern matches test.op_commutative2 with the first operand being
/// another test.op_commutative2 with a constant on the right side and fold it
/// away by propagating it as its result. This is intend to check that patterns
/// are applied after the commutative property moves constant to the right.
struct FolderCommutativeOp2WithConstant
: public OpRewritePattern<TestCommutative2Op> {
public:
using OpRewritePattern<TestCommutative2Op>::OpRewritePattern;
LogicalResult matchAndRewrite(TestCommutative2Op op,
PatternRewriter &rewriter) const override {
auto operand =
dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp());
if (!operand)
return failure();
Attribute constInput;
if (!matchPattern(operand->getOperand(1), m_Constant(&constInput)))
return failure();
rewriter.replaceOp(op, operand->getOperand(1));
return success();
}
};
/// This pattern matches test.any_attr_of_i32_str ops. In case of an integer
/// attribute with value smaller than MaxVal, it increments the value by 1.
template <int MaxVal>
struct IncrementIntAttribute : public OpRewritePattern<AnyAttrOfOp> {
using OpRewritePattern<AnyAttrOfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AnyAttrOfOp op,
PatternRewriter &rewriter) const override {
auto intAttr = dyn_cast<IntegerAttr>(op.getAttr());
if (!intAttr)
return failure();
int64_t val = intAttr.getInt();
if (val >= MaxVal)
return failure();
rewriter.modifyOpInPlace(
op, [&]() { op.setAttrAttr(rewriter.getI32IntegerAttr(val + 1)); });
return success();
}
};
/// This patterns adds an "eligible" attribute to "foo.maybe_eligible_op".
struct MakeOpEligible : public RewritePattern {
MakeOpEligible(MLIRContext *context)
: RewritePattern("foo.maybe_eligible_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->hasAttr("eligible"))
return failure();
rewriter.modifyOpInPlace(
op, [&]() { op->setAttr("eligible", rewriter.getUnitAttr()); });
return success();
}
};
/// This pattern hoists eligible ops out of a "test.one_region_op".
struct HoistEligibleOps : public OpRewritePattern<test::OneRegionOp> {
using OpRewritePattern<test::OneRegionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(test::OneRegionOp op,
PatternRewriter &rewriter) const override {
Operation *terminator = op.getRegion().front().getTerminator();
Operation *toBeHoisted = terminator->getOperands()[0].getDefiningOp();
if (toBeHoisted->getParentOp() != op)
return failure();
if (!toBeHoisted->hasAttr("eligible"))
return failure();
rewriter.moveOpBefore(toBeHoisted, op);
return success();
}
};
/// This pattern moves "test.move_before_parent_op" before the parent op.
struct MoveBeforeParentOp : public RewritePattern {
MoveBeforeParentOp(MLIRContext *context)
: RewritePattern("test.move_before_parent_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Do not hoist past functions.
if (isa<FunctionOpInterface>(op->getParentOp()))
return failure();
rewriter.moveOpBefore(op, op->getParentOp());
return success();
}
};
/// This pattern inlines blocks that are nested in
/// "test.inline_blocks_into_parent" into the parent block.
struct InlineBlocksIntoParent : public RewritePattern {
InlineBlocksIntoParent(MLIRContext *context)
: RewritePattern("test.inline_blocks_into_parent", /*benefit=*/1,
context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
bool changed = false;
for (Region &r : op->getRegions()) {
while (!r.empty()) {
rewriter.inlineBlockBefore(&r.front(), op);
changed = true;
}
}
return success(changed);
}
};
/// This pattern splits blocks at "test.split_block_here" and replaces the op
/// with a new op (to prevent an infinite loop of block splitting).
struct SplitBlockHere : public RewritePattern {
SplitBlockHere(MLIRContext *context)
: RewritePattern("test.split_block_here", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
rewriter.splitBlock(op->getBlock(), op->getIterator());
Operation *newOp = rewriter.create(
op->getLoc(),
OperationName("test.new_op", op->getContext()).getIdentifier(),
op->getOperands(), op->getResultTypes());
rewriter.replaceOp(op, newOp);
return success();
}
};
/// This pattern clones "test.clone_me" ops.
struct CloneOp : public RewritePattern {
CloneOp(MLIRContext *context)
: RewritePattern("test.clone_me", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Do not clone already cloned ops to avoid going into an infinite loop.
if (op->hasAttr("was_cloned"))
return failure();
Operation *cloned = rewriter.clone(*op);
cloned->setAttr("was_cloned", rewriter.getUnitAttr());
return success();
}
};
/// This pattern clones regions of "test.clone_region_before" ops before the
/// parent block.
struct CloneRegionBeforeOp : public RewritePattern {
CloneRegionBeforeOp(MLIRContext *context)
: RewritePattern("test.clone_region_before", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Do not clone already cloned ops to avoid going into an infinite loop.
if (op->hasAttr("was_cloned"))
return failure();
for (Region &r : op->getRegions())
rewriter.cloneRegionBefore(r, op->getBlock());
op->setAttr("was_cloned", rewriter.getUnitAttr());
return success();
}
};
struct TestPatternDriver
: public PassWrapper<TestPatternDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver)
TestPatternDriver() = default;
TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {}
StringRef getArgument() const final { return "test-patterns"; }
StringRef getDescription() const final { return "Run test dialect patterns"; }
void runOnOperation() override {
mlir::RewritePatternSet patterns(&getContext());
populateWithGenerated(patterns);
// Verify named pattern is generated with expected name.
