|  | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interface for lazy computation of value constraint | 
|  | // information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LazyValueInfo.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueLattice.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/AssemblyAnnotationWriter.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/FormattedStream.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <optional> | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "lazy-value-info" | 
|  |  | 
|  | // This is the number of worklist items we will process to try to discover an | 
|  | // answer for a given value. | 
|  | static const unsigned MaxProcessedPerValue = 500; | 
|  |  | 
|  | char LazyValueInfoWrapperPass::ID = 0; | 
|  | LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { | 
|  | initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", | 
|  | "Lazy Value Information Analysis", false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", | 
|  | "Lazy Value Information Analysis", false, true) | 
|  |  | 
|  | namespace llvm { | 
|  | FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } | 
|  | } | 
|  |  | 
|  | AnalysisKey LazyValueAnalysis::Key; | 
|  |  | 
|  | /// Returns true if this lattice value represents at most one possible value. | 
|  | /// This is as precise as any lattice value can get while still representing | 
|  | /// reachable code. | 
|  | static bool hasSingleValue(const ValueLatticeElement &Val) { | 
|  | if (Val.isConstantRange() && | 
|  | Val.getConstantRange().isSingleElement()) | 
|  | // Integer constants are single element ranges | 
|  | return true; | 
|  | if (Val.isConstant()) | 
|  | // Non integer constants | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Combine two sets of facts about the same value into a single set of | 
|  | /// facts.  Note that this method is not suitable for merging facts along | 
|  | /// different paths in a CFG; that's what the mergeIn function is for.  This | 
|  | /// is for merging facts gathered about the same value at the same location | 
|  | /// through two independent means. | 
|  | /// Notes: | 
|  | /// * This method does not promise to return the most precise possible lattice | 
|  | ///   value implied by A and B.  It is allowed to return any lattice element | 
|  | ///   which is at least as strong as *either* A or B (unless our facts | 
|  | ///   conflict, see below). | 
|  | /// * Due to unreachable code, the intersection of two lattice values could be | 
|  | ///   contradictory.  If this happens, we return some valid lattice value so as | 
|  | ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but | 
|  | ///   we do not make this guarantee.  TODO: This would be a useful enhancement. | 
|  | static ValueLatticeElement intersect(const ValueLatticeElement &A, | 
|  | const ValueLatticeElement &B) { | 
|  | // Undefined is the strongest state.  It means the value is known to be along | 
|  | // an unreachable path. | 
|  | if (A.isUnknown()) | 
|  | return A; | 
|  | if (B.isUnknown()) | 
|  | return B; | 
|  |  | 
|  | // If we gave up for one, but got a useable fact from the other, use it. | 
|  | if (A.isOverdefined()) | 
|  | return B; | 
|  | if (B.isOverdefined()) | 
|  | return A; | 
|  |  | 
|  | // Can't get any more precise than constants. | 
|  | if (hasSingleValue(A)) | 
|  | return A; | 
|  | if (hasSingleValue(B)) | 
|  | return B; | 
|  |  | 
|  | // Could be either constant range or not constant here. | 
|  | if (!A.isConstantRange() || !B.isConstantRange()) { | 
|  | // TODO: Arbitrary choice, could be improved | 
|  | return A; | 
|  | } | 
|  |  | 
|  | // Intersect two constant ranges | 
|  | ConstantRange Range = | 
|  | A.getConstantRange().intersectWith(B.getConstantRange()); | 
|  | // Note: An empty range is implicitly converted to unknown or undef depending | 
|  | // on MayIncludeUndef internally. | 
|  | return ValueLatticeElement::getRange( | 
|  | std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || | 
|  | B.isConstantRangeIncludingUndef()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          LazyValueInfoCache Decl | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// A callback value handle updates the cache when values are erased. | 
|  | class LazyValueInfoCache; | 
|  | struct LVIValueHandle final : public CallbackVH { | 
|  | LazyValueInfoCache *Parent; | 
|  |  | 
|  | LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) | 
|  | : CallbackVH(V), Parent(P) { } | 
|  |  | 
|  | void deleted() override; | 
|  | void allUsesReplacedWith(Value *V) override { | 
|  | deleted(); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  | using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; | 
|  |  | 
|  | /// This is the cache kept by LazyValueInfo which | 
|  | /// maintains information about queries across the clients' queries. | 
|  | class LazyValueInfoCache { | 
|  | /// This is all of the cached information for one basic block. It contains | 
|  | /// the per-value lattice elements, as well as a separate set for | 
|  | /// overdefined values to reduce memory usage. Additionally pointers | 
|  | /// dereferenced in the block are cached for nullability queries. | 
|  | struct BlockCacheEntry { | 
|  | SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; | 
|  | SmallDenseSet<AssertingVH<Value>, 4> OverDefined; | 
|  | // std::nullopt indicates that the nonnull pointers for this basic block | 
|  | // block have not been computed yet. | 
|  | std::optional<NonNullPointerSet> NonNullPointers; | 
|  | }; | 
|  |  | 
|  | /// Cached information per basic block. | 
|  | DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> | 
|  | BlockCache; | 
|  | /// Set of value handles used to erase values from the cache on deletion. | 
|  | DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; | 
|  |  | 
|  | const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { | 
|  | auto It = BlockCache.find_as(BB); | 
|  | if (It == BlockCache.end()) | 
|  | return nullptr; | 
|  | return It->second.get(); | 
|  | } | 
|  |  | 
|  | BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { | 
|  | auto It = BlockCache.find_as(BB); | 
|  | if (It == BlockCache.end()) | 
|  | It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) | 
|  | .first; | 
|  |  | 
|  | return It->second.get(); | 
|  | } | 
|  |  | 
|  | void addValueHandle(Value *Val) { | 
|  | auto HandleIt = ValueHandles.find_as(Val); | 
|  | if (HandleIt == ValueHandles.end()) | 
|  | ValueHandles.insert({ Val, this }); | 
|  | } | 
|  |  | 
|  | public: | 
|  | void insertResult(Value *Val, BasicBlock *BB, | 
|  | const ValueLatticeElement &Result) { | 
|  | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); | 
|  |  | 
|  | // Insert over-defined values into their own cache to reduce memory | 
|  | // overhead. | 
|  | if (Result.isOverdefined()) | 
|  | Entry->OverDefined.insert(Val); | 
|  | else | 
|  | Entry->LatticeElements.insert({ Val, Result }); | 
|  |  | 
|  | addValueHandle(Val); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | getCachedValueInfo(Value *V, BasicBlock *BB) const { | 
|  | const BlockCacheEntry *Entry = getBlockEntry(BB); | 
|  | if (!Entry) | 
|  | return std::nullopt; | 
|  |  | 
|  | if (Entry->OverDefined.count(V)) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | auto LatticeIt = Entry->LatticeElements.find_as(V); | 
|  | if (LatticeIt == Entry->LatticeElements.end()) | 
|  | return std::nullopt; | 
|  |  | 
