|  | //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the TargetLoweringBase class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/MachineValueType.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/TargetParser/Triple.h" | 
|  | #include "llvm/Transforms/Utils/SizeOpts.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> JumpIsExpensiveOverride( | 
|  | "jump-is-expensive", cl::init(false), | 
|  | cl::desc("Do not create extra branches to split comparison logic."), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> MinimumJumpTableEntries | 
|  | ("min-jump-table-entries", cl::init(4), cl::Hidden, | 
|  | cl::desc("Set minimum number of entries to use a jump table.")); | 
|  |  | 
|  | static cl::opt<unsigned> MaximumJumpTableSize | 
|  | ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, | 
|  | cl::desc("Set maximum size of jump tables.")); | 
|  |  | 
|  | /// Minimum jump table density for normal functions. | 
|  | static cl::opt<unsigned> | 
|  | JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, | 
|  | cl::desc("Minimum density for building a jump table in " | 
|  | "a normal function")); | 
|  |  | 
|  | /// Minimum jump table density for -Os or -Oz functions. | 
|  | static cl::opt<unsigned> OptsizeJumpTableDensity( | 
|  | "optsize-jump-table-density", cl::init(40), cl::Hidden, | 
|  | cl::desc("Minimum density for building a jump table in " | 
|  | "an optsize function")); | 
|  |  | 
|  | // FIXME: This option is only to test if the strict fp operation processed | 
|  | // correctly by preventing mutating strict fp operation to normal fp operation | 
|  | // during development. When the backend supports strict float operation, this | 
|  | // option will be meaningless. | 
|  | static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", | 
|  | cl::desc("Don't mutate strict-float node to a legalize node"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static bool darwinHasSinCos(const Triple &TT) { | 
|  | assert(TT.isOSDarwin() && "should be called with darwin triple"); | 
|  | // Don't bother with 32 bit x86. | 
|  | if (TT.getArch() == Triple::x86) | 
|  | return false; | 
|  | // Macos < 10.9 has no sincos_stret. | 
|  | if (TT.isMacOSX()) | 
|  | return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); | 
|  | // iOS < 7.0 has no sincos_stret. | 
|  | if (TT.isiOS()) | 
|  | return !TT.isOSVersionLT(7, 0); | 
|  | // Any other darwin such as WatchOS/TvOS is new enough. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void TargetLoweringBase::InitLibcalls(const Triple &TT) { | 
|  | #define HANDLE_LIBCALL(code, name) \ | 
|  | setLibcallName(RTLIB::code, name); | 
|  | #include "llvm/IR/RuntimeLibcalls.def" | 
|  | #undef HANDLE_LIBCALL | 
|  | // Initialize calling conventions to their default. | 
|  | for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) | 
|  | setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); | 
|  |  | 
|  | // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". | 
|  | if (TT.isPPC()) { | 
|  | setLibcallName(RTLIB::ADD_F128, "__addkf3"); | 
|  | setLibcallName(RTLIB::SUB_F128, "__subkf3"); | 
|  | setLibcallName(RTLIB::MUL_F128, "__mulkf3"); | 
|  | setLibcallName(RTLIB::DIV_F128, "__divkf3"); | 
|  | setLibcallName(RTLIB::POWI_F128, "__powikf2"); | 
|  | setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); | 
|  | setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); | 
|  | setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); | 
|  | setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); | 
|  | setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); | 
|  | setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); | 
|  | setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); | 
|  | setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); | 
|  | setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); | 
|  | setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); | 
|  | setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); | 
|  | setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); | 
|  | setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); | 
|  | setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); | 
|  | setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); | 
|  | setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); | 
|  | setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); | 
|  | setLibcallName(RTLIB::UNE_F128, "__nekf2"); | 
|  | setLibcallName(RTLIB::OGE_F128, "__gekf2"); | 
|  | setLibcallName(RTLIB::OLT_F128, "__ltkf2"); | 
|  | setLibcallName(RTLIB::OLE_F128, "__lekf2"); | 
|  | setLibcallName(RTLIB::OGT_F128, "__gtkf2"); | 
|  | setLibcallName(RTLIB::UO_F128, "__unordkf2"); | 
|  | } | 
|  |  | 
|  | // A few names are different on particular architectures or environments. | 
|  | if (TT.isOSDarwin()) { | 
|  | // For f16/f32 conversions, Darwin uses the standard naming scheme, instead | 
|  | // of the gnueabi-style __gnu_*_ieee. | 
|  | // FIXME: What about other targets? | 
|  | setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); | 
|  | setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); | 
|  |  | 
|  | // Some darwins have an optimized __bzero/bzero function. | 
|  | switch (TT.getArch()) { | 
|  | case Triple::x86: | 
|  | case Triple::x86_64: | 
|  | if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) | 
|  | setLibcallName(RTLIB::BZERO, "__bzero"); | 
|  | break; | 
|  | case Triple::aarch64: | 
|  | case Triple::aarch64_32: | 
|  | setLibcallName(RTLIB::BZERO, "bzero"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (darwinHasSinCos(TT)) { | 
|  | setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); | 
|  | setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); | 
|  | if (TT.isWatchABI()) { | 
|  | setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, | 
|  | CallingConv::ARM_AAPCS_VFP); | 
|  | setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, | 
|  | CallingConv::ARM_AAPCS_VFP); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); | 
|  | setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); | 
|  | } | 
|  |  | 
|  | if (TT.isGNUEnvironment() || TT.isOSFuchsia() || | 
|  | (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { | 
|  | setLibcallName(RTLIB::SINCOS_F32, "sincosf"); | 
|  | setLibcallName(RTLIB::SINCOS_F64, "sincos"); | 
|  | setLibcallName(RTLIB::SINCOS_F80, "sincosl"); | 
|  | setLibcallName(RTLIB::SINCOS_F128, "sincosl"); | 
|  | setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); | 
|  | } | 
|  |  | 
|  | if (TT.isPS()) { | 
|  | setLibcallName(RTLIB::SINCOS_F32, "sincosf"); | 
|  | setLibcallName(RTLIB::SINCOS_F64, "sincos"); | 
|  | } | 
|  |  | 
|  | if (TT.isOSOpenBSD()) { | 
|  | setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); | 
|  | } | 
|  |  | 
|  | if (TT.isOSWindows() && !TT.isOSCygMing()) { | 
|  | setLibcallName(RTLIB::LDEXP_F32, nullptr); | 
|  | setLibcallName(RTLIB::LDEXP_F80, nullptr); | 
|  | setLibcallName(RTLIB::LDEXP_F128, nullptr); | 
|  | setLibcallName(RTLIB::LDEXP_PPCF128, nullptr); | 
|  |  | 
|  | setLibcallName(RTLIB::FREXP_F32, nullptr); | 
|  | setLibcallName(RTLIB::FREXP_F80, nullptr); | 
|  | setLibcallName(RTLIB::FREXP_F128, nullptr); | 
|  | setLibcallName(RTLIB::FREXP_PPCF128, nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetFPLibCall - Helper to return the right libcall for the given floating | 
|  | /// point type, or UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, | 
|  | RTLIB::Libcall Call_F32, | 
|  | RTLIB::Libcall Call_F64, | 
|  | RTLIB::Libcall Call_F80, | 
|  | RTLIB::Libcall Call_F128, | 
|  | RTLIB::Libcall Call_PPCF128) { | 
|  | return | 
|  | VT == MVT::f32 ? Call_F32 : | 
|  | VT == MVT::f64 ? Call_F64 : | 
|  | VT == MVT::f80 ? Call_F80 : | 
|  | VT == MVT::f128 ? Call_F128 : | 
|  | VT == MVT::ppcf128 ? Call_PPCF128 : | 
|  | RTLIB::UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPEXT - Return the FPEXT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f16) { | 
|  | if (RetVT == MVT::f32) | 
|  | return FPEXT_F16_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return FPEXT_F16_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return FPEXT_F16_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return FPEXT_F16_F128; | 
|  | } else if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::f64) | 
|  | return FPEXT_F32_F64; | 
|  | if (RetVT == MVT::f128) | 
|  | return FPEXT_F32_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return FPEXT_F32_PPCF128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::f128) | 
|  | return FPEXT_F64_F128; | 
|  | else if (RetVT == MVT::ppcf128) | 
|  | return FPEXT_F64_PPCF128; | 
|  | } else if (OpVT == MVT::f80) { | 
|  | if (RetVT == MVT::f128) | 
|  | return FPEXT_F80_F128; | 
|  | } | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPROUND - Return the FPROUND_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { | 
|  | if (RetVT == MVT::f16) { | 
|  | if (OpVT == MVT::f32) | 
|  | return FPROUND_F32_F16; | 
|  | if (OpVT == MVT::f64) | 
|  | return FPROUND_F64_F16; | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F16; | 
|  | if (OpVT == MVT::f128) | 
|  | return FPROUND_F128_F16; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F16; | 
|  | } else if (RetVT == MVT::bf16) { | 
|  | if (OpVT == MVT::f32) | 
|  | return FPROUND_F32_BF16; | 
|  | if (OpVT == MVT::f64) | 
|  | return FPROUND_F64_BF16; | 
|  | } else if (RetVT == MVT::f32) { | 
|  | if (OpVT == MVT::f64) | 
|  | return FPROUND_F64_F32; | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F32; | 
|  | if (OpVT == MVT::f128) | 
|  | return FPROUND_F128_F32; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F32; | 
|  | } else if (RetVT == MVT::f64) { | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F64; | 
|  | if (OpVT == MVT::f128) | 
|  | return FPROUND_F128_F64; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F64; | 
|  | } else if (RetVT == MVT::f80) { | 
|  | if (OpVT == MVT::f128) | 
|  | return FPROUND_F128_F80; | 
|  | } | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f16) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F16_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F16_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F16_I128; | 
|  | } else if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F32_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F32_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F32_I128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F64_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F64_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F64_I128; | 
|  | } else if (OpVT == MVT::f80) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F80_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F80_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F80_I128; | 
|  | } else if (OpVT == MVT::f128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F128_I128; | 
|  | } else if (OpVT == MVT::ppcf128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_PPCF128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_PPCF128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_PPCF128_I128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f16) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F16_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F16_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F16_I128; | 