patterns.add<FoldingPattern, TestNamedPatternRule,
FolderInsertBeforePreviouslyFoldedConstantPattern,
FolderCommutativeOp2WithConstant, HoistEligibleOps,
MakeOpEligible>(&getContext());
// Additional patterns for testing the GreedyPatternRewriteDriver.
patterns.insert<IncrementIntAttribute<3>>(&getContext());
GreedyRewriteConfig config;
config.useTopDownTraversal = this->useTopDownTraversal;
config.maxIterations = this->maxIterations;
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
config);
}
Option<bool> useTopDownTraversal{
*this, "top-down",
llvm::cl::desc("Seed the worklist in general top-down order"),
llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)};
Option<int> maxIterations{
*this, "max-iterations",
llvm::cl::desc("Max. iterations in the GreedyRewriteConfig"),
llvm::cl::init(GreedyRewriteConfig().maxIterations)};
};
struct DumpNotifications : public RewriterBase::Listener {
void notifyBlockInserted(Block *block, Region *previous,
Region::iterator previousIt) override {
llvm::outs() << "notifyBlockInserted";
if (block->getParentOp()) {
llvm::outs() << " into " << block->getParentOp()->getName() << ": ";
} else {
llvm::outs() << " into unknown op: ";
}
if (previous == nullptr) {
llvm::outs() << "was unlinked\n";
} else {
llvm::outs() << "was linked\n";
}
}
void notifyOperationInserted(Operation *op,
OpBuilder::InsertPoint previous) override {
llvm::outs() << "notifyOperationInserted: " << op->getName();
if (!previous.isSet()) {
llvm::outs() << ", was unlinked\n";
} else {
if (!previous.getPoint().getNodePtr()) {
llvm::outs() << ", was linked, exact position unknown\n";
} else if (previous.getPoint() == previous.getBlock()->end()) {
llvm::outs() << ", was last in block\n";
} else {
llvm::outs() << ", previous = " << previous.getPoint()->getName()
<< "\n";
}
}
}
void notifyBlockErased(Block *block) override {
llvm::outs() << "notifyBlockErased\n";
}
void notifyOperationErased(Operation *op) override {
llvm::outs() << "notifyOperationErased: " << op->getName() << "\n";
}
void notifyOperationModified(Operation *op) override {
llvm::outs() << "notifyOperationModified: " << op->getName() << "\n";
}
void notifyOperationReplaced(Operation *op, ValueRange values) override {
llvm::outs() << "notifyOperationReplaced: " << op->getName() << "\n";
}
};
struct TestStrictPatternDriver
: public PassWrapper<TestStrictPatternDriver, OperationPass<func::FuncOp>> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestStrictPatternDriver)
TestStrictPatternDriver() = default;
TestStrictPatternDriver(const TestStrictPatternDriver &other)
: PassWrapper(other) {
strictMode = other.strictMode;
}
StringRef getArgument() const final { return "test-strict-pattern-driver"; }
StringRef getDescription() const final {
return "Test strict mode of pattern driver";
}
void runOnOperation() override {
MLIRContext *ctx = &getContext();
mlir::RewritePatternSet patterns(ctx);
patterns.add<
// clang-format off
ChangeBlockOp,
CloneOp,
CloneRegionBeforeOp,
EraseOp,
ImplicitChangeOp,
InlineBlocksIntoParent,
InsertSameOp,
MoveBeforeParentOp,
ReplaceWithNewOp,
SplitBlockHere
// clang-format on
>(ctx);
SmallVector<Operation *> ops;
getOperation()->walk([&](Operation *op) {
StringRef opName = op->getName().getStringRef();
if (opName == "test.insert_same_op" || opName == "test.change_block_op" ||
opName == "test.replace_with_new_op" || opName == "test.erase_op" ||
opName == "test.move_before_parent_op" ||
opName == "test.inline_blocks_into_parent" ||
opName == "test.split_block_here" || opName == "test.clone_me" ||
opName == "test.clone_region_before") {
ops.push_back(op);
}
});
DumpNotifications dumpNotifications;
GreedyRewriteConfig config;
config.listener = &dumpNotifications;
if (strictMode == "AnyOp") {
config.strictMode = GreedyRewriteStrictness::AnyOp;
} else if (strictMode == "ExistingAndNewOps") {
config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
} else if (strictMode == "ExistingOps") {
config.strictMode = GreedyRewriteStrictness::ExistingOps;
} else {
llvm_unreachable("invalid strictness option");
}
// Check if these transformations introduce visiting of operations that
// are not in the `ops` set (The new created ops are valid). An invalid
// operation will trigger the assertion while processing.
bool changed = false;
bool allErased = false;
(void)applyOpPatternsAndFold(ArrayRef(ops), std::move(patterns), config,
&changed, &allErased);
Builder b(ctx);
getOperation()->setAttr("pattern_driver_changed", b.getBoolAttr(changed));
getOperation()->setAttr("pattern_driver_all_erased",
b.getBoolAttr(allErased));
}
Option<std::string> strictMode{
*this, "strictness",
llvm::cl::desc("Can be {AnyOp, ExistingAndNewOps, ExistingOps}"),
llvm::cl::init("AnyOp")};
private:
// New inserted operation is valid for further transformation.