|  | return LatticeIt->second; | 
|  | } | 
|  |  | 
|  | bool isNonNullAtEndOfBlock( | 
|  | Value *V, BasicBlock *BB, | 
|  | function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { | 
|  | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); | 
|  | if (!Entry->NonNullPointers) { | 
|  | Entry->NonNullPointers = InitFn(BB); | 
|  | for (Value *V : *Entry->NonNullPointers) | 
|  | addValueHandle(V); | 
|  | } | 
|  |  | 
|  | return Entry->NonNullPointers->count(V); | 
|  | } | 
|  |  | 
|  | /// clear - Empty the cache. | 
|  | void clear() { | 
|  | BlockCache.clear(); | 
|  | ValueHandles.clear(); | 
|  | } | 
|  |  | 
|  | /// Inform the cache that a given value has been deleted. | 
|  | void eraseValue(Value *V); | 
|  |  | 
|  | /// This is part of the update interface to inform the cache | 
|  | /// that a block has been deleted. | 
|  | void eraseBlock(BasicBlock *BB); | 
|  |  | 
|  | /// Updates the cache to remove any influence an overdefined value in | 
|  | /// OldSucc might have (unless also overdefined in NewSucc).  This just | 
|  | /// flushes elements from the cache and does not add any. | 
|  | void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); | 
|  | }; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::eraseValue(Value *V) { | 
|  | for (auto &Pair : BlockCache) { | 
|  | Pair.second->LatticeElements.erase(V); | 
|  | Pair.second->OverDefined.erase(V); | 
|  | if (Pair.second->NonNullPointers) | 
|  | Pair.second->NonNullPointers->erase(V); | 
|  | } | 
|  |  | 
|  | auto HandleIt = ValueHandles.find_as(V); | 
|  | if (HandleIt != ValueHandles.end()) | 
|  | ValueHandles.erase(HandleIt); | 
|  | } | 
|  |  | 
|  | void LVIValueHandle::deleted() { | 
|  | // This erasure deallocates *this, so it MUST happen after we're done | 
|  | // using any and all members of *this. | 
|  | Parent->eraseValue(*this); | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { | 
|  | BlockCache.erase(BB); | 
|  | } | 
|  |  | 
|  | void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | // When an edge in the graph has been threaded, values that we could not | 
|  | // determine a value for before (i.e. were marked overdefined) may be | 
|  | // possible to solve now. We do NOT try to proactively update these values. | 
|  | // Instead, we clear their entries from the cache, and allow lazy updating to | 
|  | // recompute them when needed. | 
|  |  | 
|  | // The updating process is fairly simple: we need to drop cached info | 
|  | // for all values that were marked overdefined in OldSucc, and for those same | 
|  | // values in any successor of OldSucc (except NewSucc) in which they were | 
|  | // also marked overdefined. | 
|  | std::vector<BasicBlock*> worklist; | 
|  | worklist.push_back(OldSucc); | 
|  |  | 
|  | const BlockCacheEntry *Entry = getBlockEntry(OldSucc); | 
|  | if (!Entry || Entry->OverDefined.empty()) | 
|  | return; // Nothing to process here. | 
|  | SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), | 
|  | Entry->OverDefined.end()); | 
|  |  | 
|  | // Use a worklist to perform a depth-first search of OldSucc's successors. | 
|  | // NOTE: We do not need a visited list since any blocks we have already | 
|  | // visited will have had their overdefined markers cleared already, and we | 
|  | // thus won't loop to their successors. | 
|  | while (!worklist.empty()) { | 
|  | BasicBlock *ToUpdate = worklist.back(); | 
|  | worklist.pop_back(); | 
|  |  | 
|  | // Skip blocks only accessible through NewSucc. | 
|  | if (ToUpdate == NewSucc) continue; | 
|  |  | 
|  | // If a value was marked overdefined in OldSucc, and is here too... | 
|  | auto OI = BlockCache.find_as(ToUpdate); | 
|  | if (OI == BlockCache.end() || OI->second->OverDefined.empty()) | 
|  | continue; | 
|  | auto &ValueSet = OI->second->OverDefined; | 
|  |  | 
|  | bool changed = false; | 
|  | for (Value *V : ValsToClear) { | 
|  | if (!ValueSet.erase(V)) | 
|  | continue; | 
|  |  | 
|  | // If we removed anything, then we potentially need to update | 
|  | // blocks successors too. | 
|  | changed = true; | 
|  | } | 
|  |  | 
|  | if (!changed) continue; | 
|  |  | 
|  | llvm::append_range(worklist, successors(ToUpdate)); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | namespace { | 
|  | /// An assembly annotator class to print LazyValueCache information in | 
|  | /// comments. | 
|  | class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { | 
|  | LazyValueInfoImpl *LVIImpl; | 
|  | // While analyzing which blocks we can solve values for, we need the dominator | 
|  | // information. | 
|  | DominatorTree &DT; | 
|  |  | 
|  | public: | 
|  | LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) | 
|  | : LVIImpl(L), DT(DTree) {} | 
|  |  | 
|  | void emitBasicBlockStartAnnot(const BasicBlock *BB, | 
|  | formatted_raw_ostream &OS) override; | 
|  |  | 
|  | void emitInstructionAnnot(const Instruction *I, | 
|  | formatted_raw_ostream &OS) override; | 
|  | }; | 
|  | } // namespace | 
|  | // The actual implementation of the lazy analysis and update.  Note that the | 
|  | // inheritance from LazyValueInfoCache is intended to be temporary while | 
|  | // splitting the code and then transitioning to a has-a relationship. | 
|  | class LazyValueInfoImpl { | 
|  |  | 
|  | /// Cached results from previous queries | 
|  | LazyValueInfoCache TheCache; | 
|  |  | 
|  | /// This stack holds the state of the value solver during a query. | 
|  | /// It basically emulates the callstack of the naive | 
|  | /// recursive value lookup process. | 
|  | SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; | 
|  |  | 
|  | /// Keeps track of which block-value pairs are in BlockValueStack. | 
|  | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; | 
|  |  | 
|  | /// Push BV onto BlockValueStack unless it's already in there. | 
|  | /// Returns true on success. | 
|  | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { | 
|  | if (!BlockValueSet.insert(BV).second) | 
|  | return false;  // It's already in the stack. | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " | 
|  | << BV.first->getName() << "\n"); | 
|  | BlockValueStack.push_back(BV); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls. | 
|  | const DataLayout &DL; ///< A mandatory DataLayout | 
|  |  | 
|  | /// Declaration of the llvm.experimental.guard() intrinsic, | 
|  | /// if it exists in the module. | 
|  | Function *GuardDecl; | 
|  |  | 
|  | std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, | 
|  | Instruction *CxtI); | 
|  | std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, | 
|  | BasicBlock *T, | 
|  | Instruction *CxtI = nullptr); | 
|  |  | 
|  | // These methods process one work item and may add more. A false value | 
|  | // returned means that the work item was not completely processed and must | 
|  | // be revisited after going through the new items. | 
|  | bool solveBlockValue(Value *Val, BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, | 
|  | BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, | 
|  | BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, | 
|  | BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, | 
|  | BasicBlock *BB); | 
|  | std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, | 
|  | BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( | 
|  | Instruction *I, BasicBlock *BB, | 
|  | std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> | 
|  | OpFn); | 
|  | std::optional<ValueLatticeElement> | 
|  | solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, | 
