blob: 84508fb5fe09eb18a793b00b4fc00b6ed3536801 [file] [log] [blame]
//===-- SPIRVPreLegalizer.cpp - prepare IR for legalization -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The pass prepares IR for legalization: it assigns SPIR-V types to registers
// and removes intrinsics which holded these types during IR translation.
// Also it processes constants and registers them in GR to avoid duplication.
//
//===----------------------------------------------------------------------===//
#include "SPIRV.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#define DEBUG_TYPE "spirv-prelegalizer"
using namespace llvm;
namespace {
class SPIRVPreLegalizer : public MachineFunctionPass {
public:
static char ID;
SPIRVPreLegalizer() : MachineFunctionPass(ID) {
initializeSPIRVPreLegalizerPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // namespace
static void
addConstantsToTrack(MachineFunction &MF, SPIRVGlobalRegistry *GR,
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes) {
MachineRegisterInfo &MRI = MF.getRegInfo();
DenseMap<MachineInstr *, Register> RegsAlreadyAddedToDT;
SmallVector<MachineInstr *, 10> ToErase, ToEraseComposites;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_track_constant))
continue;
ToErase.push_back(&MI);
Register SrcReg = MI.getOperand(2).getReg();
auto *Const =
cast<Constant>(cast<ConstantAsMetadata>(
MI.getOperand(3).getMetadata()->getOperand(0))
->getValue());
if (auto *GV = dyn_cast<GlobalValue>(Const)) {
Register Reg = GR->find(GV, &MF);
if (!Reg.isValid())
GR->add(GV, &MF, SrcReg);
else
RegsAlreadyAddedToDT[&MI] = Reg;
} else {
Register Reg = GR->find(Const, &MF);
if (!Reg.isValid()) {
if (auto *ConstVec = dyn_cast<ConstantDataVector>(Const)) {
auto *BuildVec = MRI.getVRegDef(SrcReg);
assert(BuildVec &&
BuildVec->getOpcode() == TargetOpcode::G_BUILD_VECTOR);
for (unsigned i = 0; i < ConstVec->getNumElements(); ++i) {
// Ensure that OpConstantComposite reuses a constant when it's
// already created and available in the same machine function.
Constant *ElemConst = ConstVec->getElementAsConstant(i);
Register ElemReg = GR->find(ElemConst, &MF);
if (!ElemReg.isValid())
GR->add(ElemConst, &MF, BuildVec->getOperand(1 + i).getReg());
else
BuildVec->getOperand(1 + i).setReg(ElemReg);
}
}
GR->add(Const, &MF, SrcReg);
if (Const->getType()->isTargetExtTy()) {
// remember association so that we can restore it when assign types
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
if (SrcMI && SrcMI->getOpcode() == TargetOpcode::G_CONSTANT)
TargetExtConstTypes[SrcMI] = Const->getType();
}
} else {
RegsAlreadyAddedToDT[&MI] = Reg;
// This MI is unused and will be removed. If the MI uses
// const_composite, it will be unused and should be removed too.
assert(MI.getOperand(2).isReg() && "Reg operand is expected");
MachineInstr *SrcMI = MRI.getVRegDef(MI.getOperand(2).getReg());
if (SrcMI && isSpvIntrinsic(*SrcMI, Intrinsic::spv_const_composite))
ToEraseComposites.push_back(SrcMI);
}
}
}
}
for (MachineInstr *MI : ToErase) {
Register Reg = MI->getOperand(2).getReg();
if (RegsAlreadyAddedToDT.contains(MI))
Reg = RegsAlreadyAddedToDT[MI];
auto *RC = MRI.getRegClassOrNull(MI->getOperand(0).getReg());
if (!MRI.getRegClassOrNull(Reg) && RC)
MRI.setRegClass(Reg, RC);
MRI.replaceRegWith(MI->getOperand(0).getReg(), Reg);
MI->eraseFromParent();
}
for (MachineInstr *MI : ToEraseComposites)
MI->eraseFromParent();
}
static void foldConstantsIntoIntrinsics(MachineFunction &MF) {
SmallVector<MachineInstr *, 10> ToErase;
MachineRegisterInfo &MRI = MF.getRegInfo();
