blob: 4c59474df883585506bb3a252a36fa5e353a8cfb [file] [log] [blame]
//===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone enum definitions for the RISC-V target
// useful for the compiler back-end and the MC libraries.
//
//===----------------------------------------------------------------------===//
#include "RISCVBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/TargetParser/Triple.h"
namespace llvm {
extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
namespace RISCVSysReg {
#define GET_SysRegsList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVSysReg
namespace RISCVInsnOpcode {
#define GET_RISCVOpcodesList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVInsnOpcode
namespace RISCVABI {
ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
StringRef ABIName) {
auto TargetABI = getTargetABI(ABIName);
bool IsRV64 = TT.isArch64Bit();
bool IsRVE = FeatureBits[RISCV::FeatureStdExtE];
if (!ABIName.empty() && TargetABI == ABI_Unknown) {
errs()
<< "'" << ABIName
<< "' is not a recognized ABI for this target (ignoring target-abi)\n";
} else if (ABIName.starts_with("ilp32") && IsRV64) {
errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (ABIName.starts_with("lp64") && !IsRV64) {
errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
TargetABI != ABI_Unknown) {
// TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
errs()
<< "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
TargetABI = ABI_Unknown;
} else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
TargetABI != ABI_Unknown) {
// TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
errs()
<< "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
TargetABI = ABI_Unknown;
}
if ((TargetABI == RISCVABI::ABI::ABI_ILP32E ||
(TargetABI == ABI_Unknown && IsRVE && !IsRV64)) &&
FeatureBits[RISCV::FeatureStdExtD])
report_fatal_error("ILP32E cannot be used with the D ISA extension");
if (TargetABI != ABI_Unknown)
return TargetABI;
// If no explicit ABI is given, try to compute the default ABI.
auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
if (!ISAInfo)
report_fatal_error(ISAInfo.takeError());
return getTargetABI((*ISAInfo)->computeDefaultABI());
}
ABI getTargetABI(StringRef ABIName) {
auto TargetABI = StringSwitch<ABI>(ABIName)
.Case("ilp32", ABI_ILP32)
.Case("ilp32f", ABI_ILP32F)
.Case("ilp32d", ABI_ILP32D)
.Case("ilp32e", ABI_ILP32E)
.Case("lp64", ABI_LP64)
.Case("lp64f", ABI_LP64F)
.Case("lp64d", ABI_LP64D)
.Case("lp64e", ABI_LP64E)
.Default(ABI_Unknown);
return TargetABI;
}
// To avoid the BP value clobbered by a function call, we need to choose a
// callee saved register to save the value. RV32E only has X8 and X9 as callee
// saved registers and X8 will be used as fp. So we choose X9 as bp.
MCRegister getBPReg() { return RISCV::X9; }
// Returns the register holding shadow call stack pointer.
MCRegister getSCSPReg() { return RISCV::X3; }
} // namespace RISCVABI
namespace RISCVFeatures {
void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV64 target requires an RV64 CPU");
if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
report_fatal_error("RV32 target requires an RV32 CPU");
if (FeatureBits[RISCV::Feature32Bit] &&
FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV32 and RV64 can't be combined");
}
llvm::Expected<std::unique_ptr<RISCVISAInfo>>
parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
unsigned XLen = IsRV64 ? 64 : 32;
std::vector<std::string> FeatureVector;
// Convert FeatureBitset to FeatureVector.
for (auto Feature : RISCVFeatureKV) {
if (FeatureBits[Feature.Value] &&
llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
FeatureVector.push_back(std::string("+") + Feature.Key);
}
return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
}
} // namespace RISCVFeatures
// Include the auto-generated portion of the compress emitter.
#define GEN_UNCOMPRESS_INSTR
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
const MCSubtargetInfo &STI) {
return compressInst(OutInst, MI, STI);
}
bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
const MCSubtargetInfo &STI) {
return uncompressInst(OutInst, MI, STI);
}
// Lookup table for fli.s for entries 2-31.
static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
{0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
{0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
{0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
{0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
{0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
{0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
{0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
{0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
{0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
{0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
};
int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
&FPImm.getSemantics() == &APFloat::IEEEdouble() ||
&FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
"Unexpected semantics");
// Handle the minimum normalized value which is different for each type.
if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
return 1;
// Convert to single precision to use its lookup table.
bool LosesInfo;
APFloat::opStatus Status = FPImm.convert(
APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
if (Status != APFloat::opOK || LosesInfo)
return -1;
APInt Imm = FPImm.bitcastToAPInt();
if (Imm.extractBitsAsZExtValue(21, 0) != 0)
return -1;
bool Sign = Imm.extractBitsAsZExtValue(1, 31);
uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
EMI->second != Mantissa)
return -1;
// Table doesn't have entry 0 or 1.
int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
// The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
if (Sign) {
if (Entry == 16)
return 0;
return -1;
}
return Entry;
}
float RISCVLoadFPImm::getFPImm(unsigned Imm) {
assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
// Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
uint32_t Sign = 0;
if (Imm == 0) {
Sign = 0b1;
Imm = 16;
}
uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
return bit_cast<float>(I);
}
void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
OS << "{ra";
if (SlistEncode > 4) {
OS << ", s0";
if (SlistEncode == 15)
OS << "-s11";
else if (SlistEncode > 5 && SlistEncode <= 14)
OS << "-s" << (SlistEncode - 5);
}
OS << "}";
}
} // namespace llvm