class InsertSameOp : public RewritePattern {
public:
InsertSameOp(MLIRContext *context)
: RewritePattern("test.insert_same_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->hasAttr("skip"))
return failure();
Operation *newOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(),
op->getOperands(), op->getResultTypes());
rewriter.modifyOpInPlace(
op, [&]() { op->setAttr("skip", rewriter.getBoolAttr(true)); });
newOp->setAttr("skip", rewriter.getBoolAttr(true));
return success();
}
};
// Replace an operation may introduce the re-visiting of its users.
class ReplaceWithNewOp : public RewritePattern {
public:
ReplaceWithNewOp(MLIRContext *context)
: RewritePattern("test.replace_with_new_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
Operation *newOp;
if (op->hasAttr("create_erase_op")) {
newOp = rewriter.create(
op->getLoc(),
OperationName("test.erase_op", op->getContext()).getIdentifier(),
ValueRange(), TypeRange());
} else {
newOp = rewriter.create(
op->getLoc(),
OperationName("test.new_op", op->getContext()).getIdentifier(),
op->getOperands(), op->getResultTypes());
}
// "replaceOp" could be used instead of "replaceAllOpUsesWith"+"eraseOp".
// A "notifyOperationReplaced" callback is triggered in either case.
rewriter.replaceAllOpUsesWith(op, newOp->getResults());
rewriter.eraseOp(op);
return success();
}
};
// Remove an operation may introduce the re-visiting of its operands.
class EraseOp : public RewritePattern {
public:
EraseOp(MLIRContext *context)
: RewritePattern("test.erase_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return success();
}
};
// The following two patterns test RewriterBase::replaceAllUsesWith.
//
// That function replaces all usages of a Block (or a Value) with another one
// *and tracks these changes in the rewriter.* The GreedyPatternRewriteDriver
// with GreedyRewriteStrictness::AnyOp uses that tracking to construct its
// worklist: when an op is modified, it is added to the worklist. The two
// patterns below make the tracking observable: ChangeBlockOp replaces all
// usages of a block and that pattern is applied because the corresponding ops
// are put on the initial worklist (see above). ImplicitChangeOp does an
// unrelated change but ops of the corresponding type are *not* on the initial
// worklist, so the effect of the second pattern is only visible if the
// tracking and subsequent adding to the worklist actually works.
// Replace all usages of the first successor with the second successor.
class ChangeBlockOp : public RewritePattern {
public:
ChangeBlockOp(MLIRContext *context)
: RewritePattern("test.change_block_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->getNumSuccessors() < 2)
return failure();
Block *firstSuccessor = op->getSuccessor(0);
Block *secondSuccessor = op->getSuccessor(1);
if (firstSuccessor == secondSuccessor)
return failure();
// This is the function being tested:
rewriter.replaceAllUsesWith(firstSuccessor, secondSuccessor);
// Using the following line instead would make the test fail:
// firstSuccessor->replaceAllUsesWith(secondSuccessor);
return success();
}
};
// Changes the successor to the parent block.
class ImplicitChangeOp : public RewritePattern {
public:
ImplicitChangeOp(MLIRContext *context)
: RewritePattern("test.implicit_change_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->getNumSuccessors() < 1 || op->getSuccessor(0) == op->getBlock())
return failure();
rewriter.modifyOpInPlace(op,
[&]() { op->setSuccessor(op->getBlock(), 0); });
return success();
}
};
};
} // namespace
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
namespace {
// Generate ops for each instance where the type can be successfully inferred.
template <typename OpTy>
static void invokeCreateWithInferredReturnType(Operation *op) {
auto *context = op->getContext();
auto fop = op->getParentOfType<func::FuncOp>();
auto location = UnknownLoc::get(context);
OpBuilder b(op);
b.setInsertionPointAfter(op);
// Use permutations of 2 args as operands.
assert(fop.getNumArguments() >= 2);
for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
for (int j = 0; j < e; ++j) {
std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
SmallVector<Type, 2> inferredReturnTypes;
if (succeeded(OpTy::inferReturnTypes(
context, std::nullopt, values, op->getDiscardableAttrDictionary(),
op->getPropertiesStorage(), op->getRegions(),
inferredReturnTypes))) {
OperationState state(location, OpTy::getOperationName());
// TODO: Expand to regions.