const unsigned AssignNameOperandShift = 2;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_assign_name))
continue;
unsigned NumOp = MI.getNumExplicitDefs() + AssignNameOperandShift;
while (MI.getOperand(NumOp).isReg()) {
MachineOperand &MOp = MI.getOperand(NumOp);
MachineInstr *ConstMI = MRI.getVRegDef(MOp.getReg());
assert(ConstMI->getOpcode() == TargetOpcode::G_CONSTANT);
MI.removeOperand(NumOp);
MI.addOperand(MachineOperand::CreateImm(
ConstMI->getOperand(1).getCImm()->getZExtValue()));
if (MRI.use_empty(ConstMI->getOperand(0).getReg()))
ToErase.push_back(ConstMI);
}
}
}
for (MachineInstr *MI : ToErase)
MI->eraseFromParent();
}
static void insertBitcasts(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
// Get access to information about available extensions
const SPIRVSubtarget *ST =
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
SmallVector<MachineInstr *, 10> ToErase;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_bitcast) &&
!isSpvIntrinsic(MI, Intrinsic::spv_ptrcast))
continue;
assert(MI.getOperand(2).isReg());
MIB.setInsertPt(*MI.getParent(), MI);
ToErase.push_back(&MI);
if (isSpvIntrinsic(MI, Intrinsic::spv_bitcast)) {
MIB.buildBitcast(MI.getOperand(0).getReg(), MI.getOperand(2).getReg());
continue;
}
Register Def = MI.getOperand(0).getReg();
Register Source = MI.getOperand(2).getReg();
SPIRVType *BaseTy = GR->getOrCreateSPIRVType(
getMDOperandAsType(MI.getOperand(3).getMetadata(), 0), MIB);
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
BaseTy, MI, *MF.getSubtarget<SPIRVSubtarget>().getInstrInfo(),
addressSpaceToStorageClass(MI.getOperand(4).getImm(), *ST));
// If the bitcast would be redundant, replace all uses with the source
// register.
if (GR->getSPIRVTypeForVReg(Source) == AssignedPtrType) {
MIB.getMRI()->replaceRegWith(Def, Source);
} else {
GR->assignSPIRVTypeToVReg(AssignedPtrType, Def, MF);
MIB.buildBitcast(Def, Source);
}
}
}
for (MachineInstr *MI : ToErase)
MI->eraseFromParent();
}
// Translating GV, IRTranslator sometimes generates following IR:
// %1 = G_GLOBAL_VALUE
// %2 = COPY %1
// %3 = G_ADDRSPACE_CAST %2
//
// or
//
// %1 = G_ZEXT %2
// G_MEMCPY ... %2 ...
//
// New registers have no SPIRVType and no register class info.
//
// Set SPIRVType for GV, propagate it from GV to other instructions,
// also set register classes.
static SPIRVType *propagateSPIRVType(MachineInstr *MI, SPIRVGlobalRegistry *GR,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIB) {
SPIRVType *SpirvTy = nullptr;
assert(MI && "Machine instr is expected");
if (MI->getOperand(0).isReg()) {
Register Reg = MI->getOperand(0).getReg();
SpirvTy = GR->getSPIRVTypeForVReg(Reg);
if (!SpirvTy) {
switch (MI->getOpcode()) {
case TargetOpcode::G_CONSTANT: {
MIB.setInsertPt(*MI->getParent(), MI);
Type *Ty = MI->getOperand(1).getCImm()->getType();
SpirvTy = GR->getOrCreateSPIRVType(Ty, MIB);
break;
}
case TargetOpcode::G_GLOBAL_VALUE: {
MIB.setInsertPt(*MI->getParent(), MI);
const GlobalValue *Global = MI->getOperand(1).getGlobal();
Type *ElementTy = GR->getDeducedGlobalValueType(Global);
auto *Ty = TypedPointerType::get(ElementTy,
Global->getType()->getAddressSpace());
SpirvTy = GR->getOrCreateSPIRVType(Ty, MIB);
break;
}
case TargetOpcode::G_ZEXT: {
if (MI->getOperand(1).isReg()) {
if (MachineInstr *DefInstr =
MRI.getVRegDef(MI->getOperand(1).getReg())) {
if (SPIRVType *Def = propagateSPIRVType(DefInstr, GR, MRI, MIB)) {
unsigned CurrentBW = GR->getScalarOrVectorBitWidth(Def);
unsigned ExpectedBW =
std::max(MRI.getType(Reg).getScalarSizeInBits(), CurrentBW);