|  | } else if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F32_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F32_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F32_I128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F64_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F64_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F64_I128; | 
|  | } else if (OpVT == MVT::f80) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F80_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F80_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F80_I128; | 
|  | } else if (OpVT == MVT::f128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F128_I128; | 
|  | } else if (OpVT == MVT::ppcf128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_PPCF128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_PPCF128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_PPCF128_I128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::i32) { | 
|  | if (RetVT == MVT::f16) | 
|  | return SINTTOFP_I32_F16; | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I32_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I32_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I32_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return SINTTOFP_I32_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I32_PPCF128; | 
|  | } else if (OpVT == MVT::i64) { | 
|  | if (RetVT == MVT::f16) | 
|  | return SINTTOFP_I64_F16; | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I64_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I64_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I64_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return SINTTOFP_I64_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I64_PPCF128; | 
|  | } else if (OpVT == MVT::i128) { | 
|  | if (RetVT == MVT::f16) | 
|  | return SINTTOFP_I128_F16; | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I128_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I128_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I128_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return SINTTOFP_I128_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I128_PPCF128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::i32) { | 
|  | if (RetVT == MVT::f16) | 
|  | return UINTTOFP_I32_F16; | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I32_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I32_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I32_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return UINTTOFP_I32_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I32_PPCF128; | 
|  | } else if (OpVT == MVT::i64) { | 
|  | if (RetVT == MVT::f16) | 
|  | return UINTTOFP_I64_F16; | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I64_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I64_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I64_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return UINTTOFP_I64_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I64_PPCF128; | 
|  | } else if (OpVT == MVT::i128) { | 
|  | if (RetVT == MVT::f16) | 
|  | return UINTTOFP_I128_F16; | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I128_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I128_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I128_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return UINTTOFP_I128_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I128_PPCF128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { | 
|  | return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, | 
|  | POWI_PPCF128); | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) { | 
|  | return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128, | 
|  | LDEXP_PPCF128); | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) { | 
|  | return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128, | 
|  | FREXP_PPCF128); | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, | 
|  | MVT VT) { | 
|  | unsigned ModeN, ModelN; | 
|  | switch (VT.SimpleTy) { | 
|  | case MVT::i8: | 
|  | ModeN = 0; | 
|  | break; | 
|  | case MVT::i16: | 
|  | ModeN = 1; | 
|  | break; | 
|  | case MVT::i32: | 
|  | ModeN = 2; | 
|  | break; | 
|  | case MVT::i64: | 
|  | ModeN = 3; | 
|  | break; | 
|  | case MVT::i128: | 
|  | ModeN = 4; | 
|  | break; | 
|  | default: | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | switch (Order) { | 
|  | case AtomicOrdering::Monotonic: | 
|  | ModelN = 0; | 
|  | break; | 
|  | case AtomicOrdering::Acquire: | 
|  | ModelN = 1; | 
|  | break; | 
|  | case AtomicOrdering::Release: | 
|  | ModelN = 2; | 
|  | break; | 
|  | case AtomicOrdering::AcquireRelease: | 
|  | case AtomicOrdering::SequentiallyConsistent: | 
|  | ModelN = 3; | 
|  | break; | 
|  | default: | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | #define LCALLS(A, B)                                                           \ | 
|  | { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } | 
|  | #define LCALL5(A)                                                              \ | 
|  | LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) | 
|  | switch (Opc) { | 
|  | case ISD::ATOMIC_CMP_SWAP: { | 
|  | const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; | 
|  | return LC[ModeN][ModelN]; | 
|  | } | 
|  | case ISD::ATOMIC_SWAP: { | 
|  | const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; | 
|  | return LC[ModeN][ModelN]; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_ADD: { | 
|  | const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; | 
|  | return LC[ModeN][ModelN]; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_OR: { | 
|  | const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; | 
|  | return LC[ModeN][ModelN]; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_CLR: { | 
|  | const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; | 
|  | return LC[ModeN][ModelN]; | 
|  | } | 
|  | case ISD::ATOMIC_LOAD_XOR: { | 
|  | const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; | 
|  | return LC[ModeN][ModelN]; | 
|  | } | 
|  | default: | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  | #undef LCALLS | 
|  | #undef LCALL5 | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { | 
|  | #define OP_TO_LIBCALL(Name, Enum)                                              \ | 
|  | case Name:                                                                   \ | 
|  | switch (VT.SimpleTy) {                                                     \ | 
|  | default:                                                                   \ | 
|  | return UNKNOWN_LIBCALL;                                                  \ | 
|  | case MVT::i8:                                                              \ | 
|  | return Enum##_1;                                                         \ | 
|  | case MVT::i16:                                                             \ | 
|  | return Enum##_2;                                                         \ | 
|  | case MVT::i32:                                                             \ | 
|  | return Enum##_4;                                                         \ | 
|  | case MVT::i64:                                                             \ | 
|  | return Enum##_8;                                                         \ | 
|  | case MVT::i128:                                                            \ | 
|  | return Enum##_16;                                                        \ | 
|  | } | 
|  |  | 
|  | switch (Opc) { | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) | 
|  | } | 
|  |  | 
|  | #undef OP_TO_LIBCALL | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { | 
|  | switch (ElementSize) { | 
|  | case 1: | 
|  | return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; | 
|  | case 2: | 
|  | return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; | 
|  | case 4: | 
|  | return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; | 
|  | case 8: | 
|  | return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; | 
|  | case 16: | 
|  | return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; | 
|  | default: | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { | 
|  | switch (ElementSize) { | 
|  | case 1: | 
|  | return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; | 
|  | case 2: | 
|  | return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; | 
|  | case 4: | 
|  | return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; | 
|  | case 8: | 
|  | return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; | 
|  | case 16: | 
|  | return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; | 
|  | default: | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { | 
|  | switch (ElementSize) { | 
|  | case 1: | 
|  | return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; | 
|  | case 2: | 
|  | return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; | 
|  | case 4: | 
|  | return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; | 
|  | case 8: | 
|  | return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; | 
|  | case 16: | 
|  | return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; | 
|  | default: | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InitCmpLibcallCCs - Set default comparison libcall CC. | 
|  | static void InitCmpLibcallCCs(ISD::CondCode *CCs) { | 
|  | std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); | 
|  | CCs[RTLIB::OEQ_F32] = ISD::SETEQ; | 
|  | CCs[RTLIB::OEQ_F64] = ISD::SETEQ; | 
|  | CCs[RTLIB::OEQ_F128] = ISD::SETEQ; | 
|  | CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; | 
|  | CCs[RTLIB::UNE_F32] = ISD::SETNE; | 
|  | CCs[RTLIB::UNE_F64] = ISD::SETNE; | 
|  | CCs[RTLIB::UNE_F128] = ISD::SETNE; | 
|  | CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; | 
|  | CCs[RTLIB::OGE_F32] = ISD::SETGE; | 
|  | CCs[RTLIB::OGE_F64] = ISD::SETGE; | 
|  | CCs[RTLIB::OGE_F128] = ISD::SETGE; | 
|  | CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; | 
|  | CCs[RTLIB::OLT_F32] = ISD::SETLT; | 
|  | CCs[RTLIB::OLT_F64] = ISD::SETLT; | 
|  | CCs[RTLIB::OLT_F128] = ISD::SETLT; | 
|  | CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; | 
|  | CCs[RTLIB::OLE_F32] = ISD::SETLE; | 
|  | CCs[RTLIB::OLE_F64] = ISD::SETLE; | 
|  | CCs[RTLIB::OLE_F128] = ISD::SETLE; | 
|  | CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; | 
|  | CCs[RTLIB::OGT_F32] = ISD::SETGT; | 
|  | CCs[RTLIB::OGT_F64] = ISD::SETGT; | 
|  | CCs[RTLIB::OGT_F128] = ISD::SETGT; | 
|  | CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; | 
|  | CCs[RTLIB::UO_F32] = ISD::SETNE; | 
|  | CCs[RTLIB::UO_F64] = ISD::SETNE; | 
|  | CCs[RTLIB::UO_F128] = ISD::SETNE; | 
|  | CCs[RTLIB::UO_PPCF128] = ISD::SETNE; | 
|  | } | 
|  |  | 
|  | /// NOTE: The TargetMachine owns TLOF. | 
|  | TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { | 
|  | initActions(); | 
|  |  | 
|  | // Perform these initializations only once. | 
|  | MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = | 
|  | MaxLoadsPerMemcmp = 8; | 