|  | BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> | 
|  | solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, | 
|  | BasicBlock *BB); | 
|  | std::optional<ValueLatticeElement> | 
|  | solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB); | 
|  | bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); | 
|  | void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, | 
|  | ValueLatticeElement &BBLV, | 
|  | Instruction *BBI); | 
|  |  | 
|  | void solve(); | 
|  |  | 
|  | // For the following methods, if UseBlockValue is true, the function may | 
|  | // push additional values to the worklist and return nullopt. If | 
|  | // UseBlockValue is false, it will never return nullopt. | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS, | 
|  | const APInt &Offset, Instruction *CxtI, | 
|  | bool UseBlockValue); | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest, | 
|  | bool UseBlockValue); | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest, | 
|  | bool UseBlockValue, unsigned Depth = 0); | 
|  |  | 
|  | std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, | 
|  | BasicBlock *BBFrom, | 
|  | BasicBlock *BBTo, | 
|  | bool UseBlockValue); | 
|  |  | 
|  | public: | 
|  | /// This is the query interface to determine the lattice value for the | 
|  | /// specified Value* at the context instruction (if specified) or at the | 
|  | /// start of the block. | 
|  | ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI = nullptr); | 
|  |  | 
|  | /// This is the query interface to determine the lattice value for the | 
|  | /// specified Value* at the specified instruction using only information | 
|  | /// from assumes/guards and range metadata. Unlike getValueInBlock(), no | 
|  | /// recursive query is performed. | 
|  | ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); | 
|  |  | 
|  | /// This is the query interface to determine the lattice | 
|  | /// value for the specified Value* that is true on the specified edge. | 
|  | ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, | 
|  | BasicBlock *ToBB, | 
|  | Instruction *CxtI = nullptr); | 
|  |  | 
|  | ValueLatticeElement getValueAtUse(const Use &U); | 
|  |  | 
|  | /// Complete flush all previously computed values | 
|  | void clear() { | 
|  | TheCache.clear(); | 
|  | } | 
|  |  | 
|  | /// Printing the LazyValueInfo Analysis. | 
|  | void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | 
|  | LazyValueInfoAnnotatedWriter Writer(this, DTree); | 
|  | F.print(OS, &Writer); | 
|  | } | 
|  |  | 
|  | /// This is part of the update interface to remove information related to this | 
|  | /// value from the cache. | 
|  | void forgetValue(Value *V) { TheCache.eraseValue(V); } | 
|  |  | 
|  | /// This is part of the update interface to inform the cache | 
|  | /// that a block has been deleted. | 
|  | void eraseBlock(BasicBlock *BB) { | 
|  | TheCache.eraseBlock(BB); | 
|  | } | 
|  |  | 
|  | /// This is the update interface to inform the cache that an edge from | 
|  | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. | 
|  | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); | 
|  |  | 
|  | LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, | 
|  | Function *GuardDecl) | 
|  | : AC(AC), DL(DL), GuardDecl(GuardDecl) {} | 
|  | }; | 
|  | } // namespace llvm | 
|  |  | 
|  | void LazyValueInfoImpl::solve() { | 
|  | SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( | 
|  | BlockValueStack.begin(), BlockValueStack.end()); | 
|  |  | 
|  | unsigned processedCount = 0; | 
|  | while (!BlockValueStack.empty()) { | 
|  | processedCount++; | 
|  | // Abort if we have to process too many values to get a result for this one. | 
|  | // Because of the design of the overdefined cache currently being per-block | 
|  | // to avoid naming-related issues (IE it wants to try to give different | 
|  | // results for the same name in different blocks), overdefined results don't | 
|  | // get cached globally, which in turn means we will often try to rediscover | 
|  | // the same overdefined result again and again.  Once something like | 
|  | // PredicateInfo is used in LVI or CVP, we should be able to make the | 
|  | // overdefined cache global, and remove this throttle. | 
|  | if (processedCount > MaxProcessedPerValue) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Giving up on stack because we are getting too deep\n"); | 
|  | // Fill in the original values | 
|  | while (!StartingStack.empty()) { | 
|  | std::pair<BasicBlock *, Value *> &e = StartingStack.back(); | 
|  | TheCache.insertResult(e.second, e.first, | 
|  | ValueLatticeElement::getOverdefined()); | 
|  | StartingStack.pop_back(); | 
|  | } | 
|  | BlockValueSet.clear(); | 
|  | BlockValueStack.clear(); | 
|  | return; | 
|  | } | 
|  | std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); | 
|  | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); | 
|  |  | 
|  | if (solveBlockValue(e.second, e.first)) { | 
|  | // The work item was completely processed. | 
|  | assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); | 
|  | #ifndef NDEBUG | 
|  | std::optional<ValueLatticeElement> BBLV = | 
|  | TheCache.getCachedValueInfo(e.second, e.first); | 
|  | assert(BBLV && "Result should be in cache!"); | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " | 
|  | << *BBLV << "\n"); | 
|  | #endif | 
|  |  | 
|  | BlockValueStack.pop_back(); | 
|  | BlockValueSet.erase(e); | 
|  | } else { | 
|  | // More work needs to be done before revisiting. | 
|  | assert(BlockValueStack.back() != e && "Stack should have been pushed!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (Constant *VC = dyn_cast<Constant>(Val)) | 
|  | return ValueLatticeElement::get(VC); | 
|  |  | 
|  | if (std::optional<ValueLatticeElement> OptLatticeVal = | 
|  | TheCache.getCachedValueInfo(Val, BB)) { | 
|  | intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI); | 
|  | return OptLatticeVal; | 
|  | } | 
|  |  | 
|  | // We have hit a cycle, assume overdefined. | 
|  | if (!pushBlockValue({ BB, Val })) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | // Yet to be resolved. | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { | 
|  | switch (BBI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Load: | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) | 
|  | if (isa<IntegerType>(BBI->getType())) { | 
|  | return ValueLatticeElement::getRange( | 
|  | getConstantRangeFromMetadata(*Ranges)); | 
|  | } | 
|  | break; | 
|  | }; | 
|  | // Nothing known - will be intersected with other facts | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { | 
|  | assert(!isa<Constant>(Val) && "Value should not be constant"); | 
|  | assert(!TheCache.getCachedValueInfo(Val, BB) && | 
|  | "Value should not be in cache"); | 
|  |  | 
|  | // Hold off inserting this value into the Cache in case we have to return | 
|  | // false and come back later. | 
|  | std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); | 
|  | if (!Res) | 
|  | // Work pushed, will revisit | 
|  | return false; | 
|  |  | 
|  | TheCache.insertResult(Val, BB, *Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) { | 
|  | Instruction *BBI = dyn_cast<Instruction>(Val); | 
|  | if (!BBI || BBI->getParent() != BB) | 
|  | return solveBlockValueNonLocal(Val, BB); | 
|  |  | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BBI)) | 
|  | return solveBlockValuePHINode(PN, BB); | 
|  |  | 
|  | if (auto *SI = dyn_cast<SelectInst>(BBI)) | 