OpTy::build(b, state, values, op->getAttrs());
(void)b.create(state);
}
}
}
}
static void reifyReturnShape(Operation *op) {
OpBuilder b(op);
// Use permutations of 2 args as operands.
auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
SmallVector<Value, 2> shapes;
if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
!llvm::hasSingleElement(shapes))
return;
for (const auto &it : llvm::enumerate(shapes)) {
op->emitRemark() << "value " << it.index() << ": "
<< it.value().getDefiningOp();
}
}
struct TestReturnTypeDriver
: public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver)
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<tensor::TensorDialect>();
}
StringRef getArgument() const final { return "test-return-type"; }
StringRef getDescription() const final { return "Run return type functions"; }
void runOnOperation() override {
if (getOperation().getName() == "testCreateFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getOperation().getBody().front())
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : llvm::ArrayRef(ops).drop_back()) {
// Test create method of each of the Op classes below. The resultant
// output would be in reverse order underneath `op` from which
// the attributes and regions are used.
invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
invokeCreateWithInferredReturnType<OpWithInferTypeAdaptorInterfaceOp>(
op);
invokeCreateWithInferredReturnType<
OpWithShapedTypeInferTypeInterfaceOp>(op);
};
return;
}
if (getOperation().getName() == "testReifyFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getOperation().getBody().front())
if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : ops)
reifyReturnShape(op);
}
}
};
} // namespace
namespace {
struct TestDerivedAttributeDriver
: public PassWrapper<TestDerivedAttributeDriver,
OperationPass<func::FuncOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver)
StringRef getArgument() const final { return "test-derived-attr"; }
StringRef getDescription() const final {
return "Run test derived attributes";
}
void runOnOperation() override;
};
} // namespace
void TestDerivedAttributeDriver::runOnOperation() {
getOperation().walk([](DerivedAttributeOpInterface dOp) {
auto dAttr = dOp.materializeDerivedAttributes();
if (!dAttr)
return;
for (auto d : dAttr)
dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue();
});
}
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
auto &opRegion = op->getRegion(0);
if (op->getDiscardableAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
else
rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
if (op->getDiscardableAttr("legalizer.erase_old_blocks")) {
while (!opRegion.empty())
rewriter.eraseBlock(&opRegion.front());
}
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.create(newRegion);
auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64),
rewriter.getUnknownLoc());
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that creates a block at the end of the parent region of the
/// matched operation.
struct TestCreateBlock : public RewritePattern {
TestCreateBlock(MLIRContext *ctx)
: RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region &region = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
Location loc = op->getLoc();
rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
rewriter.create<TerminatorOp>(loc);
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that creates a block containing an invalid operation in
/// order to trigger the block creation undo mechanism.
struct TestCreateIllegalBlock : public RewritePattern {
TestCreateIllegalBlock(MLIRContext *ctx)
: RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region &region = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
Location loc = op->getLoc();
rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
// Create an illegal op to ensure the conversion fails.
rewriter.create<ILLegalOpF>(loc, i32Type);
rewriter.create<TerminatorOp>(loc);
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that tests the undo mechanism when replacing the uses of a
/// block argument.
struct TestUndoBlockArgReplace : public ConversionPattern {
TestUndoBlockArgReplace(MLIRContext *ctx)
: ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
auto illegalOp =
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
illegalOp->getResult(0));
rewriter.modifyOpInPlace(op, [] {});
return success();
}
};
/// This pattern hoists ops out of a "test.hoist_me" and then fails conversion.
/// This is to test the rollback logic.
struct TestUndoMoveOpBefore : public ConversionPattern {
TestUndoMoveOpBefore(MLIRContext *ctx)
: ConversionPattern("test.hoist_me", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.moveOpBefore(op, op->getParentOp());
// Replace with an illegal op to ensure the conversion fails.
rewriter.replaceOpWithNewOp<ILLegalOpF>(op, rewriter.getF32Type());
return success();
}
};
/// A rewrite pattern that tests the undo mechanism when erasing a block.
struct TestUndoBlockErase : public ConversionPattern {
TestUndoBlockErase(MLIRContext *ctx)
: ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block *secondBlock = &*std::next(op->getRegion(0).begin());
rewriter.setInsertionPointToStart(secondBlock);
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.eraseBlock(secondBlock);
rewriter.modifyOpInPlace(op, [] {});
return success();
}
};
/// A pattern that modifies a property in-place, but keeps the op illegal.
struct TestUndoPropertiesModification : public ConversionPattern {
TestUndoPropertiesModification(MLIRContext *ctx)
: ConversionPattern("test.with_properties", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
if (!op->hasAttr("modify_inplace"))
return failure();
rewriter.modifyOpInPlace(
op, [&]() { cast<TestOpWithProperties>(op).getProperties().setA(42); });
return success();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx,
const TypeConverter &converter)
: ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Region &region = op->getRegion(0);
Block *entry = &region.front();
// Convert the original entry arguments.
const TypeConverter &converter = *getTypeConverter();
TypeConverter::SignatureConversion result(entry->getNumArguments());
if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
result)) ||
failed(rewriter.convertRegionTypes(&region, converter, &result)))
return failure();
// Convert the region signature and just drop the operation.
rewriter.eraseOp(op);
return success();
}
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, operands,
std::nullopt);
return success();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
return failure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0].getDefiningOp();
if (auto packerOp =
llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) {
rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
return success();
}
// Otherwise, fail to match.
return failure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!Type(*op->result_type_begin()).isSignlessInteger(32))
return failure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return success();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!Type(*op->result_type_begin()).isF32())
return rewriter.notifyMatchFailure(op, "expected single f32 operand");
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return success();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return success();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the incoming operand has been successfully remapped to F64.
if (!operands[0].getType().isF64())
return failure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return success();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, legalOp);
rewriter.replaceOp(op, illegalOp);
return success();
}
};
//===----------------------------------------------------------------------===//
// Recursive Rewrite Testing
/// This pattern is applied to the same operation multiple times, but has a
/// bounded recursion.