|  | MaxGluedStoresPerMemcpy = 0; | 
|  | MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = | 
|  | MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; | 
|  | HasMultipleConditionRegisters = false; | 
|  | HasExtractBitsInsn = false; | 
|  | JumpIsExpensive = JumpIsExpensiveOverride; | 
|  | PredictableSelectIsExpensive = false; | 
|  | EnableExtLdPromotion = false; | 
|  | StackPointerRegisterToSaveRestore = 0; | 
|  | BooleanContents = UndefinedBooleanContent; | 
|  | BooleanFloatContents = UndefinedBooleanContent; | 
|  | BooleanVectorContents = UndefinedBooleanContent; | 
|  | SchedPreferenceInfo = Sched::ILP; | 
|  | GatherAllAliasesMaxDepth = 18; | 
|  | IsStrictFPEnabled = DisableStrictNodeMutation; | 
|  | MaxBytesForAlignment = 0; | 
|  | // TODO: the default will be switched to 0 in the next commit, along | 
|  | // with the Target-specific changes necessary. | 
|  | MaxAtomicSizeInBitsSupported = 1024; | 
|  |  | 
|  | // Assume that even with libcalls, no target supports wider than 128 bit | 
|  | // division. | 
|  | MaxDivRemBitWidthSupported = 128; | 
|  |  | 
|  | MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS; | 
|  |  | 
|  | MinCmpXchgSizeInBits = 0; | 
|  | SupportsUnalignedAtomics = false; | 
|  |  | 
|  | std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); | 
|  |  | 
|  | InitLibcalls(TM.getTargetTriple()); | 
|  | InitCmpLibcallCCs(CmpLibcallCCs); | 
|  | } | 
|  |  | 
|  | void TargetLoweringBase::initActions() { | 
|  | // All operations default to being supported. | 
|  | memset(OpActions, 0, sizeof(OpActions)); | 
|  | memset(LoadExtActions, 0, sizeof(LoadExtActions)); | 
|  | memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); | 
|  | memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); | 
|  | memset(CondCodeActions, 0, sizeof(CondCodeActions)); | 
|  | std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); | 
|  | std::fill(std::begin(TargetDAGCombineArray), | 
|  | std::end(TargetDAGCombineArray), 0); | 
|  |  | 
|  | // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to | 
|  | // remove this and targets should individually set these types if not legal. | 
|  | for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, | 
|  | force_iteration_on_noniterable_enum)) { | 
|  | for (MVT VT : {MVT::i2, MVT::i4}) | 
|  | OpActions[(unsigned)VT.SimpleTy][NT] = Expand; | 
|  | } | 
|  | for (MVT AVT : MVT::all_valuetypes()) { | 
|  | for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { | 
|  | setTruncStoreAction(AVT, VT, Expand); | 
|  | setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); | 
|  | } | 
|  | } | 
|  | for (unsigned IM = (unsigned)ISD::PRE_INC; | 
|  | IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | 
|  | for (MVT VT : {MVT::i2, MVT::i4}) { | 
|  | setIndexedLoadAction(IM, VT, Expand); | 
|  | setIndexedStoreAction(IM, VT, Expand); | 
|  | setIndexedMaskedLoadAction(IM, VT, Expand); | 
|  | setIndexedMaskedStoreAction(IM, VT, Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (MVT VT : MVT::fp_valuetypes()) { | 
|  | MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); | 
|  | if (IntVT.isValid()) { | 
|  | setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); | 
|  | AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set default actions for various operations. | 
|  | for (MVT VT : MVT::all_valuetypes()) { | 
|  | // Default all indexed load / store to expand. | 
|  | for (unsigned IM = (unsigned)ISD::PRE_INC; | 
|  | IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | 
|  | setIndexedLoadAction(IM, VT, Expand); | 
|  | setIndexedStoreAction(IM, VT, Expand); | 
|  | setIndexedMaskedLoadAction(IM, VT, Expand); | 
|  | setIndexedMaskedStoreAction(IM, VT, Expand); | 
|  | } | 
|  |  | 
|  | // Most backends expect to see the node which just returns the value loaded. | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); | 
|  |  | 
|  | // These operations default to expand. | 
|  | setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS, | 
|  | ISD::FMINNUM,        ISD::FMAXNUM, | 
|  | ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE, | 
|  | ISD::FMINIMUM,       ISD::FMAXIMUM, | 
|  | ISD::FMAD,           ISD::SMIN, | 
|  | ISD::SMAX,           ISD::UMIN, | 
|  | ISD::UMAX,           ISD::ABS, | 
|  | ISD::FSHL,           ISD::FSHR, | 
|  | ISD::SADDSAT,        ISD::UADDSAT, | 
|  | ISD::SSUBSAT,        ISD::USUBSAT, | 
|  | ISD::SSHLSAT,        ISD::USHLSAT, | 
|  | ISD::SMULFIX,        ISD::SMULFIXSAT, | 
|  | ISD::UMULFIX,        ISD::UMULFIXSAT, | 
|  | ISD::SDIVFIX,        ISD::SDIVFIXSAT, | 
|  | ISD::UDIVFIX,        ISD::UDIVFIXSAT, | 
|  | ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, | 
|  | ISD::IS_FPCLASS}, | 
|  | VT, Expand); | 
|  |  | 
|  | // Overflow operations default to expand | 
|  | setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, | 
|  | ISD::SMULO, ISD::UMULO}, | 
|  | VT, Expand); | 
|  |  | 
|  | // Carry-using overflow operations default to expand. | 
|  | setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY, | 
|  | ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, | 
|  | VT, Expand); | 
|  |  | 
|  | // ADDC/ADDE/SUBC/SUBE default to expand. | 
|  | setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, | 
|  | Expand); | 
|  |  | 
|  | // Halving adds | 
|  | setOperationAction( | 
|  | {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, | 
|  | Expand); | 
|  |  | 
|  | // Absolute difference | 
|  | setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); | 
|  |  | 
|  | // These default to Expand so they will be expanded to CTLZ/CTTZ by default. | 
|  | setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, | 
|  | Expand); | 
|  |  | 
|  | setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); | 
|  |  | 
|  | // These library functions default to expand. | 
|  | setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT, | 
|  | Expand); | 
|  |  | 
|  | // These operations default to expand for vector types. | 
|  | if (VT.isVector()) | 
|  | setOperationAction( | 
|  | {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG, | 
|  | ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG, | 
|  | ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT}, | 
|  | VT, Expand); | 
|  |  | 
|  | // Constrained floating-point operations default to expand. | 
|  | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \ | 
|  | setOperationAction(ISD::STRICT_##DAGN, VT, Expand); | 
|  | #include "llvm/IR/ConstrainedOps.def" | 
|  |  | 
|  | // For most targets @llvm.get.dynamic.area.offset just returns 0. | 
|  | setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); | 
|  |  | 
|  | // Vector reduction default to expand. | 
|  | setOperationAction( | 
|  | {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, | 
|  | ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, | 
|  | ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, | 
|  | ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, | 
|  | ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM, | 
|  | ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, | 
|  | VT, Expand); | 
|  |  | 
|  | // Named vector shuffles default to expand. | 
|  | setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); | 
|  |  | 
|  | // VP operations default to expand. | 
|  | #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \ | 
|  | setOperationAction(ISD::SDOPC, VT, Expand); | 
|  | #include "llvm/IR/VPIntrinsics.def" | 
|  |  | 
|  | // FP environment operations default to expand. | 
|  | setOperationAction(ISD::GET_FPENV, VT, Expand); | 
|  | setOperationAction(ISD::SET_FPENV, VT, Expand); | 
|  | setOperationAction(ISD::RESET_FPENV, VT, Expand); | 
|  | } | 
|  |  | 
|  | // Most targets ignore the @llvm.prefetch intrinsic. | 
|  | setOperationAction(ISD::PREFETCH, MVT::Other, Expand); | 
|  |  | 
|  | // Most targets also ignore the @llvm.readcyclecounter intrinsic. | 
|  | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); | 
|  |  | 
|  | // ConstantFP nodes default to expand.  Targets can either change this to | 
|  | // Legal, in which case all fp constants are legal, or use isFPImmLegal() | 
|  | // to optimize expansions for certain constants. | 
|  | setOperationAction(ISD::ConstantFP, | 
|  | {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, | 
|  | Expand); | 
|  |  | 
|  | // These library functions default to expand. | 
|  | setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, | 
|  | ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR, ISD::FNEARBYINT, | 
|  | ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::LROUND, | 
|  | ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::FROUNDEVEN}, | 
|  | {MVT::f32, MVT::f64, MVT::f128}, Expand); | 
|  |  | 
|  | // Default ISD::TRAP to expand (which turns it into abort). | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Expand); | 
|  |  | 
|  | // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" | 
|  | // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. | 
|  | setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); | 
|  |  | 
|  | setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand); | 
|  | setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand); | 
|  |  | 
|  | for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { | 
|  | setOperationAction(ISD::GET_FPMODE, VT, Expand); | 
|  | setOperationAction(ISD::SET_FPMODE, VT, Expand); | 
|  | } | 
|  | setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, | 
|  | EVT) const { | 
|  | return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); | 
|  | } | 
|  |  | 
|  | EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, | 
|  | bool LegalTypes) const { | 
|  | assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); | 
|  | if (LHSTy.isVector()) | 
|  | return LHSTy; | 
|  | MVT ShiftVT = | 
|  | LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); | 
|  | // If any possible shift value won't fit in the prefered type, just use | 
|  | // something safe. Assume it will be legalized when the shift is expanded. | 
|  | if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) | 
|  | ShiftVT = MVT::i32; | 
|  | assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && | 
|  | "ShiftVT is still too small!"); | 
|  | return ShiftVT; | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { | 
|  | assert(isTypeLegal(VT)); | 
|  | switch (Op) { | 
|  | default: | 
|  | return false; | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, | 
|  | unsigned DestAS) const { | 
|  | return TM.isNoopAddrSpaceCast(SrcAS, DestAS); | 
|  | } | 
|  |  | 
|  | void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { | 
|  | // If the command-line option was specified, ignore this request. | 
|  | if (!JumpIsExpensiveOverride.getNumOccurrences()) | 
|  | JumpIsExpensive = isExpensive; | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeKind | 
|  | TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { | 
|  | // If this is a simple type, use the ComputeRegisterProp mechanism. | 
|  | if (VT.isSimple()) { | 
|  | MVT SVT = VT.getSimpleVT(); | 
|  | assert((unsigned)SVT.SimpleTy < std::size(TransformToType)); | 
|  | MVT NVT = TransformToType[SVT.SimpleTy]; | 
|  | LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); | 