unsigned NumElements = GR->getScalarOrVectorComponentCount(Def);
SpirvTy = GR->getOrCreateSPIRVIntegerType(ExpectedBW, MIB);
if (NumElements > 1)
SpirvTy =
GR->getOrCreateSPIRVVectorType(SpirvTy, NumElements, MIB);
}
}
}
break;
}
case TargetOpcode::G_PTRTOINT:
SpirvTy = GR->getOrCreateSPIRVIntegerType(
MRI.getType(Reg).getScalarSizeInBits(), MIB);
break;
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ADDRSPACE_CAST:
case TargetOpcode::G_PTR_ADD:
case TargetOpcode::COPY: {
MachineOperand &Op = MI->getOperand(1);
MachineInstr *Def = Op.isReg() ? MRI.getVRegDef(Op.getReg()) : nullptr;
if (Def)
SpirvTy = propagateSPIRVType(Def, GR, MRI, MIB);
break;
}
default:
break;
}
if (SpirvTy)
GR->assignSPIRVTypeToVReg(SpirvTy, Reg, MIB.getMF());
if (!MRI.getRegClassOrNull(Reg))
MRI.setRegClass(Reg, &SPIRV::IDRegClass);
}
}
return SpirvTy;
}
static std::pair<Register, unsigned>
createNewIdReg(SPIRVType *SpvType, Register SrcReg, MachineRegisterInfo &MRI,
const SPIRVGlobalRegistry &GR) {
if (!SpvType)
SpvType = GR.getSPIRVTypeForVReg(SrcReg);
assert(SpvType && "VReg is expected to have SPIRV type");
LLT SrcLLT = MRI.getType(SrcReg);
LLT NewT = LLT::scalar(32);
bool IsFloat = SpvType->getOpcode() == SPIRV::OpTypeFloat;
bool IsVectorFloat =
SpvType->getOpcode() == SPIRV::OpTypeVector &&
GR.getSPIRVTypeForVReg(SpvType->getOperand(1).getReg())->getOpcode() ==
SPIRV::OpTypeFloat;
IsFloat |= IsVectorFloat;
auto GetIdOp = IsFloat ? SPIRV::GET_fID : SPIRV::GET_ID;
auto DstClass = IsFloat ? &SPIRV::fIDRegClass : &SPIRV::IDRegClass;
if (SrcLLT.isPointer()) {
unsigned PtrSz = GR.getPointerSize();
NewT = LLT::pointer(0, PtrSz);
bool IsVec = SrcLLT.isVector();
if (IsVec)
NewT = LLT::fixed_vector(2, NewT);
if (PtrSz == 64) {
if (IsVec) {
GetIdOp = SPIRV::GET_vpID64;
DstClass = &SPIRV::vpID64RegClass;
} else {
GetIdOp = SPIRV::GET_pID64;
DstClass = &SPIRV::pID64RegClass;
}
} else {
if (IsVec) {
GetIdOp = SPIRV::GET_vpID32;
DstClass = &SPIRV::vpID32RegClass;
} else {
GetIdOp = SPIRV::GET_pID32;
DstClass = &SPIRV::pID32RegClass;
}
}
} else if (SrcLLT.isVector()) {
NewT = LLT::fixed_vector(2, NewT);
if (IsFloat) {
GetIdOp = SPIRV::GET_vfID;
DstClass = &SPIRV::vfIDRegClass;
} else {
GetIdOp = SPIRV::GET_vID;
DstClass = &SPIRV::vIDRegClass;
}
}
Register IdReg = MRI.createGenericVirtualRegister(NewT);
MRI.setRegClass(IdReg, DstClass);
return {IdReg, GetIdOp};
}
// Insert ASSIGN_TYPE instuction between Reg and its definition, set NewReg as
// a dst of the definition, assign SPIRVType to both registers. If SpirvTy is
// provided, use it as SPIRVType in ASSIGN_TYPE, otherwise create it from Ty.
// It's used also in SPIRVBuiltins.cpp.
// TODO: maybe move to SPIRVUtils.
namespace llvm {
Register insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpirvTy,
SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
MachineInstr *Def = MRI.getVRegDef(Reg);
assert((Ty || SpirvTy) && "Either LLVM or SPIRV type is expected.");
MIB.setInsertPt(*Def->getParent(),
(Def->getNextNode() ? Def->getNextNode()->getIterator()
: Def->getParent()->end()));
SpirvTy = SpirvTy ? SpirvTy : GR->getOrCreateSPIRVType(Ty, MIB);
Register NewReg = MRI.createGenericVirtualRegister(MRI.getType(Reg));
if (auto *RC = MRI.getRegClassOrNull(Reg)) {
MRI.setRegClass(NewReg, RC);
} else {
MRI.setRegClass(NewReg, &SPIRV::IDRegClass);
MRI.setRegClass(Reg, &SPIRV::IDRegClass);
}
GR->assignSPIRVTypeToVReg(SpirvTy, Reg, MIB.getMF());
// This is to make it convenient for Legalizer to get the SPIRVType
// when processing the actual MI (i.e. not pseudo one).