struct TestBoundedRecursiveRewrite
: public OpRewritePattern<TestRecursiveRewriteOp> {
using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
void initialize() {
// The conversion target handles bounding the recursion of this pattern.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
PatternRewriter &rewriter) const final {
// Decrement the depth of the op in-place.
rewriter.modifyOpInPlace(op, [&] {
op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1));
});
return success();
}
};
struct TestNestedOpCreationUndoRewrite
: public OpRewritePattern<IllegalOpWithRegionAnchor> {
using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
PatternRewriter &rewriter) const final {
// rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
return success();
};
};
// This pattern matches `test.blackhole` and delete this op and its producer.
struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BlackHoleOp op,
PatternRewriter &rewriter) const final {
Operation *producer = op.getOperand().getDefiningOp();
// Always erase the user before the producer, the framework should handle
// this correctly.
rewriter.eraseOp(op);
rewriter.eraseOp(producer);
return success();
};
};
// This pattern replaces explicitly illegal op with explicitly legal op,
// but in addition creates unregistered operation.
struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> {
using OpRewritePattern<ILLegalOpG>::OpRewritePattern;
LogicalResult matchAndRewrite(ILLegalOpG op,
PatternRewriter &rewriter) const final {
IntegerAttr attr = rewriter.getI32IntegerAttr(0);
Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr);
rewriter.replaceOpWithNewOp<LegalOpC>(op, val);
return success();
};
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
TestTypeConverter() {
addConversion(convertType);
addArgumentMaterialization(materializeCast);
addSourceMaterialization(materializeCast);
}
static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
// Drop I16 types.
if (t.isSignlessInteger(16))
return success();
// Convert I64 to F64.
if (t.isSignlessInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Convert I42 to I43.
if (t.isInteger(42)) {
results.push_back(IntegerType::get(t.getContext(), 43));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Hook for materializing a conversion. This is necessary because we generate
/// 1->N type mappings.
static std::optional<Value> materializeCast(OpBuilder &builder,
Type resultType,
ValueRange inputs, Location loc) {
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
}
};
struct TestLegalizePatternDriver
: public PassWrapper<TestLegalizePatternDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver)
StringRef getArgument() const final { return "test-legalize-patterns"; }
StringRef getDescription() const final {
return "Run test dialect legalization patterns";
}
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<func::FuncDialect, test::TestDialect>();
}
void runOnOperation() override {
TestTypeConverter converter;
mlir::RewritePatternSet patterns(&getContext());
populateWithGenerated(patterns);
patterns
.add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement, TestBoundedRecursiveRewrite,
TestNestedOpCreationUndoRewrite, TestReplaceEraseOp,
TestCreateUnregisteredOp, TestUndoMoveOpBefore,
TestUndoPropertiesModification>(&getContext());
patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
converter);
mlir::populateCallOpTypeConversionPattern(patterns, converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp>();
target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp,
TerminatorOp, OneRegionOp>();
target
.addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType()) &&
converter.isLegal(&op.getBody());
});
target.addDynamicallyLegalOp<func::CallOp>(
[&](func::CallOp op) { return converter.isLegal(op); });
// TestCreateUnregisteredOp creates `arith.constant` operation,
// which was not added to target intentionally to test
// correct error code from conversion driver.
target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; });
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Mark the bound recursion operation as dynamically legal.
target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
[](TestRecursiveRewriteOp op) { return op.getDepth() == 0; });
// Create a dynamically legal rule that can only be legalized by folding it.
target.addDynamicallyLegalOp<TestOpInPlaceSelfFold>(
[](TestOpInPlaceSelfFold op) { return op.getFolded(); });
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
DenseSet<Operation *> unlegalizedOps;
ConversionConfig config;
DumpNotifications dumpNotifications;
config.listener = &dumpNotifications;
config.unlegalizedOps = &unlegalizedOps;
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns), config))) {
getOperation()->emitRemark() << "applyPartialConversion failed";
}
// Emit remarks for each legalizable operation.
for (auto *op : unlegalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
// Check support for marking unknown operations as dynamically legal.
target.markUnknownOpDynamicallyLegal([](Operation *op) {
return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
});
ConversionConfig config;
DumpNotifications dumpNotifications;
config.listener = &dumpNotifications;
if (failed(applyFullConversion(getOperation(), target,
std::move(patterns), config))) {
getOperation()->emitRemark() << "applyFullConversion failed";
}
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
ConversionConfig config;
config.legalizableOps = &legalizedOps;
if (failed(applyAnalysisConversion(getOperation(), target,
std::move(patterns), config)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of an original value that was replaced using
// ConversionPatternRewriter.
namespace {
struct TestRemapValueTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
TestRemapValueTypeConverter() {
addConversion(
[](Float32Type type) { return Float64Type::get(type.getContext()); });
addConversion([](Type type) { return type; });
}
};
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
: public OpConversionPattern<OneVResOneVOperandOp1> {
using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
LogicalResult
matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto origOps = op.getOperands();
assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
"One operand expected");
Value origOp = *origOps.begin();
SmallVector<Value, 2> remappedOperands;
// Replicate the remapped original operand twice. Note that we don't used
// the remapped 'operand' since the goal is testing 'getRemappedValue'.