|  | return solveBlockValueSelect(SI, BB); | 
|  |  | 
|  | // If this value is a nonnull pointer, record it's range and bailout.  Note | 
|  | // that for all other pointer typed values, we terminate the search at the | 
|  | // definition.  We could easily extend this to look through geps, bitcasts, | 
|  | // and the like to prove non-nullness, but it's not clear that's worth it | 
|  | // compile time wise.  The context-insensitive value walk done inside | 
|  | // isKnownNonZero gets most of the profitable cases at much less expense. | 
|  | // This does mean that we have a sensitivity to where the defining | 
|  | // instruction is placed, even if it could legally be hoisted much higher. | 
|  | // That is unfortunate. | 
|  | PointerType *PT = dyn_cast<PointerType>(BBI->getType()); | 
|  | if (PT && isKnownNonZero(BBI, DL)) | 
|  | return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); | 
|  |  | 
|  | if (BBI->getType()->isIntegerTy()) { | 
|  | if (auto *CI = dyn_cast<CastInst>(BBI)) | 
|  | return solveBlockValueCast(CI, BB); | 
|  |  | 
|  | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) | 
|  | return solveBlockValueBinaryOp(BO, BB); | 
|  |  | 
|  | if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) | 
|  | return solveBlockValueExtractValue(EVI, BB); | 
|  |  | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(BBI)) | 
|  | return solveBlockValueIntrinsic(II, BB); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - unknown inst def found.\n"); | 
|  | return getFromRangeMetadata(BBI); | 
|  | } | 
|  |  | 
|  | static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { | 
|  | // TODO: Use NullPointerIsDefined instead. | 
|  | if (Ptr->getType()->getPointerAddressSpace() == 0) | 
|  | PtrSet.insert(getUnderlyingObject(Ptr)); | 
|  | } | 
|  |  | 
|  | static void AddNonNullPointersByInstruction( | 
|  | Instruction *I, NonNullPointerSet &PtrSet) { | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | 
|  | AddNonNullPointer(L->getPointerOperand(), PtrSet); | 
|  | } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { | 
|  | AddNonNullPointer(S->getPointerOperand(), PtrSet); | 
|  | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { | 
|  | if (MI->isVolatile()) return; | 
|  |  | 
|  | // FIXME: check whether it has a valuerange that excludes zero? | 
|  | ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | if (!Len || Len->isZero()) return; | 
|  |  | 
|  | AddNonNullPointer(MI->getRawDest(), PtrSet); | 
|  | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) | 
|  | AddNonNullPointer(MTI->getRawSource(), PtrSet); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { | 
|  | if (NullPointerIsDefined(BB->getParent(), | 
|  | Val->getType()->getPointerAddressSpace())) | 
|  | return false; | 
|  |  | 
|  | Val = Val->stripInBoundsOffsets(); | 
|  | return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { | 
|  | NonNullPointerSet NonNullPointers; | 
|  | for (Instruction &I : *BB) | 
|  | AddNonNullPointersByInstruction(&I, NonNullPointers); | 
|  | return NonNullPointers; | 
|  | }); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) { | 
|  | ValueLatticeElement Result;  // Start Undefined. | 
|  |  | 
|  | // If this is the entry block, we must be asking about an argument.  The | 
|  | // value is overdefined. | 
|  | if (BB->isEntryBlock()) { | 
|  | assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | // Loop over all of our predecessors, merging what we know from them into | 
|  | // result.  If we encounter an unexplored predecessor, we eagerly explore it | 
|  | // in a depth first manner.  In practice, this has the effect of discovering | 
|  | // paths we can't analyze eagerly without spending compile times analyzing | 
|  | // other paths.  This heuristic benefits from the fact that predecessors are | 
|  | // frequently arranged such that dominating ones come first and we quickly | 
|  | // find a path to function entry.  TODO: We should consider explicitly | 
|  | // canonicalizing to make this true rather than relying on this happy | 
|  | // accident. | 
|  | for (BasicBlock *Pred : predecessors(BB)) { | 
|  | std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); | 
|  | if (!EdgeResult) | 
|  | // Explore that input, then return here | 
|  | return std::nullopt; | 
|  |  | 
|  | Result.mergeIn(*EdgeResult); | 
|  |  | 
|  | // If we hit overdefined, exit early.  The BlockVals entry is already set | 
|  | // to overdefined. | 
|  | if (Result.isOverdefined()) { | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined because of pred '" | 
|  | << Pred->getName() << "' (non local).\n"); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the merged value, which is more precise than 'overdefined'. | 
|  | assert(!Result.isOverdefined()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) { | 
|  | ValueLatticeElement Result;  // Start Undefined. | 
|  |  | 
|  | // Loop over all of our predecessors, merging what we know from them into | 
|  | // result.  See the comment about the chosen traversal order in | 
|  | // solveBlockValueNonLocal; the same reasoning applies here. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *PhiBB = PN->getIncomingBlock(i); | 
|  | Value *PhiVal = PN->getIncomingValue(i); | 
|  | // Note that we can provide PN as the context value to getEdgeValue, even | 
|  | // though the results will be cached, because PN is the value being used as | 
|  | // the cache key in the caller. | 
|  | std::optional<ValueLatticeElement> EdgeResult = | 
|  | getEdgeValue(PhiVal, PhiBB, BB, PN); | 
|  | if (!EdgeResult) | 
|  | // Explore that input, then return here | 
|  | return std::nullopt; | 
|  |  | 
|  | Result.mergeIn(*EdgeResult); | 
|  |  | 
|  | // If we hit overdefined, exit early.  The BlockVals entry is already set | 
|  | // to overdefined. | 
|  | if (Result.isOverdefined()) { | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined because of pred (local).\n"); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return the merged value, which is more precise than 'overdefined'. | 
|  | assert(!Result.isOverdefined() && "Possible PHI in entry block?"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // If we can determine a constraint on the value given conditions assumed by | 
|  | // the program, intersect those constraints with BBLV | 
|  | void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( | 
|  | Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { | 
|  | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); | 
|  | if (!BBI) | 
|  | return; | 
|  |  | 
|  | BasicBlock *BB = BBI->getParent(); | 
|  | for (auto &AssumeVH : AC->assumptionsFor(Val)) { | 
|  | if (!AssumeVH) | 
|  | continue; | 
|  |  | 
|  | // Only check assumes in the block of the context instruction. Other | 
|  | // assumes will have already been taken into account when the value was | 
|  | // propagated from predecessor blocks. | 
|  | auto *I = cast<CallInst>(AssumeVH); | 
|  | if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) | 
|  | continue; | 
|  |  | 
|  | BBLV = intersect(BBLV, *getValueFromCondition(Val, I->getArgOperand(0), | 
|  | /*IsTrueDest*/ true, | 
|  | /*UseBlockValue*/ false)); | 
|  | } | 
|  |  | 
|  | // If guards are not used in the module, don't spend time looking for them | 
|  | if (GuardDecl && !GuardDecl->use_empty() && | 
|  | BBI->getIterator() != BB->begin()) { | 
|  | for (Instruction &I : | 
|  | make_range(std::next(BBI->getIterator().getReverse()), BB->rend())) { | 
|  | Value *Cond = nullptr; | 