|  |  | 
|  | assert((LA == TypeLegal || LA == TypeSoftenFloat || | 
|  | LA == TypeSoftPromoteHalf || | 
|  | (NVT.isVector() || | 
|  | ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && | 
|  | "Promote may not follow Expand or Promote"); | 
|  |  | 
|  | if (LA == TypeSplitVector) | 
|  | return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); | 
|  | if (LA == TypeScalarizeVector) | 
|  | return LegalizeKind(LA, SVT.getVectorElementType()); | 
|  | return LegalizeKind(LA, NVT); | 
|  | } | 
|  |  | 
|  | // Handle Extended Scalar Types. | 
|  | if (!VT.isVector()) { | 
|  | assert(VT.isInteger() && "Float types must be simple"); | 
|  | unsigned BitSize = VT.getSizeInBits(); | 
|  | // First promote to a power-of-two size, then expand if necessary. | 
|  | if (BitSize < 8 || !isPowerOf2_32(BitSize)) { | 
|  | EVT NVT = VT.getRoundIntegerType(Context); | 
|  | assert(NVT != VT && "Unable to round integer VT"); | 
|  | LegalizeKind NextStep = getTypeConversion(Context, NVT); | 
|  | // Avoid multi-step promotion. | 
|  | if (NextStep.first == TypePromoteInteger) | 
|  | return NextStep; | 
|  | // Return rounded integer type. | 
|  | return LegalizeKind(TypePromoteInteger, NVT); | 
|  | } | 
|  |  | 
|  | return LegalizeKind(TypeExpandInteger, | 
|  | EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); | 
|  | } | 
|  |  | 
|  | // Handle vector types. | 
|  | ElementCount NumElts = VT.getVectorElementCount(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | // Vectors with only one element are always scalarized. | 
|  | if (NumElts.isScalar()) | 
|  | return LegalizeKind(TypeScalarizeVector, EltVT); | 
|  |  | 
|  | // Try to widen vector elements until the element type is a power of two and | 
|  | // promote it to a legal type later on, for example: | 
|  | // <3 x i8> -> <4 x i8> -> <4 x i32> | 
|  | if (EltVT.isInteger()) { | 
|  | // Vectors with a number of elements that is not a power of two are always | 
|  | // widened, for example <3 x i8> -> <4 x i8>. | 
|  | if (!VT.isPow2VectorType()) { | 
|  | NumElts = NumElts.coefficientNextPowerOf2(); | 
|  | EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); | 
|  | return LegalizeKind(TypeWidenVector, NVT); | 
|  | } | 
|  |  | 
|  | // Examine the element type. | 
|  | LegalizeKind LK = getTypeConversion(Context, EltVT); | 
|  |  | 
|  | // If type is to be expanded, split the vector. | 
|  | //  <4 x i140> -> <2 x i140> | 
|  | if (LK.first == TypeExpandInteger) { | 
|  | if (VT.getVectorElementCount().isScalable()) | 
|  | return LegalizeKind(TypeScalarizeScalableVector, EltVT); | 
|  | return LegalizeKind(TypeSplitVector, | 
|  | VT.getHalfNumVectorElementsVT(Context)); | 
|  | } | 
|  |  | 
|  | // Promote the integer element types until a legal vector type is found | 
|  | // or until the element integer type is too big. If a legal type was not | 
|  | // found, fallback to the usual mechanism of widening/splitting the | 
|  | // vector. | 
|  | EVT OldEltVT = EltVT; | 
|  | while (true) { | 
|  | // Increase the bitwidth of the element to the next pow-of-two | 
|  | // (which is greater than 8 bits). | 
|  | EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) | 
|  | .getRoundIntegerType(Context); | 
|  |  | 
|  | // Stop trying when getting a non-simple element type. | 
|  | // Note that vector elements may be greater than legal vector element | 
|  | // types. Example: X86 XMM registers hold 64bit element on 32bit | 
|  | // systems. | 
|  | if (!EltVT.isSimple()) | 
|  | break; | 
|  |  | 
|  | // Build a new vector type and check if it is legal. | 
|  | MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); | 
|  | // Found a legal promoted vector type. | 
|  | if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) | 
|  | return LegalizeKind(TypePromoteInteger, | 
|  | EVT::getVectorVT(Context, EltVT, NumElts)); | 
|  | } | 
|  |  | 
|  | // Reset the type to the unexpanded type if we did not find a legal vector | 
|  | // type with a promoted vector element type. | 
|  | EltVT = OldEltVT; | 
|  | } | 
|  |  | 
|  | // Try to widen the vector until a legal type is found. | 
|  | // If there is no wider legal type, split the vector. | 
|  | while (true) { | 
|  | // Round up to the next power of 2. | 
|  | NumElts = NumElts.coefficientNextPowerOf2(); | 
|  |  | 
|  | // If there is no simple vector type with this many elements then there | 
|  | // cannot be a larger legal vector type.  Note that this assumes that | 
|  | // there are no skipped intermediate vector types in the simple types. | 
|  | if (!EltVT.isSimple()) | 
|  | break; | 
|  | MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); | 
|  | if (LargerVector == MVT()) | 
|  | break; | 
|  |  | 
|  | // If this type is legal then widen the vector. | 
|  | if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) | 
|  | return LegalizeKind(TypeWidenVector, LargerVector); | 
|  | } | 
|  |  | 
|  | // Widen odd vectors to next power of two. | 
|  | if (!VT.isPow2VectorType()) { | 
|  | EVT NVT = VT.getPow2VectorType(Context); | 
|  | return LegalizeKind(TypeWidenVector, NVT); | 
|  | } | 
|  |  | 
|  | if (VT.getVectorElementCount() == ElementCount::getScalable(1)) | 
|  | return LegalizeKind(TypeScalarizeScalableVector, EltVT); | 
|  |  | 
|  | // Vectors with illegal element types are expanded. | 
|  | EVT NVT = EVT::getVectorVT(Context, EltVT, | 
|  | VT.getVectorElementCount().divideCoefficientBy(2)); | 
|  | return LegalizeKind(TypeSplitVector, NVT); | 
|  | } | 
|  |  | 
|  | static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, | 
|  | MVT &RegisterVT, | 
|  | TargetLoweringBase *TLI) { | 
|  | // Figure out the right, legal destination reg to copy into. | 
|  | ElementCount EC = VT.getVectorElementCount(); | 
|  | MVT EltTy = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumVectorRegs = 1; | 
|  |  | 
|  | // Scalable vectors cannot be scalarized, so splitting or widening is | 
|  | // required. | 
|  | if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) | 
|  | llvm_unreachable( | 
|  | "Splitting or widening of non-power-of-2 MVTs is not implemented."); | 
|  |  | 
|  | // FIXME: We don't support non-power-of-2-sized vectors for now. | 
|  | // Ideally we could break down into LHS/RHS like LegalizeDAG does. | 
|  | if (!isPowerOf2_32(EC.getKnownMinValue())) { | 
|  | // Split EC to unit size (scalable property is preserved). | 
|  | NumVectorRegs = EC.getKnownMinValue(); | 
|  | EC = ElementCount::getFixed(1); | 
|  | } | 
|  |  | 
|  | // Divide the input until we get to a supported size. This will | 
|  | // always end up with an EC that represent a scalar or a scalable | 
|  | // scalar. | 
|  | while (EC.getKnownMinValue() > 1 && | 
|  | !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { | 
|  | EC = EC.divideCoefficientBy(2); | 
|  | NumVectorRegs <<= 1; | 
|  | } | 
|  |  | 
|  | NumIntermediates = NumVectorRegs; | 
|  |  | 
|  | MVT NewVT = MVT::getVectorVT(EltTy, EC); | 
|  | if (!TLI->isTypeLegal(NewVT)) | 
|  | NewVT = EltTy; | 
|  | IntermediateVT = NewVT; | 
|  |  | 
|  | unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); | 
|  |  | 
|  | // Convert sizes such as i33 to i64. | 
|  | LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits); | 
|  |  | 
|  | MVT DestVT = TLI->getRegisterType(NewVT); | 
|  | RegisterVT = DestVT; | 
|  | if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16. | 
|  | return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); | 
|  |  | 
|  | // Otherwise, promotion or legal types use the same number of registers as | 
|  | // the vector decimated to the appropriate level. | 
|  | return NumVectorRegs; | 
|  | } | 
|  |  | 
|  | /// isLegalRC - Return true if the value types that can be represented by the | 
|  | /// specified register class are all legal. | 
|  | bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, | 
|  | const TargetRegisterClass &RC) const { | 
|  | for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) | 
|  | if (isTypeLegal(*I)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Replace/modify any TargetFrameIndex operands with a targte-dependent | 
|  | /// sequence of memory operands that is recognized by PrologEpilogInserter. | 
|  | MachineBasicBlock * | 
|  | TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | MachineInstr *MI = &InitialMI; | 
|  | MachineFunction &MF = *MI->getMF(); | 
|  | MachineFrameInfo &MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // We're handling multiple types of operands here: | 
|  | // PATCHPOINT MetaArgs - live-in, read only, direct | 
|  | // STATEPOINT Deopt Spill - live-through, read only, indirect | 
|  | // STATEPOINT Deopt Alloca - live-through, read only, direct | 
|  | // (We're currently conservative and mark the deopt slots read/write in | 
|  | // practice.) | 
|  | // STATEPOINT GC Spill - live-through, read/write, indirect | 
|  | // STATEPOINT GC Alloca - live-through, read/write, direct | 
|  | // The live-in vs live-through is handled already (the live through ones are | 
|  | // all stack slots), but we need to handle the different type of stackmap | 
|  | // operands and memory effects here. | 
|  |  | 
|  | if (llvm::none_of(MI->operands(), | 
|  | [](MachineOperand &Operand) { return Operand.isFI(); })) | 
|  | return MBB; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); | 
|  |  | 
|  | // Inherit previous memory operands. | 
|  | MIB.cloneMemRefs(*MI); | 
|  |  | 
|  | for (unsigned i = 0; i < MI->getNumOperands(); ++i) { | 
|  | MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isFI()) { | 
|  | // Index of Def operand this Use it tied to. | 
|  | // Since Defs are coming before Uses, if Use is tied, then | 
|  | // index of Def must be smaller that index of that Use. | 
|  | // Also, Defs preserve their position in new MI. | 
|  | unsigned TiedTo = i; | 
|  | if (MO.isReg() && MO.isTied()) | 
|  | TiedTo = MI->findTiedOperandIdx(i); | 
|  | MIB.add(MO); | 
|  | if (TiedTo < i) | 
|  | MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // foldMemoryOperand builds a new MI after replacing a single FI operand | 
|  | // with the canonical set of five x86 addressing-mode operands. | 
|  | int FI = MO.getIndex(); | 
|  |  | 
|  | // Add frame index operands recognized by stackmaps.cpp | 
|  | if (MFI.isStatepointSpillSlotObjectIndex(FI)) { | 
|  | // indirect-mem-ref tag, size, #FI, offset. | 
|  | // Used for spills inserted by StatepointLowering.  This codepath is not | 
|  | // used for patchpoints/stackmaps at all, for these spilling is done via | 
|  | // foldMemoryOperand callback only. | 
|  | assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); | 
|  | MIB.addImm(StackMaps::IndirectMemRefOp); | 
|  | MIB.addImm(MFI.getObjectSize(FI)); | 
|  | MIB.add(MO); | 
|  | MIB.addImm(0); | 
|  | } else { | 
|  | // direct-mem-ref tag, #FI, offset. | 
|  | // Used by patchpoint, and direct alloca arguments to statepoints | 
|  | MIB.addImm(StackMaps::DirectMemRefOp); | 
|  | MIB.add(MO); | 
|  | MIB.addImm(0); | 
|  | } | 
|  |  | 
|  | assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); | 
|  |  | 
|  | // Add a new memory operand for this FI. | 
|  | assert(MFI.getObjectOffset(FI) != -1); | 
|  |  | 