GR->assignSPIRVTypeToVReg(SpirvTy, NewReg, MIB.getMF());
// Copy MIFlags from Def to ASSIGN_TYPE instruction. It's required to keep
// the flags after instruction selection.
const uint32_t Flags = Def->getFlags();
MIB.buildInstr(SPIRV::ASSIGN_TYPE)
.addDef(Reg)
.addUse(NewReg)
.addUse(GR->getSPIRVTypeID(SpirvTy))
.setMIFlags(Flags);
Def->getOperand(0).setReg(NewReg);
return NewReg;
}
void processInstr(MachineInstr &MI, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI, SPIRVGlobalRegistry *GR) {
assert(MI.getNumDefs() > 0 && MRI.hasOneUse(MI.getOperand(0).getReg()));
MachineInstr &AssignTypeInst =
*(MRI.use_instr_begin(MI.getOperand(0).getReg()));
auto NewReg =
createNewIdReg(nullptr, MI.getOperand(0).getReg(), MRI, *GR).first;
AssignTypeInst.getOperand(1).setReg(NewReg);
MI.getOperand(0).setReg(NewReg);
MIB.setInsertPt(*MI.getParent(),
(MI.getNextNode() ? MI.getNextNode()->getIterator()
: MI.getParent()->end()));
for (auto &Op : MI.operands()) {
if (!Op.isReg() || Op.isDef())
continue;
auto IdOpInfo = createNewIdReg(nullptr, Op.getReg(), MRI, *GR);
MIB.buildInstr(IdOpInfo.second).addDef(IdOpInfo.first).addUse(Op.getReg());
Op.setReg(IdOpInfo.first);
}
}
} // namespace llvm
static void
generateAssignInstrs(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB,
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes) {
// Get access to information about available extensions
const SPIRVSubtarget *ST =
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<MachineInstr *, 10> ToErase;
for (MachineBasicBlock *MBB : post_order(&MF)) {
if (MBB->empty())
continue;
bool ReachedBegin = false;
for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
!ReachedBegin;) {
MachineInstr &MI = *MII;
if (isSpvIntrinsic(MI, Intrinsic::spv_assign_ptr_type)) {
Register Reg = MI.getOperand(1).getReg();
MIB.setInsertPt(*MI.getParent(), MI.getIterator());
SPIRVType *BaseTy = GR->getOrCreateSPIRVType(
getMDOperandAsType(MI.getOperand(2).getMetadata(), 0), MIB);
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
BaseTy, MI, *MF.getSubtarget<SPIRVSubtarget>().getInstrInfo(),
addressSpaceToStorageClass(MI.getOperand(3).getImm(), *ST));
MachineInstr *Def = MRI.getVRegDef(Reg);
assert(Def && "Expecting an instruction that defines the register");
// G_GLOBAL_VALUE already has type info.
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE)
insertAssignInstr(Reg, nullptr, AssignedPtrType, GR, MIB,
MF.getRegInfo());
ToErase.push_back(&MI);
} else if (isSpvIntrinsic(MI, Intrinsic::spv_assign_type)) {
Register Reg = MI.getOperand(1).getReg();
Type *Ty = getMDOperandAsType(MI.getOperand(2).getMetadata(), 0);
MachineInstr *Def = MRI.getVRegDef(Reg);
assert(Def && "Expecting an instruction that defines the register");
// G_GLOBAL_VALUE already has type info.