|  | if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) | 
|  | BBLV = intersect(BBLV, | 
|  | *getValueFromCondition(Val, Cond, /*IsTrueDest*/ true, | 
|  | /*UseBlockValue*/ false)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BBLV.isOverdefined()) { | 
|  | // Check whether we're checking at the terminator, and the pointer has | 
|  | // been dereferenced in this block. | 
|  | PointerType *PTy = dyn_cast<PointerType>(Val->getType()); | 
|  | if (PTy && BB->getTerminator() == BBI && | 
|  | isNonNullAtEndOfBlock(Val, BB)) | 
|  | BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static ConstantRange toConstantRange(const ValueLatticeElement &Val, | 
|  | Type *Ty, bool UndefAllowed = false) { | 
|  | assert(Ty->isIntOrIntVectorTy() && "Must be integer type"); | 
|  | if (Val.isConstantRange(UndefAllowed)) | 
|  | return Val.getConstantRange(); | 
|  | unsigned BW = Ty->getScalarSizeInBits(); | 
|  | if (Val.isUnknown()) | 
|  | return ConstantRange::getEmpty(BW); | 
|  | return ConstantRange::getFull(BW); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) { | 
|  | // Recurse on our inputs if needed | 
|  | std::optional<ValueLatticeElement> OptTrueVal = | 
|  | getBlockValue(SI->getTrueValue(), BB, SI); | 
|  | if (!OptTrueVal) | 
|  | return std::nullopt; | 
|  | ValueLatticeElement &TrueVal = *OptTrueVal; | 
|  |  | 
|  | std::optional<ValueLatticeElement> OptFalseVal = | 
|  | getBlockValue(SI->getFalseValue(), BB, SI); | 
|  | if (!OptFalseVal) | 
|  | return std::nullopt; | 
|  | ValueLatticeElement &FalseVal = *OptFalseVal; | 
|  |  | 
|  | if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { | 
|  | const ConstantRange &TrueCR = toConstantRange(TrueVal, SI->getType()); | 
|  | const ConstantRange &FalseCR = toConstantRange(FalseVal, SI->getType()); | 
|  | Value *LHS = nullptr; | 
|  | Value *RHS = nullptr; | 
|  | SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); | 
|  | // Is this a min specifically of our two inputs?  (Avoid the risk of | 
|  | // ValueTracking getting smarter looking back past our immediate inputs.) | 
|  | if (SelectPatternResult::isMinOrMax(SPR.Flavor) && | 
|  | ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || | 
|  | (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { | 
|  | ConstantRange ResultCR = [&]() { | 
|  | switch (SPR.Flavor) { | 
|  | default: | 
|  | llvm_unreachable("unexpected minmax type!"); | 
|  | case SPF_SMIN:                   /// Signed minimum | 
|  | return TrueCR.smin(FalseCR); | 
|  | case SPF_UMIN:                   /// Unsigned minimum | 
|  | return TrueCR.umin(FalseCR); | 
|  | case SPF_SMAX:                   /// Signed maximum | 
|  | return TrueCR.smax(FalseCR); | 
|  | case SPF_UMAX:                   /// Unsigned maximum | 
|  | return TrueCR.umax(FalseCR); | 
|  | }; | 
|  | }(); | 
|  | return ValueLatticeElement::getRange( | 
|  | ResultCR, TrueVal.isConstantRangeIncludingUndef() || | 
|  | FalseVal.isConstantRangeIncludingUndef()); | 
|  | } | 
|  |  | 
|  | if (SPR.Flavor == SPF_ABS) { | 
|  | if (LHS == SI->getTrueValue()) | 
|  | return ValueLatticeElement::getRange( | 
|  | TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); | 
|  | if (LHS == SI->getFalseValue()) | 
|  | return ValueLatticeElement::getRange( | 
|  | FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); | 
|  | } | 
|  |  | 
|  | if (SPR.Flavor == SPF_NABS) { | 
|  | ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); | 
|  | if (LHS == SI->getTrueValue()) | 
|  | return ValueLatticeElement::getRange( | 
|  | Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); | 
|  | if (LHS == SI->getFalseValue()) | 
|  | return ValueLatticeElement::getRange( | 
|  | Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Can we constrain the facts about the true and false values by using the | 
|  | // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5). | 
|  | // TODO: We could potentially refine an overdefined true value above. | 
|  | Value *Cond = SI->getCondition(); | 
|  | // If the value is undef, a different value may be chosen in | 
|  | // the select condition. | 
|  | if (isGuaranteedNotToBeUndef(Cond, AC)) { | 
|  | TrueVal = | 
|  | intersect(TrueVal, *getValueFromCondition(SI->getTrueValue(), Cond, | 
|  | /*IsTrueDest*/ true, | 
|  | /*UseBlockValue*/ false)); | 
|  | FalseVal = | 
|  | intersect(FalseVal, *getValueFromCondition(SI->getFalseValue(), Cond, | 
|  | /*IsTrueDest*/ false, | 
|  | /*UseBlockValue*/ false)); | 
|  | } | 
|  |  | 
|  | ValueLatticeElement Result = TrueVal; | 
|  | Result.mergeIn(FalseVal); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | std::optional<ConstantRange> | 
|  | LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) { | 
|  | std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI); | 
|  | if (!OptVal) | 
|  | return std::nullopt; | 
|  | return toConstantRange(*OptVal, V->getType()); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) { | 
|  | // Filter out casts we don't know how to reason about before attempting to | 
|  | // recurse on our operand.  This can cut a long search short if we know we're | 
|  | // not going to be able to get any useful information anways. | 
|  | switch (CI->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::SExt: | 
|  | case Instruction::ZExt: | 
|  | break; | 
|  | default: | 
|  | // Unhandled instructions are overdefined. | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined (unknown cast).\n"); | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | // Figure out the range of the LHS.  If that fails, we still apply the | 
|  | // transfer rule on the full set since we may be able to locally infer | 
|  | // interesting facts. | 
|  | std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); | 
|  | if (!LHSRes) | 
|  | // More work to do before applying this transfer rule. | 
|  | return std::nullopt; | 
|  | const ConstantRange &LHSRange = *LHSRes; | 
|  |  | 
|  | const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); | 
|  |  | 
|  | // NOTE: We're currently limited by the set of operations that ConstantRange | 
|  | // can evaluate symbolically.  Enhancing that set will allows us to analyze | 
|  | // more definitions. | 
|  | return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), | 
|  | ResultBitWidth)); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueBinaryOpImpl( | 
|  | Instruction *I, BasicBlock *BB, | 
|  | std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> | 
|  | OpFn) { | 
|  | // Figure out the ranges of the operands.  If that fails, use a | 
|  | // conservative range, but apply the transfer rule anyways.  This | 
|  | // lets us pick up facts from expressions like "and i32 (call i32 | 
|  | // @foo()), 32" | 
|  | std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); | 
|  | if (!LHSRes) | 
|  | return std::nullopt; | 
|  |  | 
|  | std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); | 
|  | if (!RHSRes) | 
|  | return std::nullopt; | 
|  |  | 
|  | const ConstantRange &LHSRange = *LHSRes; | 
|  | const ConstantRange &RHSRange = *RHSRes; | 
|  | return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) { | 
|  | assert(BO->getOperand(0)->getType()->isSized() && | 
|  | "all operands to binary operators are sized"); | 
|  | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { | 
|  | unsigned NoWrapKind = 0; | 
|  | if (OBO->hasNoUnsignedWrap()) | 
|  | NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; | 
|  | if (OBO->hasNoSignedWrap()) | 