|  | // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and | 
|  | // PATCHPOINT should be updated to do the same. (TODO) | 
|  | if (MI->getOpcode() != TargetOpcode::STATEPOINT) { | 
|  | auto Flags = MachineMemOperand::MOLoad; | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(MF, FI), Flags, | 
|  | MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); | 
|  | MIB->addMemOperand(MF, MMO); | 
|  | } | 
|  | } | 
|  | MBB->insert(MachineBasicBlock::iterator(MI), MIB); | 
|  | MI->eraseFromParent(); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | /// findRepresentativeClass - Return the largest legal super-reg register class | 
|  | /// of the register class for the specified type and its associated "cost". | 
|  | // This function is in TargetLowering because it uses RegClassForVT which would | 
|  | // need to be moved to TargetRegisterInfo and would necessitate moving | 
|  | // isTypeLegal over as well - a massive change that would just require | 
|  | // TargetLowering having a TargetRegisterInfo class member that it would use. | 
|  | std::pair<const TargetRegisterClass *, uint8_t> | 
|  | TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, | 
|  | MVT VT) const { | 
|  | const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; | 
|  | if (!RC) | 
|  | return std::make_pair(RC, 0); | 
|  |  | 
|  | // Compute the set of all super-register classes. | 
|  | BitVector SuperRegRC(TRI->getNumRegClasses()); | 
|  | for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) | 
|  | SuperRegRC.setBitsInMask(RCI.getMask()); | 
|  |  | 
|  | // Find the first legal register class with the largest spill size. | 
|  | const TargetRegisterClass *BestRC = RC; | 
|  | for (unsigned i : SuperRegRC.set_bits()) { | 
|  | const TargetRegisterClass *SuperRC = TRI->getRegClass(i); | 
|  | // We want the largest possible spill size. | 
|  | if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) | 
|  | continue; | 
|  | if (!isLegalRC(*TRI, *SuperRC)) | 
|  | continue; | 
|  | BestRC = SuperRC; | 
|  | } | 
|  | return std::make_pair(BestRC, 1); | 
|  | } | 
|  |  | 
|  | /// computeRegisterProperties - Once all of the register classes are added, | 
|  | /// this allows us to compute derived properties we expose. | 
|  | void TargetLoweringBase::computeRegisterProperties( | 
|  | const TargetRegisterInfo *TRI) { | 
|  | static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, | 
|  | "Too many value types for ValueTypeActions to hold!"); | 
|  |  | 
|  | // Everything defaults to needing one register. | 
|  | for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { | 
|  | NumRegistersForVT[i] = 1; | 
|  | RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; | 
|  | } | 
|  | // ...except isVoid, which doesn't need any registers. | 
|  | NumRegistersForVT[MVT::isVoid] = 0; | 
|  |  | 
|  | // Find the largest integer register class. | 
|  | unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; | 
|  | for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) | 
|  | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); | 
|  |  | 
|  | // Every integer value type larger than this largest register takes twice as | 
|  | // many registers to represent as the previous ValueType. | 
|  | for (unsigned ExpandedReg = LargestIntReg + 1; | 
|  | ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { | 
|  | NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; | 
|  | RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; | 
|  | TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); | 
|  | ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, | 
|  | TypeExpandInteger); | 
|  | } | 
|  |  | 
|  | // Inspect all of the ValueType's smaller than the largest integer | 
|  | // register to see which ones need promotion. | 
|  | unsigned LegalIntReg = LargestIntReg; | 
|  | for (unsigned IntReg = LargestIntReg - 1; | 
|  | IntReg >= (unsigned)MVT::i1; --IntReg) { | 
|  | MVT IVT = (MVT::SimpleValueType)IntReg; | 
|  | if (isTypeLegal(IVT)) { | 
|  | LegalIntReg = IntReg; | 
|  | } else { | 
|  | RegisterTypeForVT[IntReg] = TransformToType[IntReg] = | 
|  | (MVT::SimpleValueType)LegalIntReg; | 
|  | ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ppcf128 type is really two f64's. | 
|  | if (!isTypeLegal(MVT::ppcf128)) { | 
|  | if (isTypeLegal(MVT::f64)) { | 
|  | NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; | 
|  | RegisterTypeForVT[MVT::ppcf128] = MVT::f64; | 
|  | TransformToType[MVT::ppcf128] = MVT::f64; | 
|  | ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); | 
|  | } else { | 
|  | NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; | 
|  | RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; | 
|  | TransformToType[MVT::ppcf128] = MVT::i128; | 
|  | ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decide how to handle f128. If the target does not have native f128 support, | 
|  | // expand it to i128 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f128)) { | 
|  | NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; | 
|  | RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; | 
|  | TransformToType[MVT::f128] = MVT::i128; | 
|  | ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f80. If the target does not have native f80 support, | 
|  | // expand it to i96 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f80)) { | 
|  | NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32]; | 
|  | RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32]; | 
|  | TransformToType[MVT::f80] = MVT::i32; | 
|  | ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f64. If the target does not have native f64 support, | 
|  | // expand it to i64 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f64)) { | 
|  | NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; | 
|  | RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; | 
|  | TransformToType[MVT::f64] = MVT::i64; | 
|  | ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f32. If the target does not have native f32 support, | 
|  | // expand it to i32 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f32)) { | 
|  | NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; | 
|  | RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; | 
|  | TransformToType[MVT::f32] = MVT::i32; | 
|  | ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f16. If the target does not have native f16 support, | 
|  | // promote it to f32, because there are no f16 library calls (except for | 
|  | // conversions). | 
|  | if (!isTypeLegal(MVT::f16)) { | 
|  | // Allow targets to control how we legalize half. | 
|  | if (softPromoteHalfType()) { | 
|  | NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; | 
|  | RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; | 
|  | TransformToType[MVT::f16] = MVT::f32; | 
|  | ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); | 
|  | } else { | 
|  | NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; | 
|  | RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; | 
|  | TransformToType[MVT::f16] = MVT::f32; | 
|  | ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decide how to handle bf16. If the target does not have native bf16 support, | 
|  | // promote it to f32, because there are no bf16 library calls (except for | 
|  | // converting from f32 to bf16). | 
|  | if (!isTypeLegal(MVT::bf16)) { | 
|  | NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32]; | 
|  | RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32]; | 
|  | TransformToType[MVT::bf16] = MVT::f32; | 
|  | ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf); | 
|  | } | 
|  |  | 
|  | // Loop over all of the vector value types to see which need transformations. | 
|  | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType) i; | 
|  | if (isTypeLegal(VT)) | 
|  | continue; | 
|  |  | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | ElementCount EC = VT.getVectorElementCount(); | 
|  | bool IsLegalWiderType = false; | 
|  | bool IsScalable = VT.isScalableVector(); | 
|  | LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); | 
|  | switch (PreferredAction) { | 
|  | case TypePromoteInteger: { | 
|  | MVT::SimpleValueType EndVT = IsScalable ? | 
|  | MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : | 
|  | MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; | 
|  | // Try to promote the elements of integer vectors. If no legal | 
|  | // promotion was found, fall through to the widen-vector method. | 
|  | for (unsigned nVT = i + 1; | 
|  | (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { | 
|  | MVT SVT = (MVT::SimpleValueType) nVT; | 
|  | // Promote vectors of integers to vectors with the same number | 
|  | // of elements, with a wider element type. | 
|  | if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && | 
|  | SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { | 
|  | TransformToType[i] = SVT; | 
|  | RegisterTypeForVT[i] = SVT; | 
|  | NumRegistersForVT[i] = 1; | 
|  | ValueTypeActions.setTypeAction(VT, TypePromoteInteger); | 
|  | IsLegalWiderType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (IsLegalWiderType) | 
|  | break; | 
|  | [[fallthrough]]; | 
|  | } | 
|  |  | 
|  | case TypeWidenVector: | 
|  | if (isPowerOf2_32(EC.getKnownMinValue())) { | 
|  | // Try to widen the vector. | 
|  | for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | 
|  | MVT SVT = (MVT::SimpleValueType) nVT; | 
|  | if (SVT.getVectorElementType() == EltVT && | 
|  | SVT.isScalableVector() == IsScalable && | 
|  | SVT.getVectorElementCount().getKnownMinValue() > | 
|  | EC.getKnownMinValue() && | 
|  | isTypeLegal(SVT)) { | 
|  | TransformToType[i] = SVT; | 
|  | RegisterTypeForVT[i] = SVT; | 
|  | NumRegistersForVT[i] = 1; | 
|  | ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
|  | IsLegalWiderType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (IsLegalWiderType) | 
|  | break; | 
|  | } else { | 
|  | // Only widen to the next power of 2 to keep consistency with EVT. | 
|  | MVT NVT = VT.getPow2VectorType(); | 
|  | if (isTypeLegal(NVT)) { | 
|  | TransformToType[i] = NVT; | 
|  | ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
|  | RegisterTypeForVT[i] = NVT; | 
|  | NumRegistersForVT[i] = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | [[fallthrough]]; | 
|  |  | 
|  | case TypeSplitVector: | 
|  | case TypeScalarizeVector: { | 
|  | MVT IntermediateVT; | 
|  | MVT RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT, this); | 
|  | NumRegistersForVT[i] = NumRegisters; | 
|  | assert(NumRegistersForVT[i] == NumRegisters && | 
|  | "NumRegistersForVT size cannot represent NumRegisters!"); | 
|  | RegisterTypeForVT[i] = RegisterVT; | 
|  |  | 
|  | MVT NVT = VT.getPow2VectorType(); | 
|  | if (NVT == VT) { | 
|  | // Type is already a power of 2.  The default action is to split. | 
|  | TransformToType[i] = MVT::Other; | 
|  | if (PreferredAction == TypeScalarizeVector) | 
|  | ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); | 
|  | else if (PreferredAction == TypeSplitVector) | 
|  | ValueTypeActions.setTypeAction(VT, TypeSplitVector); | 
|  | else if (EC.getKnownMinValue() > 1) | 
|  | ValueTypeActions.setTypeAction(VT, TypeSplitVector); | 
|  | else | 
|  | ValueTypeActions.setTypeAction(VT, EC.isScalable() | 