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE)
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MF.getRegInfo());
ToErase.push_back(&MI);
} else if (MI.getOpcode() == TargetOpcode::G_CONSTANT ||
MI.getOpcode() == TargetOpcode::G_FCONSTANT ||
MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
// %rc = G_CONSTANT ty Val
// ===>
// %cty = OpType* ty
// %rctmp = G_CONSTANT ty Val
// %rc = ASSIGN_TYPE %rctmp, %cty
Register Reg = MI.getOperand(0).getReg();
if (MRI.hasOneUse(Reg)) {
MachineInstr &UseMI = *MRI.use_instr_begin(Reg);
if (isSpvIntrinsic(UseMI, Intrinsic::spv_assign_type) ||
isSpvIntrinsic(UseMI, Intrinsic::spv_assign_name))
continue;
}
Type *Ty = nullptr;
if (MI.getOpcode() == TargetOpcode::G_CONSTANT) {
auto TargetExtIt = TargetExtConstTypes.find(&MI);
Ty = TargetExtIt == TargetExtConstTypes.end()
? MI.getOperand(1).getCImm()->getType()
: TargetExtIt->second;
} else if (MI.getOpcode() == TargetOpcode::G_FCONSTANT) {
Ty = MI.getOperand(1).getFPImm()->getType();
} else {
assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
Type *ElemTy = nullptr;
MachineInstr *ElemMI = MRI.getVRegDef(MI.getOperand(1).getReg());
assert(ElemMI);
if (ElemMI->getOpcode() == TargetOpcode::G_CONSTANT)
ElemTy = ElemMI->getOperand(1).getCImm()->getType();
else if (ElemMI->getOpcode() == TargetOpcode::G_FCONSTANT)
ElemTy = ElemMI->getOperand(1).getFPImm()->getType();
else
llvm_unreachable("Unexpected opcode");
unsigned NumElts =
MI.getNumExplicitOperands() - MI.getNumExplicitDefs();
Ty = VectorType::get(ElemTy, NumElts, false);
}
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MRI);
} else if (MI.getOpcode() == TargetOpcode::G_TRUNC ||
MI.getOpcode() == TargetOpcode::G_ZEXT ||
MI.getOpcode() == TargetOpcode::G_PTRTOINT ||
MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
MI.getOpcode() == TargetOpcode::COPY ||
MI.getOpcode() == TargetOpcode::G_ADDRSPACE_CAST) {
propagateSPIRVType(&MI, GR, MRI, MIB);
}
if (MII == Begin)
ReachedBegin = true;
else
--MII;
}
}
for (MachineInstr *MI : ToErase)
MI->eraseFromParent();
}
// Defined in SPIRVLegalizerInfo.cpp.
extern bool isTypeFoldingSupported(unsigned Opcode);
static void processInstrsWithTypeFolding(MachineFunction &MF,
SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (isTypeFoldingSupported(MI.getOpcode()))
processInstr(MI, MIB, MRI, GR);
}
}
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
// We need to rewrite dst types for ASSIGN_TYPE instrs to be able
// to perform tblgen'erated selection and we can't do that on Legalizer
// as it operates on gMIR only.
if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
continue;
Register SrcReg = MI.getOperand(1).getReg();
unsigned Opcode = MRI.getVRegDef(SrcReg)->getOpcode();
if (!isTypeFoldingSupported(Opcode))
continue;
Register DstReg = MI.getOperand(0).getReg();
bool IsDstPtr = MRI.getType(DstReg).isPointer();
bool isDstVec = MRI.getType(DstReg).isVector();
if (IsDstPtr || isDstVec)
MRI.setRegClass(DstReg, &SPIRV::IDRegClass);
// Don't need to reset type of register holding constant and used in
// G_ADDRSPACE_CAST, since it breaks legalizer.
if (Opcode == TargetOpcode::G_CONSTANT && MRI.hasOneUse(DstReg)) {
MachineInstr &UseMI = *MRI.use_instr_begin(DstReg);
if (UseMI.getOpcode() == TargetOpcode::G_ADDRSPACE_CAST)
continue;
}
MRI.setType(DstReg, IsDstPtr ? LLT::pointer(0, GR->getPointerSize())
: LLT::scalar(32));
}
}
}
// Find basic blocks of the switch and replace registers in spv_switch() by its
// MBB equivalent.
static void processSwitches(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
DenseMap<const BasicBlock *, MachineBasicBlock *> BB2MBB;
SmallVector<std::pair<MachineInstr *, SmallVector<MachineInstr *, 8>>>
Switches;
for (MachineBasicBlock &MBB : MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
BB2MBB[MBB.getBasicBlock()] = &MBB;
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_switch))
continue;
// Calls to spv_switch intrinsics representing IR switches.