|  | NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; | 
|  |  | 
|  | return solveBlockValueBinaryOpImpl( | 
|  | BO, BB, | 
|  | [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { | 
|  | return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); | 
|  | }); | 
|  | } | 
|  |  | 
|  | return solveBlockValueBinaryOpImpl( | 
|  | BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { | 
|  | return CR1.binaryOp(BO->getOpcode(), CR2); | 
|  | }); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, | 
|  | BasicBlock *BB) { | 
|  | return solveBlockValueBinaryOpImpl( | 
|  | WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { | 
|  | return CR1.binaryOp(WO->getBinaryOp(), CR2); | 
|  | }); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) { | 
|  | ValueLatticeElement MetadataVal = getFromRangeMetadata(II); | 
|  | if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - unknown intrinsic.\n"); | 
|  | return MetadataVal; | 
|  | } | 
|  |  | 
|  | SmallVector<ConstantRange, 2> OpRanges; | 
|  | for (Value *Op : II->args()) { | 
|  | std::optional<ConstantRange> Range = getRangeFor(Op, II, BB); | 
|  | if (!Range) | 
|  | return std::nullopt; | 
|  | OpRanges.push_back(*Range); | 
|  | } | 
|  |  | 
|  | return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic( | 
|  | II->getIntrinsicID(), OpRanges)), | 
|  | MetadataVal); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI, | 
|  | BasicBlock *BB) { | 
|  | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | 
|  | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) | 
|  | return solveBlockValueOverflowIntrinsic(WO, BB); | 
|  |  | 
|  | // Handle extractvalue of insertvalue to allow further simplification | 
|  | // based on replaced with.overflow intrinsics. | 
|  | if (Value *V = simplifyExtractValueInst( | 
|  | EVI->getAggregateOperand(), EVI->getIndices(), | 
|  | EVI->getModule()->getDataLayout())) | 
|  | return getBlockValue(V, BB, EVI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() | 
|  | << "' - overdefined (unknown extractvalue).\n"); | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, | 
|  | ICmpInst::Predicate Pred) { | 
|  | if (LHS == Val) | 
|  | return true; | 
|  |  | 
|  | // Handle range checking idiom produced by InstCombine. We will subtract the | 
|  | // offset from the allowed range for RHS in this case. | 
|  | const APInt *C; | 
|  | if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { | 
|  | Offset = *C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Handle the symmetric case. This appears in saturation patterns like | 
|  | // (x == 16) ? 16 : (x + 1). | 
|  | if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { | 
|  | Offset = -*C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If (x | y) < C, then (x < C) && (y < C). | 
|  | if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && | 
|  | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) | 
|  | return true; | 
|  |  | 
|  | // If (x & y) > C, then (x > C) && (y > C). | 
|  | if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && | 
|  | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Get value range for a "(Val + Offset) Pred RHS" condition. | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, | 
|  | Value *RHS, | 
|  | const APInt &Offset, | 
|  | Instruction *CxtI, | 
|  | bool UseBlockValue) { | 
|  | ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), | 
|  | /*isFullSet=*/true); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { | 
|  | RHSRange = ConstantRange(CI->getValue()); | 
|  | } else if (UseBlockValue) { | 
|  | std::optional<ValueLatticeElement> R = | 
|  | getBlockValue(RHS, CxtI->getParent(), CxtI); | 
|  | if (!R) | 
|  | return std::nullopt; | 
|  | RHSRange = toConstantRange(*R, RHS->getType()); | 
|  | } else if (Instruction *I = dyn_cast<Instruction>(RHS)) { | 
|  | if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) | 
|  | RHSRange = getConstantRangeFromMetadata(*Ranges); | 
|  | } | 
|  |  | 
|  | ConstantRange TrueValues = | 
|  | ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); | 
|  | return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); | 
|  | } | 
|  |  | 
|  | static std::optional<ConstantRange> | 
|  | getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS, | 
|  | function_ref<std::optional<ConstantRange>(const APInt &)> Fn) { | 
|  | bool Invert = false; | 
|  | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { | 
|  | Pred = ICmpInst::getInversePredicate(Pred); | 
|  | Invert = true; | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_SLE) { | 
|  | Pred = ICmpInst::ICMP_SLT; | 
|  | if (RHS.isMaxSignedValue()) | 
|  | return std::nullopt; // Could also return full/empty here, if we wanted. | 
|  | ++RHS; | 
|  | } | 
|  | assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate"); | 
|  | if (auto CR = Fn(RHS)) | 
|  | return Invert ? CR->inverse() : CR; | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition( | 
|  | Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) { | 
|  | Value *LHS = ICI->getOperand(0); | 
|  | Value *RHS = ICI->getOperand(1); | 
|  |  | 
|  | // Get the predicate that must hold along the considered edge. | 
|  | CmpInst::Predicate EdgePred = | 
|  | isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); | 
|  |  | 
|  | if (isa<Constant>(RHS)) { | 
|  | if (ICI->isEquality() && LHS == Val) { | 
|  | if (EdgePred == ICmpInst::ICMP_EQ) | 
|  | return ValueLatticeElement::get(cast<Constant>(RHS)); | 
|  | else if (!isa<UndefValue>(RHS)) | 
|  | return ValueLatticeElement::getNot(cast<Constant>(RHS)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Type *Ty = Val->getType(); | 
|  | if (!Ty->isIntegerTy()) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | unsigned BitWidth = Ty->getScalarSizeInBits(); | 
|  | APInt Offset(BitWidth, 0); | 
|  | if (matchICmpOperand(Offset, LHS, Val, EdgePred)) | 
|  | return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset, ICI, | 
|  | UseBlockValue); | 
|  |  | 
|  | CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); | 
|  | if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) | 
|  | return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset, ICI, | 
|  | UseBlockValue); | 
|  |  | 
|  | const APInt *Mask, *C; | 
|  | if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && | 
|  | match(RHS, m_APInt(C))) { | 
|  | // If (Val & Mask) == C then all the masked bits are known and we can | 
|  | // compute a value range based on that. | 
|  | if (EdgePred == ICmpInst::ICMP_EQ) { | 
|  | KnownBits Known; | 
|  | Known.Zero = ~*C & *Mask; | 
|  | Known.One = *C & *Mask; | 
|  | return ValueLatticeElement::getRange( | 
|  | ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); | 
|  | } | 
|  | // If (Val & Mask) != 0 then the value must be larger than the lowest set | 
|  | // bit of Mask. | 
|  | if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) { | 
|  | return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( | 
|  | APInt::getOneBitSet(BitWidth, Mask->countr_zero()), | 
|  | APInt::getZero(BitWidth))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If (X urem Modulus) >= C, then X >= C. | 
|  | // If trunc X >= C, then X >= C. | 
|  | // TODO: An upper bound could be computed as well. | 
|  | if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()), | 
|  | m_Trunc(m_Specific(Val)))) && | 
|  | match(RHS, m_APInt(C))) { | 
|  | // Use the icmp region so we don't have to deal with different predicates. | 
|  | ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); | 