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
remappedOperands);
return success();
}
};
/// A rewriter pattern that tests that blocks can be merged.
struct TestRemapValueInRegion
: public OpConversionPattern<TestRemappedValueRegionOp> {
using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Block &block = op.getBody().front();
Operation *terminator = block.getTerminator();
// Merge the block into the parent region.
Block *parentBlock = op->getBlock();
Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator());
rewriter.mergeBlocks(&block, parentBlock, ValueRange());
rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange());
// Replace the results of this operation with the remapped terminator
// values.
SmallVector<Value> terminatorOperands;
if (failed(rewriter.getRemappedValues(terminator->getOperands(),
terminatorOperands)))
return failure();
rewriter.eraseOp(terminator);
rewriter.replaceOp(op, terminatorOperands);
return success();
}
};
struct TestRemappedValue
: public mlir::PassWrapper<TestRemappedValue, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue)
StringRef getArgument() const final { return "test-remapped-value"; }
StringRef getDescription() const final {
return "Test public remapped value mechanism in ConversionPatternRewriter";
}
void runOnOperation() override {
TestRemapValueTypeConverter typeConverter;
mlir::RewritePatternSet patterns(&getContext());
patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>(
&getContext());
patterns.add<TestRemapValueInRegion>(typeConverter, &getContext());
mlir::ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>();
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// We make OneVResOneVOperandOp1 legal only when it has more that one
// operand. This will trigger the conversion that will replace one-operand
// OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
[](Operation *op) { return op->getNumOperands() > 1; });
if (failed(mlir::applyFullConversion(getOperation(), target,
std::move(patterns)))) {
signalPassFailure();
}
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test patterns without a specific root operation kind
//===----------------------------------------------------------------------===//
namespace {
/// This pattern matches and removes any operation in the test dialect.
struct RemoveTestDialectOps : public RewritePattern {
RemoveTestDialectOps(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!isa<TestDialect>(op->getDialect()))
return failure();
rewriter.eraseOp(op);
return success();
}
};
struct TestUnknownRootOpDriver
: public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver)
StringRef getArgument() const final {
return "test-legalize-unknown-root-patterns";
}
StringRef getDescription() const final {
return "Test public remapped value mechanism in ConversionPatternRewriter";
}
void runOnOperation() override {
mlir::RewritePatternSet patterns(&getContext());
patterns.add<RemoveTestDialectOps>(&getContext());
mlir::ConversionTarget target(getContext());
target.addIllegalDialect<TestDialect>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test patterns that uses operations and types defined at runtime
//===----------------------------------------------------------------------===//
namespace {
/// This pattern matches dynamic operations 'test.one_operand_two_results' and
/// replace them with dynamic operations 'test.generic_dynamic_op'.
struct RewriteDynamicOp : public RewritePattern {
RewriteDynamicOp(MLIRContext *context)
: RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1,
context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
assert(op->getName().getStringRef() ==
"test.dynamic_one_operand_two_results" &&
"rewrite pattern should only match operations with the right name");
OperationState state(op->getLoc(), "test.dynamic_generic",
op->getOperands(), op->getResultTypes(),
op->getAttrs());
auto *newOp = rewriter.create(state);
rewriter.replaceOp(op, newOp->getResults());
return success();
}
};
struct TestRewriteDynamicOpDriver
: public PassWrapper<TestRewriteDynamicOpDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver)
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<TestDialect>();
}
StringRef getArgument() const final { return "test-rewrite-dynamic-op"; }
StringRef getDescription() const final {
return "Test rewritting on dynamic operations";
}
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
patterns.add<RewriteDynamicOp>(&getContext());
ConversionTarget target(getContext());
target.addIllegalOp(
OperationName("test.dynamic_one_operand_two_results", &getContext()));
target.addLegalOp(OperationName("test.dynamic_generic", &getContext()));
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Test type conversions
//===----------------------------------------------------------------------===//
namespace {
struct TestTypeConversionProducer
: public OpConversionPattern<TestTypeProducerOp> {
using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Type resultType = op.getType();
Type convertedType = getTypeConverter()
? getTypeConverter()->convertType(resultType)
: resultType;
if (isa<FloatType>(resultType))
resultType = rewriter.getF64Type();
else if (resultType.isInteger(16))
resultType = rewriter.getIntegerType(64);
else if (isa<test::TestRecursiveType>(resultType) &&
convertedType != resultType)
resultType = convertedType;
else
return failure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
return success();
}
};
/// Call signature conversion and then fail the rewrite to trigger the undo
/// mechanism.
struct TestSignatureConversionUndo
: public OpConversionPattern<TestSignatureConversionUndoOp> {
using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
(void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
return failure();
}
};
/// Call signature conversion without providing a type converter to handle
/// materializations.
struct TestTestSignatureConversionNoConverter
: public OpConversionPattern<TestSignatureConversionNoConverterOp> {
TestTestSignatureConversionNoConverter(const TypeConverter &converter,
MLIRContext *context)
: OpConversionPattern<TestSignatureConversionNoConverterOp>(context),
converter(converter) {}
LogicalResult
matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Region &region = op->getRegion(0);
Block *entry = &region.front();
// Convert the original entry arguments.