|  | ? TypeScalarizeScalableVector | 
|  | : TypeScalarizeVector); | 
|  | } else { | 
|  | TransformToType[i] = NVT; | 
|  | ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unknown vector legalization action!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the 'representative' register class for each value type. | 
|  | // An representative register class is the largest (meaning one which is | 
|  | // not a sub-register class / subreg register class) legal register class for | 
|  | // a group of value types. For example, on i386, i8, i16, and i32 | 
|  | // representative would be GR32; while on x86_64 it's GR64. | 
|  | for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { | 
|  | const TargetRegisterClass* RRC; | 
|  | uint8_t Cost; | 
|  | std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); | 
|  | RepRegClassForVT[i] = RRC; | 
|  | RepRegClassCostForVT[i] = Cost; | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, | 
|  | EVT VT) const { | 
|  | assert(!VT.isVector() && "No default SetCC type for vectors!"); | 
|  | return getPointerTy(DL).SimpleTy; | 
|  | } | 
|  |  | 
|  | MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { | 
|  | return MVT::i32; // return the default value | 
|  | } | 
|  |  | 
|  | /// getVectorTypeBreakdown - Vector types are broken down into some number of | 
|  | /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32 | 
|  | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. | 
|  | /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. | 
|  | /// | 
|  | /// This method returns the number of registers needed, and the VT for each | 
|  | /// register.  It also returns the VT and quantity of the intermediate values | 
|  | /// before they are promoted/expanded. | 
|  | unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, | 
|  | EVT VT, EVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, | 
|  | MVT &RegisterVT) const { | 
|  | ElementCount EltCnt = VT.getVectorElementCount(); | 
|  |  | 
|  | // If there is a wider vector type with the same element type as this one, | 
|  | // or a promoted vector type that has the same number of elements which | 
|  | // are wider, then we should convert to that legal vector type. | 
|  | // This handles things like <2 x float> -> <4 x float> and | 
|  | // <4 x i1> -> <4 x i32>. | 
|  | LegalizeTypeAction TA = getTypeAction(Context, VT); | 
|  | if (!EltCnt.isScalar() && | 
|  | (TA == TypeWidenVector || TA == TypePromoteInteger)) { | 
|  | EVT RegisterEVT = getTypeToTransformTo(Context, VT); | 
|  | if (isTypeLegal(RegisterEVT)) { | 
|  | IntermediateVT = RegisterEVT; | 
|  | RegisterVT = RegisterEVT.getSimpleVT(); | 
|  | NumIntermediates = 1; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out the right, legal destination reg to copy into. | 
|  | EVT EltTy = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumVectorRegs = 1; | 
|  |  | 
|  | // Scalable vectors cannot be scalarized, so handle the legalisation of the | 
|  | // types like done elsewhere in SelectionDAG. | 
|  | if (EltCnt.isScalable()) { | 
|  | LegalizeKind LK; | 
|  | EVT PartVT = VT; | 
|  | do { | 
|  | // Iterate until we've found a legal (part) type to hold VT. | 
|  | LK = getTypeConversion(Context, PartVT); | 
|  | PartVT = LK.second; | 
|  | } while (LK.first != TypeLegal); | 
|  |  | 
|  | if (!PartVT.isVector()) { | 
|  | report_fatal_error( | 
|  | "Don't know how to legalize this scalable vector type"); | 
|  | } | 
|  |  | 
|  | NumIntermediates = | 
|  | divideCeil(VT.getVectorElementCount().getKnownMinValue(), | 
|  | PartVT.getVectorElementCount().getKnownMinValue()); | 
|  | IntermediateVT = PartVT; | 
|  | RegisterVT = getRegisterType(Context, IntermediateVT); | 
|  | return NumIntermediates; | 
|  | } | 
|  |  | 
|  | // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally | 
|  | // we could break down into LHS/RHS like LegalizeDAG does. | 
|  | if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { | 
|  | NumVectorRegs = EltCnt.getKnownMinValue(); | 
|  | EltCnt = ElementCount::getFixed(1); | 
|  | } | 
|  |  | 
|  | // Divide the input until we get to a supported size.  This will always | 
|  | // end with a scalar if the target doesn't support vectors. | 
|  | while (EltCnt.getKnownMinValue() > 1 && | 
|  | !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { | 
|  | EltCnt = EltCnt.divideCoefficientBy(2); | 
|  | NumVectorRegs <<= 1; | 
|  | } | 
|  |  | 
|  | NumIntermediates = NumVectorRegs; | 
|  |  | 
|  | EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); | 
|  | if (!isTypeLegal(NewVT)) | 
|  | NewVT = EltTy; | 
|  | IntermediateVT = NewVT; | 
|  |  | 
|  | MVT DestVT = getRegisterType(Context, NewVT); | 
|  | RegisterVT = DestVT; | 
|  |  | 
|  | if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16. | 
|  | TypeSize NewVTSize = NewVT.getSizeInBits(); | 
|  | // Convert sizes such as i33 to i64. | 
|  | if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue())) | 
|  | NewVTSize = NewVTSize.coefficientNextPowerOf2(); | 
|  | return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); | 
|  | } | 
|  |  | 
|  | // Otherwise, promotion or legal types use the same number of registers as | 
|  | // the vector decimated to the appropriate level. | 
|  | return NumVectorRegs; | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, | 
|  | uint64_t NumCases, | 
|  | uint64_t Range, | 
|  | ProfileSummaryInfo *PSI, | 
|  | BlockFrequencyInfo *BFI) const { | 
|  | // FIXME: This function check the maximum table size and density, but the | 
|  | // minimum size is not checked. It would be nice if the minimum size is | 
|  | // also combined within this function. Currently, the minimum size check is | 
|  | // performed in findJumpTable() in SelectionDAGBuiler and | 
|  | // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. | 
|  | const bool OptForSize = | 
|  | SI->getParent()->getParent()->hasOptSize() || | 
|  | llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); | 
|  | const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); | 
|  | const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); | 
|  |  | 
|  | // Check whether the number of cases is small enough and | 
|  | // the range is dense enough for a jump table. | 
|  | return (OptForSize || Range <= MaxJumpTableSize) && | 
|  | (NumCases * 100 >= Range * MinDensity); | 
|  | } | 
|  |  | 
|  | MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, | 
|  | EVT ConditionVT) const { | 
|  | return getRegisterType(Context, ConditionVT); | 
|  | } | 
|  |  | 
|  | /// Get the EVTs and ArgFlags collections that represent the legalized return | 
|  | /// type of the given function.  This does not require a DAG or a return value, | 
|  | /// and is suitable for use before any DAGs for the function are constructed. | 
|  | /// TODO: Move this out of TargetLowering.cpp. | 
|  | void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, | 
|  | AttributeList attr, | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const TargetLowering &TLI, const DataLayout &DL) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) return; | 
|  |  | 
|  | for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
|  | EVT VT = ValueVTs[j]; | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | if (attr.hasRetAttr(Attribute::SExt)) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (attr.hasRetAttr(Attribute::ZExt)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | // FIXME: C calling convention requires the return type to be promoted to | 
|  | // at least 32-bit. But this is not necessary for non-C calling | 
|  | // conventions. The frontend should mark functions whose return values | 
|  | // require promoting with signext or zeroext attributes. | 
|  | if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { | 
|  | MVT MinVT = TLI.getRegisterType(MVT::i32); | 
|  | if (VT.bitsLT(MinVT)) | 
|  | VT = MinVT; | 
|  | } | 
|  |  | 
|  | unsigned NumParts = | 
|  | TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); | 
|  | MVT PartVT = | 
|  | TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); | 
|  |  | 
|  | // 'inreg' on function refers to return value | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | if (attr.hasRetAttr(Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  |  | 
|  | // Propagate extension type if any | 
|  | if (attr.hasRetAttr(Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | else if (attr.hasRetAttr(Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumParts; ++i) | 
|  | Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area.  This is the actual | 
|  | /// alignment, not its logarithm. | 
|  | uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, | 
|  | const DataLayout &DL) const { | 
|  | return DL.getABITypeAlign(Ty).value(); | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::allowsMemoryAccessForAlignment( | 
|  | LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, | 
|  | Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { | 
|  | // Check if the specified alignment is sufficient based on the data layout. | 
|  | // TODO: While using the data layout works in practice, a better solution | 
|  | // would be to implement this check directly (make this a virtual function). | 
|  | // For example, the ABI alignment may change based on software platform while | 
|  | // this function should only be affected by hardware implementation. | 
|  | Type *Ty = VT.getTypeForEVT(Context); | 
|  | if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { | 
|  | // Assume that an access that meets the ABI-specified alignment is fast. | 
|  | if (Fast != nullptr) | 
|  | *Fast = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This is a misaligned access. | 
|  | return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::allowsMemoryAccessForAlignment( | 
|  | LLVMContext &Context, const DataLayout &DL, EVT VT, | 
|  | const MachineMemOperand &MMO, unsigned *Fast) const { | 
|  | return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), | 
|  | MMO.getAlign(), MMO.getFlags(), Fast); | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, | 
|  | const DataLayout &DL, EVT VT, | 
|  | unsigned AddrSpace, Align Alignment, | 
|  | MachineMemOperand::Flags Flags, | 
|  | unsigned *Fast) const { | 
|  | return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, | 
|  | Flags, Fast); | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, | 
|  | const DataLayout &DL, EVT VT, | 
|  | const MachineMemOperand &MMO, | 
|  | unsigned *Fast) const { | 
|  | return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), | 
|  | MMO.getFlags(), Fast); | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, | 
|  | const DataLayout &DL, LLT Ty, | 
|  | const MachineMemOperand &MMO, | 
|  | unsigned *Fast) const { | 
|  | EVT VT = getApproximateEVTForLLT(Ty, DL, Context); | 
|  | return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), | 
|  | MMO.getFlags(), Fast); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  TargetTransformInfo Helpers | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { | 
|  | enum InstructionOpcodes { | 
|  | #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, | 
|  | #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM | 