SmallVector<MachineInstr *, 8> NewOps;
for (unsigned i = 2; i < MI.getNumOperands(); ++i) {
Register Reg = MI.getOperand(i).getReg();
if (i % 2 == 1) {
MachineInstr *ConstInstr = getDefInstrMaybeConstant(Reg, &MRI);
NewOps.push_back(ConstInstr);
} else {
MachineInstr *BuildMBB = MRI.getVRegDef(Reg);
assert(BuildMBB &&
BuildMBB->getOpcode() == TargetOpcode::G_BLOCK_ADDR &&
BuildMBB->getOperand(1).isBlockAddress() &&
BuildMBB->getOperand(1).getBlockAddress());
NewOps.push_back(BuildMBB);
}
}
Switches.push_back(std::make_pair(&MI, NewOps));
}
}
SmallPtrSet<MachineInstr *, 8> ToEraseMI;
for (auto &SwIt : Switches) {
MachineInstr &MI = *SwIt.first;
SmallVector<MachineInstr *, 8> &Ins = SwIt.second;
SmallVector<MachineOperand, 8> NewOps;
for (unsigned i = 0; i < Ins.size(); ++i) {
if (Ins[i]->getOpcode() == TargetOpcode::G_BLOCK_ADDR) {
BasicBlock *CaseBB =
Ins[i]->getOperand(1).getBlockAddress()->getBasicBlock();
auto It = BB2MBB.find(CaseBB);
if (It == BB2MBB.end())
report_fatal_error("cannot find a machine basic block by a basic "
"block in a switch statement");
NewOps.push_back(MachineOperand::CreateMBB(It->second));
MI.getParent()->addSuccessor(It->second);
ToEraseMI.insert(Ins[i]);
} else {
NewOps.push_back(
MachineOperand::CreateCImm(Ins[i]->getOperand(1).getCImm()));
}
}
for (unsigned i = MI.getNumOperands() - 1; i > 1; --i)
MI.removeOperand(i);
for (auto &MO : NewOps)
MI.addOperand(MO);
if (MachineInstr *Next = MI.getNextNode()) {
if (isSpvIntrinsic(*Next, Intrinsic::spv_track_constant)) {
ToEraseMI.insert(Next);
Next = MI.getNextNode();
}
if (Next && Next->getOpcode() == TargetOpcode::G_BRINDIRECT)
ToEraseMI.insert(Next);
}
}
for (MachineInstr *BlockAddrI : ToEraseMI)
BlockAddrI->eraseFromParent();
}
static bool isImplicitFallthrough(MachineBasicBlock &MBB) {
if (MBB.empty())
return true;
// Branching SPIR-V intrinsics are not detected by this generic method.
// Thus, we can only trust negative result.
if (!MBB.canFallThrough())
return false;
// Otherwise, we must manually check if we have a SPIR-V intrinsic which
// prevent an implicit fallthrough.
for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
It != E; ++It) {
if (isSpvIntrinsic(*It, Intrinsic::spv_switch))
return false;
}
return true;
}
static void removeImplicitFallthroughs(MachineFunction &MF,
MachineIRBuilder MIB) {
// It is valid for MachineBasicBlocks to not finish with a branch instruction.
// In such cases, they will simply fallthrough their immediate successor.
for (MachineBasicBlock &MBB : MF) {
if (!isImplicitFallthrough(MBB))
continue;
assert(std::distance(MBB.successors().begin(), MBB.successors().end()) ==
1);
MIB.setInsertPt(MBB, MBB.end());
MIB.buildBr(**MBB.successors().begin());
}
}
bool SPIRVPreLegalizer::runOnMachineFunction(MachineFunction &MF) {
// Initialize the type registry.
const SPIRVSubtarget &ST = MF.getSubtarget<SPIRVSubtarget>();
SPIRVGlobalRegistry *GR = ST.getSPIRVGlobalRegistry();
GR->setCurrentFunc(MF);
MachineIRBuilder MIB(MF);
// a registry of target extension constants
DenseMap<MachineInstr *, Type *> TargetExtConstTypes;
addConstantsToTrack(MF, GR, TargetExtConstTypes);
foldConstantsIntoIntrinsics(MF);
insertBitcasts(MF, GR, MIB);
generateAssignInstrs(MF, GR, MIB, TargetExtConstTypes);
processSwitches(MF, GR, MIB);
processInstrsWithTypeFolding(MF, GR, MIB);
removeImplicitFallthroughs(MF, MIB);
return true;
}
INITIALIZE_PASS(SPIRVPreLegalizer, DEBUG_TYPE, "SPIRV pre legalizer", false,
false)
char SPIRVPreLegalizer::ID = 0;
FunctionPass *llvm::createSPIRVPreLegalizerPass() {
return new SPIRVPreLegalizer();
}