TypeConverter::SignatureConversion result(entry->getNumArguments());
if (failed(
converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
return failure();
rewriter.modifyOpInPlace(
op, [&] { rewriter.applySignatureConversion(&region, result); });
return success();
}
const TypeConverter &converter;
};
/// Just forward the operands to the root op. This is essentially a no-op
/// pattern that is used to trigger target materialization.
struct TestTypeConsumerForward
: public OpConversionPattern<TestTypeConsumerOp> {
using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
rewriter.modifyOpInPlace(op,
[&] { op->setOperands(adaptor.getOperands()); });
return success();
}
};
struct TestTypeConversionAnotherProducer
: public OpRewritePattern<TestAnotherTypeProducerOp> {
using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
PatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
return success();
}
};
struct TestTypeConversionDriver
: public PassWrapper<TestTypeConversionDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver)
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<TestDialect>();
}
StringRef getArgument() const final {
return "test-legalize-type-conversion";
}
StringRef getDescription() const final {
return "Test various type conversion functionalities in DialectConversion";
}
void runOnOperation() override {
// Initialize the type converter.
SmallVector<Type, 2> conversionCallStack;
TypeConverter converter;
/// Add the legal set of type conversions.
converter.addConversion([](Type type) -> Type {
// Treat F64 as legal.
if (type.isF64())
return type;
// Allow converting BF16/F16/F32 to F64.
if (type.isBF16() || type.isF16() || type.isF32())
return FloatType::getF64(type.getContext());
// Otherwise, the type is illegal.
return nullptr;
});
converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
// Drop all integer types.
return success();
});
converter.addConversion(
// Convert a recursive self-referring type into a non-self-referring
// type named "outer_converted_type" that contains a SimpleAType.
[&](test::TestRecursiveType type,
SmallVectorImpl<Type> &results) -> std::optional<LogicalResult> {
// If the type is already converted, return it to indicate that it is
// legal.
if (type.getName() == "outer_converted_type") {
results.push_back(type);
return success();
}
conversionCallStack.push_back(type);
auto popConversionCallStack = llvm::make_scope_exit(
[&conversionCallStack]() { conversionCallStack.pop_back(); });
// If the type is on the call stack more than once (it is there at
// least once because of the _current_ call, which is always the last
// element on the stack), we've hit the recursive case. Just return
// SimpleAType here to create a non-recursive type as a result.
if (llvm::is_contained(ArrayRef(conversionCallStack).drop_back(),
type)) {
results.push_back(test::SimpleAType::get(type.getContext()));
return success();
}
// Convert the body recursively.
auto result = test::TestRecursiveType::get(type.getContext(),
"outer_converted_type");
if (failed(result.setBody(converter.convertType(type.getBody()))))
return failure();
results.push_back(result);
return success();
});
/// Add the legal set of type materializations.
converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
ValueRange inputs,
Location loc) -> Value {
// Allow casting from F64 back to F32.
if (!resultType.isF16() && inputs.size() == 1 &&
inputs[0].getType().isF64())
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
// Allow producing an i32 or i64 from nothing.
if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
inputs.empty())
return builder.create<TestTypeProducerOp>(loc, resultType);
// Allow producing an i64 from an integer.
if (isa<IntegerType>(resultType) && inputs.size() == 1 &&
isa<IntegerType>(inputs[0].getType()))
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
// Otherwise, fail.
return nullptr;
});
// Initialize the conversion target.
mlir::ConversionTarget target(getContext());
target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
auto recursiveType = dyn_cast<test::TestRecursiveType>(op.getType());
return op.getType().isF64() || op.getType().isInteger(64) ||
(recursiveType &&
recursiveType.getName() == "outer_converted_type");
});
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType()) &&
converter.isLegal(&op.getBody());
});
target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
// Allow casts from F64 to F32.
return (*op.operand_type_begin()).isF64() && op.getType().isF32();
});
target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>(
[&](TestSignatureConversionNoConverterOp op) {
return converter.isLegal(op.getRegion().front().getArgumentTypes());
});
// Initialize the set of rewrite patterns.
RewritePatternSet patterns(&getContext());
patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
TestSignatureConversionUndo,
TestTestSignatureConversionNoConverter>(converter,
&getContext());
patterns.add<TestTypeConversionAnotherProducer>(&getContext());
mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
converter);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test Target Materialization With No Uses
//===----------------------------------------------------------------------===//
namespace {
struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> {
using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
struct TestTargetMaterializationWithNoUses
: public PassWrapper<TestTargetMaterializationWithNoUses, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
TestTargetMaterializationWithNoUses)
StringRef getArgument() const final {
return "test-target-materialization-with-no-uses";
}
StringRef getDescription() const final {
return "Test a special case of target materialization in DialectConversion";
}
void runOnOperation() override {
TypeConverter converter;
converter.addConversion([](Type t) { return t; });
converter.addConversion([](IntegerType intTy) -> Type {
if (intTy.getWidth() == 16)
return IntegerType::get(intTy.getContext(), 64);
return intTy;
});
converter.addTargetMaterialization(
[](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
return builder.create<TestCastOp>(loc, type, inputs).getResult();
});
ConversionTarget target(getContext());
target.addIllegalOp<TestTypeChangerOp>();
RewritePatternSet patterns(&getContext());
patterns.add<ForwardOperandPattern>(converter, &getContext());
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test Block Merging
//===----------------------------------------------------------------------===//
namespace {
/// A rewriter pattern that tests that blocks can be merged.
struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Block &firstBlock = op.getBody().front();
Operation *branchOp = firstBlock.getTerminator();
Block *secondBlock = &*(std::next(op.getBody().begin()));
auto succOperands = branchOp->getOperands();
SmallVector<Value, 2> replacements(succOperands);
rewriter.eraseOp(branchOp);
rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
rewriter.modifyOpInPlace(op, [] {});
return success();
}
};
/// A rewrite pattern to tests the undo mechanism of blocks being merged.
struct TestUndoBlocksMerge : public ConversionPattern {
TestUndoBlocksMerge(MLIRContext *ctx)
: ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block &firstBlock = op->getRegion(0).front();
Operation *branchOp = firstBlock.getTerminator();
Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
rewriter.setInsertionPointToStart(secondBlock);
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
auto succOperands = branchOp->getOperands();
SmallVector<Value, 2> replacements(succOperands);
rewriter.eraseOp(branchOp);
rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
rewriter.modifyOpInPlace(op, [] {});
return success();
}
};
/// A rewrite mechanism to inline the body of the op into its parent, when both
/// ops can have a single block.
struct TestMergeSingleBlockOps
: public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
using OpConversionPattern<
SingleBlockImplicitTerminatorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
SingleBlockImplicitTerminatorOp parentOp =
op->getParentOfType<SingleBlockImplicitTerminatorOp>();
if (!parentOp)
return failure();
Block &innerBlock = op.getRegion().front();
TerminatorOp innerTerminator =
cast<TerminatorOp>(innerBlock.getTerminator());
rewriter.inlineBlockBefore(&innerBlock, op);
rewriter.eraseOp(innerTerminator);
rewriter.eraseOp(op);
return success();
}
};
struct TestMergeBlocksPatternDriver
: public PassWrapper<TestMergeBlocksPatternDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver)
StringRef getArgument() const final { return "test-merge-blocks"; }
StringRef getDescription() const final {
return "Test Merging operation in ConversionPatternRewriter";
}
void runOnOperation() override {
MLIRContext *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
context);
ConversionTarget target(*context);
target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
target.addIllegalOp<ILLegalOpF>();
/// Expect the op to have a single block after legalization.
target.addDynamicallyLegalOp<TestMergeBlocksOp>(
[&](TestMergeBlocksOp op) -> bool {
return llvm::hasSingleElement(op.getBody());
});
/// Only allow `test.br` within test.merge_blocks op.
target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
return op->getParentOfType<TestMergeBlocksOp>();
});
/// Expect that all nested test.SingleBlockImplicitTerminator ops are
/// inlined.
target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
[&](SingleBlockImplicitTerminatorOp op) -> bool {
return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
});
DenseSet<Operation *> unlegalizedOps;
ConversionConfig config;
config.unlegalizedOps = &unlegalizedOps;
(void)applyPartialConversion(getOperation(), target, std::move(patterns),
config);
for (auto *op : unlegalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test Selective Replacement
//===----------------------------------------------------------------------===//
namespace {
/// A rewrite mechanism to inline the body of the op into its parent, when both
/// ops can have a single block.
struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
using OpRewritePattern<TestCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestCastOp op,
PatternRewriter &rewriter) const final {
if (op.getNumOperands() != 2)
return failure();
OperandRange operands = op.getOperands();
// Replace non-terminator uses with the first operand.
rewriter.replaceUsesWithIf(op, operands[0], [](OpOperand &operand) {
return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
});
// Replace everything else with the second operand if the operation isn't
// dead.
rewriter.replaceOp(op, op.getOperand(1));
return success();
}
};
struct TestSelectiveReplacementPatternDriver
: public PassWrapper<TestSelectiveReplacementPatternDriver,
OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
TestSelectiveReplacementPatternDriver)
StringRef getArgument() const final {
return "test-pattern-selective-replacement";
}
StringRef getDescription() const final {
return "Test selective replacement in the PatternRewriter";
}
void runOnOperation() override {
MLIRContext *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.add<TestSelectiveOpReplacementPattern>(context);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
} // namespace
//===----------------------------------------------------------------------===//
// PassRegistration
//===----------------------------------------------------------------------===//
namespace mlir {
namespace test {
void registerPatternsTestPass() {
PassRegistration<TestReturnTypeDriver>();
PassRegistration<TestDerivedAttributeDriver>();
PassRegistration<TestPatternDriver>();
PassRegistration<TestStrictPatternDriver>();
PassRegistration<TestLegalizePatternDriver>([] {
return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
});
PassRegistration<TestRemappedValue>();
PassRegistration<TestUnknownRootOpDriver>();
PassRegistration<TestTypeConversionDriver>();
PassRegistration<TestTargetMaterializationWithNoUses>();
PassRegistration<TestRewriteDynamicOpDriver>();
PassRegistration<TestMergeBlocksPatternDriver>();
PassRegistration<TestSelectiveReplacementPatternDriver>();
}
} // namespace test
} // namespace mlir