|  | if (!CR.isEmptySet()) | 
|  | return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( | 
|  | CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0))); | 
|  | } | 
|  |  | 
|  | // Recognize: | 
|  | // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC | 
|  | // Preconditions: (C << ShAmtC) >> ShAmtC == C | 
|  | const APInt *ShAmtC; | 
|  | if (CmpInst::isSigned(EdgePred) && | 
|  | match(LHS, m_AShr(m_Specific(Val), m_APInt(ShAmtC))) && | 
|  | match(RHS, m_APInt(C))) { | 
|  | auto CR = getRangeViaSLT( | 
|  | EdgePred, *C, [&](const APInt &RHS) -> std::optional<ConstantRange> { | 
|  | APInt New = RHS << *ShAmtC; | 
|  | if ((New.ashr(*ShAmtC)) != RHS) | 
|  | return std::nullopt; | 
|  | return ConstantRange::getNonEmpty( | 
|  | APInt::getSignedMinValue(New.getBitWidth()), New); | 
|  | }); | 
|  | if (CR) | 
|  | return ValueLatticeElement::getRange(*CR); | 
|  | } | 
|  |  | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | // Handle conditions of the form | 
|  | // extractvalue(op.with.overflow(%x, C), 1). | 
|  | static ValueLatticeElement getValueFromOverflowCondition( | 
|  | Value *Val, WithOverflowInst *WO, bool IsTrueDest) { | 
|  | // TODO: This only works with a constant RHS for now. We could also compute | 
|  | // the range of the RHS, but this doesn't fit into the current structure of | 
|  | // the edge value calculation. | 
|  | const APInt *C; | 
|  | if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | // Calculate the possible values of %x for which no overflow occurs. | 
|  | ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( | 
|  | WO->getBinaryOp(), *C, WO->getNoWrapKind()); | 
|  |  | 
|  | // If overflow is false, %x is constrained to NWR. If overflow is true, %x is | 
|  | // constrained to it's inverse (all values that might cause overflow). | 
|  | if (IsTrueDest) | 
|  | NWR = NWR.inverse(); | 
|  | return ValueLatticeElement::getRange(NWR); | 
|  | } | 
|  |  | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond, | 
|  | bool IsTrueDest, bool UseBlockValue, | 
|  | unsigned Depth) { | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) | 
|  | return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue); | 
|  |  | 
|  | if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) | 
|  | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | 
|  | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) | 
|  | return getValueFromOverflowCondition(Val, WO, IsTrueDest); | 
|  |  | 
|  | if (++Depth == MaxAnalysisRecursionDepth) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | Value *N; | 
|  | if (match(Cond, m_Not(m_Value(N)))) | 
|  | return getValueFromCondition(Val, N, !IsTrueDest, UseBlockValue, Depth); | 
|  |  | 
|  | Value *L, *R; | 
|  | bool IsAnd; | 
|  | if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) | 
|  | IsAnd = true; | 
|  | else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) | 
|  | IsAnd = false; | 
|  | else | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  |  | 
|  | std::optional<ValueLatticeElement> LV = | 
|  | getValueFromCondition(Val, L, IsTrueDest, UseBlockValue, Depth); | 
|  | if (!LV) | 
|  | return std::nullopt; | 
|  | std::optional<ValueLatticeElement> RV = | 
|  | getValueFromCondition(Val, R, IsTrueDest, UseBlockValue, Depth); | 
|  | if (!RV) | 
|  | return std::nullopt; | 
|  |  | 
|  | // if (L && R) -> intersect L and R | 
|  | // if (!(L || R)) -> intersect !L and !R | 
|  | // if (L || R) -> union L and R | 
|  | // if (!(L && R)) -> union !L and !R | 
|  | if (IsTrueDest ^ IsAnd) { | 
|  | LV->mergeIn(*RV); | 
|  | return *LV; | 
|  | } | 
|  |  | 
|  | return intersect(*LV, *RV); | 
|  | } | 
|  |  | 
|  | // Return true if Usr has Op as an operand, otherwise false. | 
|  | static bool usesOperand(User *Usr, Value *Op) { | 
|  | return is_contained(Usr->operands(), Op); | 
|  | } | 
|  |  | 
|  | // Return true if the instruction type of Val is supported by | 
|  | // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. | 
|  | // Call this before calling constantFoldUser() to find out if it's even worth | 
|  | // attempting to call it. | 
|  | static bool isOperationFoldable(User *Usr) { | 
|  | return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); | 
|  | } | 
|  |  | 
|  | // Check if Usr can be simplified to an integer constant when the value of one | 
|  | // of its operands Op is an integer constant OpConstVal. If so, return it as an | 
|  | // lattice value range with a single element or otherwise return an overdefined | 
|  | // lattice value. | 
|  | static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, | 
|  | const APInt &OpConstVal, | 
|  | const DataLayout &DL) { | 
|  | assert(isOperationFoldable(Usr) && "Precondition"); | 
|  | Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); | 
|  | // Check if Usr can be simplified to a constant. | 
|  | if (auto *CI = dyn_cast<CastInst>(Usr)) { | 
|  | assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); | 
|  | if (auto *C = dyn_cast_or_null<ConstantInt>( | 
|  | simplifyCastInst(CI->getOpcode(), OpConst, | 
|  | CI->getDestTy(), DL))) { | 
|  | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | 
|  | } | 
|  | } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { | 
|  | bool Op0Match = BO->getOperand(0) == Op; | 
|  | bool Op1Match = BO->getOperand(1) == Op; | 
|  | assert((Op0Match || Op1Match) && | 
|  | "Operand 0 nor Operand 1 isn't a match"); | 
|  | Value *LHS = Op0Match ? OpConst : BO->getOperand(0); | 
|  | Value *RHS = Op1Match ? OpConst : BO->getOperand(1); | 
|  | if (auto *C = dyn_cast_or_null<ConstantInt>( | 
|  | simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { | 
|  | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | 
|  | } | 
|  | } else if (isa<FreezeInst>(Usr)) { | 
|  | assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); | 
|  | return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); | 
|  | } | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | /// Compute the value of Val on the edge BBFrom -> BBTo. | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, | 
|  | BasicBlock *BBTo, bool UseBlockValue) { | 
|  | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we | 
|  | // know that v != 0. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { | 
|  | // If this is a conditional branch and only one successor goes to BBTo, then | 
|  | // we may be able to infer something from the condition. | 
|  | if (BI->isConditional() && | 
|  | BI->getSuccessor(0) != BI->getSuccessor(1)) { | 
|  | bool isTrueDest = BI->getSuccessor(0) == BBTo; | 
|  | assert(BI->getSuccessor(!isTrueDest) == BBTo && | 
|  | "BBTo isn't a successor of BBFrom"); | 
|  | Value *Condition = BI->getCondition(); | 
|  |  | 
|  | // If V is the condition of the branch itself, then we know exactly what | 
|  | // it is. | 
|  | if (Condition == Val) | 
|  | return ValueLatticeElement::get(ConstantInt::get( | 
|  | Type::getInt1Ty(Val->getContext()), isTrueDest)); | 
|  |  | 
|  | // If the condition of the branch is an equality comparison, we may be | 
|  | // able to infer the value. | 
|  | std::optional<ValueLatticeElement> Result = | 
|  | getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue); | 
|  | if (!Result) | 
|  | return std::nullopt; | 
|  |  | 
|  | if (!Result->isOverdefined()) | 
|  | return Result; | 
|  |  | 
|  | if (User *Usr = dyn_cast<User>(Val)) { | 
|  | assert(Result->isOverdefined() && "Result isn't overdefined"); | 