|  | #include "llvm/IR/Instruction.def" | 
|  | }; | 
|  | switch (static_cast<InstructionOpcodes>(Opcode)) { | 
|  | case Ret:            return 0; | 
|  | case Br:             return 0; | 
|  | case Switch:         return 0; | 
|  | case IndirectBr:     return 0; | 
|  | case Invoke:         return 0; | 
|  | case CallBr:         return 0; | 
|  | case Resume:         return 0; | 
|  | case Unreachable:    return 0; | 
|  | case CleanupRet:     return 0; | 
|  | case CatchRet:       return 0; | 
|  | case CatchPad:       return 0; | 
|  | case CatchSwitch:    return 0; | 
|  | case CleanupPad:     return 0; | 
|  | case FNeg:           return ISD::FNEG; | 
|  | case Add:            return ISD::ADD; | 
|  | case FAdd:           return ISD::FADD; | 
|  | case Sub:            return ISD::SUB; | 
|  | case FSub:           return ISD::FSUB; | 
|  | case Mul:            return ISD::MUL; | 
|  | case FMul:           return ISD::FMUL; | 
|  | case UDiv:           return ISD::UDIV; | 
|  | case SDiv:           return ISD::SDIV; | 
|  | case FDiv:           return ISD::FDIV; | 
|  | case URem:           return ISD::UREM; | 
|  | case SRem:           return ISD::SREM; | 
|  | case FRem:           return ISD::FREM; | 
|  | case Shl:            return ISD::SHL; | 
|  | case LShr:           return ISD::SRL; | 
|  | case AShr:           return ISD::SRA; | 
|  | case And:            return ISD::AND; | 
|  | case Or:             return ISD::OR; | 
|  | case Xor:            return ISD::XOR; | 
|  | case Alloca:         return 0; | 
|  | case Load:           return ISD::LOAD; | 
|  | case Store:          return ISD::STORE; | 
|  | case GetElementPtr:  return 0; | 
|  | case Fence:          return 0; | 
|  | case AtomicCmpXchg:  return 0; | 
|  | case AtomicRMW:      return 0; | 
|  | case Trunc:          return ISD::TRUNCATE; | 
|  | case ZExt:           return ISD::ZERO_EXTEND; | 
|  | case SExt:           return ISD::SIGN_EXTEND; | 
|  | case FPToUI:         return ISD::FP_TO_UINT; | 
|  | case FPToSI:         return ISD::FP_TO_SINT; | 
|  | case UIToFP:         return ISD::UINT_TO_FP; | 
|  | case SIToFP:         return ISD::SINT_TO_FP; | 
|  | case FPTrunc:        return ISD::FP_ROUND; | 
|  | case FPExt:          return ISD::FP_EXTEND; | 
|  | case PtrToInt:       return ISD::BITCAST; | 
|  | case IntToPtr:       return ISD::BITCAST; | 
|  | case BitCast:        return ISD::BITCAST; | 
|  | case AddrSpaceCast:  return ISD::ADDRSPACECAST; | 
|  | case ICmp:           return ISD::SETCC; | 
|  | case FCmp:           return ISD::SETCC; | 
|  | case PHI:            return 0; | 
|  | case Call:           return 0; | 
|  | case Select:         return ISD::SELECT; | 
|  | case UserOp1:        return 0; | 
|  | case UserOp2:        return 0; | 
|  | case VAArg:          return 0; | 
|  | case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; | 
|  | case InsertElement:  return ISD::INSERT_VECTOR_ELT; | 
|  | case ShuffleVector:  return ISD::VECTOR_SHUFFLE; | 
|  | case ExtractValue:   return ISD::MERGE_VALUES; | 
|  | case InsertValue:    return ISD::MERGE_VALUES; | 
|  | case LandingPad:     return 0; | 
|  | case Freeze:         return ISD::FREEZE; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown instruction type encountered!"); | 
|  | } | 
|  |  | 
|  | Value * | 
|  | TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, | 
|  | bool UseTLS) const { | 
|  | // compiler-rt provides a variable with a magic name.  Targets that do not | 
|  | // link with compiler-rt may also provide such a variable. | 
|  | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | 
|  | const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; | 
|  | auto UnsafeStackPtr = | 
|  | dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); | 
|  |  | 
|  | Type *StackPtrTy = PointerType::getUnqual(M->getContext()); | 
|  |  | 
|  | if (!UnsafeStackPtr) { | 
|  | auto TLSModel = UseTLS ? | 
|  | GlobalValue::InitialExecTLSModel : | 
|  | GlobalValue::NotThreadLocal; | 
|  | // The global variable is not defined yet, define it ourselves. | 
|  | // We use the initial-exec TLS model because we do not support the | 
|  | // variable living anywhere other than in the main executable. | 
|  | UnsafeStackPtr = new GlobalVariable( | 
|  | *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, | 
|  | UnsafeStackPtrVar, nullptr, TLSModel); | 
|  | } else { | 
|  | // The variable exists, check its type and attributes. | 
|  | if (UnsafeStackPtr->getValueType() != StackPtrTy) | 
|  | report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); | 
|  | if (UseTLS != UnsafeStackPtr->isThreadLocal()) | 
|  | report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + | 
|  | (UseTLS ? "" : "not ") + "be thread-local"); | 
|  | } | 
|  | return UnsafeStackPtr; | 
|  | } | 
|  |  | 
|  | Value * | 
|  | TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { | 
|  | if (!TM.getTargetTriple().isAndroid()) | 
|  | return getDefaultSafeStackPointerLocation(IRB, true); | 
|  |  | 
|  | // Android provides a libc function to retrieve the address of the current | 
|  | // thread's unsafe stack pointer. | 
|  | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | 
|  | auto *PtrTy = PointerType::getUnqual(M->getContext()); | 
|  | FunctionCallee Fn = | 
|  | M->getOrInsertFunction("__safestack_pointer_address", PtrTy); | 
|  | return IRB.CreateCall(Fn); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Loop Strength Reduction hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isLegalAddressingMode - Return true if the addressing mode represented | 
|  | /// by AM is legal for this target, for a load/store of the specified type. | 
|  | bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS, Instruction *I) const { | 
|  | // The default implementation of this implements a conservative RISCy, r+r and | 
|  | // r+i addr mode. | 
|  |  | 
|  | // Allows a sign-extended 16-bit immediate field. | 
|  | if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
|  | return false; | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // Only support r+r, | 
|  | switch (AM.Scale) { | 
|  | case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
|  | break; | 
|  | case 1: | 
|  | if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
|  | return false; | 
|  | // Otherwise we have r+r or r+i. | 
|  | break; | 
|  | case 2: | 
|  | if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
|  | return false; | 
|  | // Allow 2*r as r+r. | 
|  | break; | 
|  | default: // Don't allow n * r | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Stack Protector | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // For OpenBSD return its special guard variable. Otherwise return nullptr, | 
|  | // so that SelectionDAG handle SSP. | 
|  | Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { | 
|  | if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { | 
|  | Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); | 
|  | PointerType *PtrTy = PointerType::getUnqual(M.getContext()); | 
|  | Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); | 
|  | if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) | 
|  | G->setVisibility(GlobalValue::HiddenVisibility); | 
|  | return C; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Currently only support "standard" __stack_chk_guard. | 
|  | // TODO: add LOAD_STACK_GUARD support. | 
|  | void TargetLoweringBase::insertSSPDeclarations(Module &M) const { | 
|  | if (!M.getNamedValue("__stack_chk_guard")) { | 
|  | auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()), | 
|  | false, GlobalVariable::ExternalLinkage, | 
|  | nullptr, "__stack_chk_guard"); | 
|  |  | 
|  | // FreeBSD has "__stack_chk_guard" defined externally on libc.so | 
|  | if (M.getDirectAccessExternalData() && | 
|  | !TM.getTargetTriple().isWindowsGNUEnvironment() && | 
|  | !TM.getTargetTriple().isOSFreeBSD() && | 
|  | (!TM.getTargetTriple().isOSDarwin() || | 
|  | TM.getRelocationModel() == Reloc::Static)) | 
|  | GV->setDSOLocal(true); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Currently only support "standard" __stack_chk_guard. | 
|  | // TODO: add LOAD_STACK_GUARD support. | 
|  | Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { | 
|  | return M.getNamedValue("__stack_chk_guard"); | 
|  | } | 
|  |  | 
|  | Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { | 
|  | return MinimumJumpTableEntries; | 
|  | } | 
|  |  | 
|  | void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { | 
|  | MinimumJumpTableEntries = Val; | 
|  | } | 
|  |  | 
|  | unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { | 
|  | return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; | 
|  | } | 
|  |  | 
|  | unsigned TargetLoweringBase::getMaximumJumpTableSize() const { | 
|  | return MaximumJumpTableSize; | 
|  | } | 
|  |  | 
|  | void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { | 
|  | MaximumJumpTableSize = Val; | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::isJumpTableRelative() const { | 
|  | return getTargetMachine().isPositionIndependent(); | 
|  | } | 
|  |  | 
|  | Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { | 
|  | if (TM.Options.LoopAlignment) | 
|  | return Align(TM.Options.LoopAlignment); | 
|  | return PrefLoopAlignment; | 
|  | } | 
|  |  | 
|  | unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( | 
|  | MachineBasicBlock *MBB) const { | 
|  | return MaxBytesForAlignment; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Reciprocal Estimates | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Get the reciprocal estimate attribute string for a function that will | 
|  | /// override the target defaults. | 
|  | static StringRef getRecipEstimateForFunc(MachineFunction &MF) { | 
|  | const Function &F = MF.getFunction(); | 
|  | return F.getFnAttribute("reciprocal-estimates").getValueAsString(); | 
|  | } | 
|  |  | 
|  | /// Construct a string for the given reciprocal operation of the given type. | 
|  | /// This string should match the corresponding option to the front-end's | 
|  | /// "-mrecip" flag assuming those strings have been passed through in an | 
|  | /// attribute string. For example, "vec-divf" for a division of a vXf32. | 
|  | static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { | 
|  | std::string Name = VT.isVector() ? "vec-" : ""; | 
|  |  | 
|  | Name += IsSqrt ? "sqrt" : "div"; | 
|  |  | 
|  | // TODO: Handle other float types? | 
|  | if (VT.getScalarType() == MVT::f64) { | 
|  | Name += "d"; | 
|  | } else if (VT.getScalarType() == MVT::f16) { | 
|  | Name += "h"; | 
|  | } else { | 
|  | assert(VT.getScalarType() == MVT::f32 && | 
|  | "Unexpected FP type for reciprocal estimate"); | 
|  | Name += "f"; | 
|  | } | 
|  |  | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | /// Return the character position and value (a single numeric character) of a | 
|  | /// customized refinement operation in the input string if it exists. Return | 
|  | /// false if there is no customized refinement step count. | 
|  | static bool parseRefinementStep(StringRef In, size_t &Position, | 
|  | uint8_t &Value) { | 
|  | const char RefStepToken = ':'; | 
|  | Position = In.find(RefStepToken); | 
|  | if (Position == StringRef::npos) | 
|  | return false; | 
|  |  | 
|  | StringRef RefStepString = In.substr(Position + 1); | 
|  | // Allow exactly one numeric character for the additional refinement | 
|  | // step parameter. | 
|  | if (RefStepString.size() == 1) { | 
|  | char RefStepChar = RefStepString[0]; | 
|  | if (isDigit(RefStepChar)) { | 
|  | Value = RefStepChar - '0'; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | report_fatal_error("Invalid refinement step for -recip."); | 
|  | } | 
|  |  | 
|  | /// For the input attribute string, return one of the ReciprocalEstimate enum | 
|  | /// status values (enabled, disabled, or not specified) for this operation on | 
|  | /// the specified data type. | 
|  | static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { | 
|  | if (Override.empty()) | 
|  | return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
|  |  | 
|  | SmallVector<StringRef, 4> OverrideVector; | 
|  | Override.split(OverrideVector, ','); | 
|  | unsigned NumArgs = OverrideVector.size(); | 
|  |  | 
|  | // Check if "all", "none", or "default" was specified. | 
|  | if (NumArgs == 1) { | 
|  | // Look for an optional setting of the number of refinement steps needed | 
|  | // for this type of reciprocal operation. | 
|  | size_t RefPos; | 
|  | uint8_t RefSteps; | 
|  | if (parseRefinementStep(Override, RefPos, RefSteps)) { | 
|  | // Split the string for further processing. | 
|  | Override = Override.substr(0, RefPos); | 
|  | } | 
|  |  | 
|  | // All reciprocal types are enabled. | 
|  | if (Override == "all") | 
|  | return TargetLoweringBase::ReciprocalEstimate::Enabled; | 
|  |  | 
|  | // All reciprocal types are disabled. | 
|  | if (Override == "none") | 
|  | return TargetLoweringBase::ReciprocalEstimate::Disabled; | 
|  |  | 
|  | // Target defaults for enablement are used. | 
|  | if (Override == "default") | 
|  | return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
|  | } | 
|  |  | 
|  | // The attribute string may omit the size suffix ('f'/'d'). | 
|  | std::string VTName = getReciprocalOpName(IsSqrt, VT); | 
|  | std::string VTNameNoSize = VTName; | 
|  | VTNameNoSize.pop_back(); | 
|  | static const char DisabledPrefix = '!'; | 
|  |  | 
|  | for (StringRef RecipType : OverrideVector) { | 
|  | size_t RefPos; | 
|  | uint8_t RefSteps; | 
|  | if (parseRefinementStep(RecipType, RefPos, RefSteps)) | 
|  | RecipType = RecipType.substr(0, RefPos); | 
|  |  | 
|  | // Ignore the disablement token for string matching. | 
|  | bool IsDisabled = RecipType[0] == DisabledPrefix; | 
|  | if (IsDisabled) | 
|  | RecipType = RecipType.substr(1); | 
|  |  | 
|  | if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) | 
|  | return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled | 
|  | : TargetLoweringBase::ReciprocalEstimate::Enabled; | 
|  | } | 
|  |  | 
|  | return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
|  | } | 
|  |  | 
|  | /// For the input attribute string, return the customized refinement step count | 
|  | /// for this operation on the specified data type. If the step count does not | 
|  | /// exist, return the ReciprocalEstimate enum value for unspecified. | 
|  | static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { | 
|  | if (Override.empty()) | 
|  | return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
|  |  | 
|  | SmallVector<StringRef, 4> OverrideVector; | 
|  | Override.split(OverrideVector, ','); | 
|  | unsigned NumArgs = OverrideVector.size(); | 
|  |  | 
|  | // Check if "all", "default", or "none" was specified. | 
|  | if (NumArgs == 1) { | 
|  | // Look for an optional setting of the number of refinement steps needed | 
|  | // for this type of reciprocal operation. | 
|  | size_t RefPos; | 
|  | uint8_t RefSteps; | 
|  | if (!parseRefinementStep(Override, RefPos, RefSteps)) | 
|  | return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
|  |  | 
|  | // Split the string for further processing. | 
|  | Override = Override.substr(0, RefPos); | 
|  | assert(Override != "none" && | 
|  | "Disabled reciprocals, but specifed refinement steps?"); | 
|  |  | 
|  | // If this is a general override, return the specified number of steps. | 
|  | if (Override == "all" || Override == "default") | 
|  | return RefSteps; | 
|  | } | 
|  |  | 
|  | // The attribute string may omit the size suffix ('f'/'d'). | 
|  | std::string VTName = getReciprocalOpName(IsSqrt, VT); | 
|  | std::string VTNameNoSize = VTName; | 
|  | VTNameNoSize.pop_back(); | 
|  |  | 
|  | for (StringRef RecipType : OverrideVector) { | 
|  | size_t RefPos; | 
|  | uint8_t RefSteps; | 
|  | if (!parseRefinementStep(RecipType, RefPos, RefSteps)) | 
|  | continue; | 
|  |  | 
|  | RecipType = RecipType.substr(0, RefPos); | 
|  | if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) | 
|  | return RefSteps; | 
|  | } | 
|  |  | 
|  | return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
|  | } | 
|  |  | 
|  | int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, | 
|  | MachineFunction &MF) const { | 
|  | return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); | 
|  | } | 
|  |  | 
|  | int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, | 
|  | MachineFunction &MF) const { | 
|  | return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); | 
|  | } | 
|  |  | 
|  | int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, | 
|  | MachineFunction &MF) const { | 
|  | return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); | 
|  | } | 
|  |  | 
|  | int TargetLoweringBase::getDivRefinementSteps(EVT VT, | 
|  | MachineFunction &MF) const { | 
|  | return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); | 
|  | } | 
|  |  | 
|  | bool TargetLoweringBase::isLoadBitCastBeneficial( | 
|  | EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, | 
|  | const MachineMemOperand &MMO) const { | 
|  | // Single-element vectors are scalarized, so we should generally avoid having | 
|  | // any memory operations on such types, as they would get scalarized too. | 
|  | if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() && | 
|  | BitcastVT.getVectorNumElements() == 1) | 
|  | return false; | 
|  |  | 
|  | // Don't do if we could do an indexed load on the original type, but not on | 
|  | // the new one. | 
|  | if (!LoadVT.isSimple() || !BitcastVT.isSimple()) | 
|  | return true; | 
|  |  | 
|  | MVT LoadMVT = LoadVT.getSimpleVT(); | 
|  |  | 
|  | // Don't bother doing this if it's just going to be promoted again later, as | 
|  | // doing so might interfere with other combines. | 
|  | if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && | 
|  | getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) | 
|  | return false; | 
|  |  | 
|  | unsigned Fast = 0; | 
|  | return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT, | 
|  | MMO, &Fast) && | 
|  | Fast; | 
|  | } | 
|  |  | 
|  | void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { | 
|  | MF.getRegInfo().freezeReservedRegs(MF); | 
|  | } | 
|  |  | 
|  | MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags( | 
|  | const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC, | 
|  | const TargetLibraryInfo *LibInfo) const { | 
|  | MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; | 
|  | if (LI.isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  |  | 
|  | if (LI.hasMetadata(LLVMContext::MD_nontemporal)) | 
|  | Flags |= MachineMemOperand::MONonTemporal; | 
|  |  | 
|  | if (LI.hasMetadata(LLVMContext::MD_invariant_load)) | 
|  | Flags |= MachineMemOperand::MOInvariant; | 
|  |  | 
|  | if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(), | 
|  | LI.getAlign(), DL, &LI, AC, | 
|  | /*DT=*/nullptr, LibInfo)) | 
|  | Flags |= MachineMemOperand::MODereferenceable; | 
|  |  | 
|  | Flags |= getTargetMMOFlags(LI); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | MachineMemOperand::Flags | 
|  | TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, | 
|  | const DataLayout &DL) const { | 
|  | MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; | 
|  |  | 
|  | if (SI.isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  |  | 
|  | if (SI.hasMetadata(LLVMContext::MD_nontemporal)) | 
|  | Flags |= MachineMemOperand::MONonTemporal; | 
|  |  | 
|  | // FIXME: Not preserving dereferenceable | 
|  | Flags |= getTargetMMOFlags(SI); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | MachineMemOperand::Flags | 
|  | TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, | 
|  | const DataLayout &DL) const { | 
|  | auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | 
|  |  | 
|  | if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { | 
|  | if (RMW->isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { | 
|  | if (CmpX->isVolatile()) | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | } else | 
|  | llvm_unreachable("not an atomic instruction"); | 
|  |  | 
|  | // FIXME: Not preserving dereferenceable | 
|  | Flags |= getTargetMMOFlags(AI); | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, | 
|  | Instruction *Inst, | 
|  | AtomicOrdering Ord) const { | 
|  | if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) | 
|  | return Builder.CreateFence(Ord); | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, | 
|  | Instruction *Inst, | 
|  | AtomicOrdering Ord) const { | 
|  | if (isAcquireOrStronger(Ord)) | 
|  | return Builder.CreateFence(Ord); | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  GlobalISel Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, | 
|  | const TargetTransformInfo *TTI) const { | 
|  | auto &MF = *MI.getMF(); | 
|  | auto &MRI = MF.getRegInfo(); | 
|  | // Assuming a spill and reload of a value has a cost of 1 instruction each, | 
|  | // this helper function computes the maximum number of uses we should consider | 
|  | // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We | 
|  | // break even in terms of code size when the original MI has 2 users vs | 
|  | // choosing to potentially spill. Any more than 2 users we we have a net code | 
|  | // size increase. This doesn't take into account register pressure though. | 
|  | auto maxUses = [](unsigned RematCost) { | 
|  | // A cost of 1 means remats are basically free. | 
|  | if (RematCost == 1) | 
|  | return std::numeric_limits<unsigned>::max(); | 
|  | if (RematCost == 2) | 
|  | return 2U; | 
|  |  | 
|  | // Remat is too expensive, only sink if there's one user. | 
|  | if (RematCost > 2) | 
|  | return 1U; | 
|  | llvm_unreachable("Unexpected remat cost"); | 
|  | }; | 
|  |  | 
|  | switch (MI.getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | // Constants-like instructions should be close to their users. | 
|  | // We don't want long live-ranges for them. | 
|  | case TargetOpcode::G_CONSTANT: | 
|  | case TargetOpcode::G_FCONSTANT: | 
|  | case TargetOpcode::G_FRAME_INDEX: | 
|  | case TargetOpcode::G_INTTOPTR: | 
|  | return true; | 
|  | case TargetOpcode::G_GLOBAL_VALUE: { | 
|  | unsigned RematCost = TTI->getGISelRematGlobalCost(); | 
|  | Register Reg = MI.getOperand(0).getReg(); | 
|  | unsigned MaxUses = maxUses(RematCost); | 
|  | if (MaxUses == UINT_MAX) | 
|  | return true; // Remats are "free" so always localize. | 
|  | return MRI.hasAtMostUserInstrs(Reg, MaxUses); | 
|  | } | 
|  | } | 
|  | } |