|  | // Check with isOperationFoldable() first to avoid linearly iterating | 
|  | // over the operands unnecessarily which can be expensive for | 
|  | // instructions with many operands. | 
|  | if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { | 
|  | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | 
|  | if (usesOperand(Usr, Condition)) { | 
|  | // If Val has Condition as an operand and Val can be folded into a | 
|  | // constant with either Condition == true or Condition == false, | 
|  | // propagate the constant. | 
|  | // eg. | 
|  | //   ; %Val is true on the edge to %then. | 
|  | //   %Val = and i1 %Condition, true. | 
|  | //   br %Condition, label %then, label %else | 
|  | APInt ConditionVal(1, isTrueDest ? 1 : 0); | 
|  | Result = constantFoldUser(Usr, Condition, ConditionVal, DL); | 
|  | } else { | 
|  | // If one of Val's operand has an inferred value, we may be able to | 
|  | // infer the value of Val. | 
|  | // eg. | 
|  | //    ; %Val is 94 on the edge to %then. | 
|  | //    %Val = add i8 %Op, 1 | 
|  | //    %Condition = icmp eq i8 %Op, 93 | 
|  | //    br i1 %Condition, label %then, label %else | 
|  | for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { | 
|  | Value *Op = Usr->getOperand(i); | 
|  | ValueLatticeElement OpLatticeVal = *getValueFromCondition( | 
|  | Op, Condition, isTrueDest, /*UseBlockValue*/ false); | 
|  | if (std::optional<APInt> OpConst = | 
|  | OpLatticeVal.asConstantInteger()) { | 
|  | Result = constantFoldUser(Usr, Op, *OpConst, DL); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!Result->isOverdefined()) | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the edge was formed by a switch on the value, then we may know exactly | 
|  | // what it is. | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { | 
|  | Value *Condition = SI->getCondition(); | 
|  | if (!isa<IntegerType>(Val->getType())) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | bool ValUsesConditionAndMayBeFoldable = false; | 
|  | if (Condition != Val) { | 
|  | // Check if Val has Condition as an operand. | 
|  | if (User *Usr = dyn_cast<User>(Val)) | 
|  | ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && | 
|  | usesOperand(Usr, Condition); | 
|  | if (!ValUsesConditionAndMayBeFoldable) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  | assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && | 
|  | "Condition != Val nor Val doesn't use Condition"); | 
|  |  | 
|  | bool DefaultCase = SI->getDefaultDest() == BBTo; | 
|  | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); | 
|  | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); | 
|  |  | 
|  | for (auto Case : SI->cases()) { | 
|  | APInt CaseValue = Case.getCaseValue()->getValue(); | 
|  | ConstantRange EdgeVal(CaseValue); | 
|  | if (ValUsesConditionAndMayBeFoldable) { | 
|  | User *Usr = cast<User>(Val); | 
|  | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | 
|  | ValueLatticeElement EdgeLatticeVal = | 
|  | constantFoldUser(Usr, Condition, CaseValue, DL); | 
|  | if (EdgeLatticeVal.isOverdefined()) | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | EdgeVal = EdgeLatticeVal.getConstantRange(); | 
|  | } | 
|  | if (DefaultCase) { | 
|  | // It is possible that the default destination is the destination of | 
|  | // some cases. We cannot perform difference for those cases. | 
|  | // We know Condition != CaseValue in BBTo.  In some cases we can use | 
|  | // this to infer Val == f(Condition) is != f(CaseValue).  For now, we | 
|  | // only do this when f is identity (i.e. Val == Condition), but we | 
|  | // should be able to do this for any injective f. | 
|  | if (Case.getCaseSuccessor() != BBTo && Condition == Val) | 
|  | EdgesVals = EdgesVals.difference(EdgeVal); | 
|  | } else if (Case.getCaseSuccessor() == BBTo) | 
|  | EdgesVals = EdgesVals.unionWith(EdgeVal); | 
|  | } | 
|  | return ValueLatticeElement::getRange(std::move(EdgesVals)); | 
|  | } | 
|  | return ValueLatticeElement::getOverdefined(); | 
|  | } | 
|  |  | 
|  | /// Compute the value of Val on the edge BBFrom -> BBTo or the value at | 
|  | /// the basic block if the edge does not constrain Val. | 
|  | std::optional<ValueLatticeElement> | 
|  | LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, | 
|  | BasicBlock *BBTo, Instruction *CxtI) { | 
|  | // If already a constant, there is nothing to compute. | 
|  | if (Constant *VC = dyn_cast<Constant>(Val)) | 
|  | return ValueLatticeElement::get(VC); | 
|  |  | 
|  | std::optional<ValueLatticeElement> LocalResult = | 
|  | getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true); | 
|  | if (!LocalResult) | 
|  | return std::nullopt; | 
|  |  | 
|  | if (hasSingleValue(*LocalResult)) | 
|  | // Can't get any more precise here | 
|  | return LocalResult; | 
|  |  | 
|  | std::optional<ValueLatticeElement> OptInBlock = | 
|  | getBlockValue(Val, BBFrom, BBFrom->getTerminator()); | 
|  | if (!OptInBlock) | 
|  | return std::nullopt; | 
|  | ValueLatticeElement &InBlock = *OptInBlock; | 
|  |  | 
|  | // We can use the context instruction (generically the ultimate instruction | 
|  | // the calling pass is trying to simplify) here, even though the result of | 
|  | // this function is generally cached when called from the solve* functions | 
|  | // (and that cached result might be used with queries using a different | 
|  | // context instruction), because when this function is called from the solve* | 
|  | // functions, the context instruction is not provided. When called from | 
|  | // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, | 
|  | // but then the result is not cached. | 
|  | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); | 
|  |  | 
|  | return intersect(*LocalResult, InBlock); | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, | 
|  | Instruction *CxtI) { | 
|  | LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" | 
|  | << BB->getName() << "'\n"); | 
|  |  | 
|  | assert(BlockValueStack.empty() && BlockValueSet.empty()); | 
|  | std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI); | 
|  | if (!OptResult) { | 
|  | solve(); | 
|  | OptResult = getBlockValue(V, BB, CxtI); | 
|  | assert(OptResult && "Value not available after solving"); | 
|  | } | 
|  |  | 
|  | ValueLatticeElement Result = *OptResult; | 
|  | LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { | 
|  | LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() | 
|  | << "'\n"); | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(V)) | 
|  | return ValueLatticeElement::get(C); | 
|  |  | 
|  | ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); | 
|  | if (auto *I = dyn_cast<Instruction>(V)) | 
|  | Result = getFromRangeMetadata(I); | 
|  | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl:: | 
|  | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" | 
|  | << FromBB->getName() << "' to '" << ToBB->getName() | 
|  | << "'\n"); | 
|  |  | 
|  | std::optional<ValueLatticeElement> Result = | 
|  | getEdgeValue(V, FromBB, ToBB, CxtI); | 
|  | while (!Result) { | 
|  | // As the worklist only explicitly tracks block values (but not edge values) | 
|  | // we may have to call solve() multiple times, as the edge value calculation | 
|  | // may request additional block values. | 
|  | solve(); | 
|  | Result = getEdgeValue(V, FromBB, ToBB, CxtI); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Result = " << *Result << "\n"); | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) { | 
|  | Value *V = U.get(); | 
|  | auto *CxtI = cast<Instruction>(U.getUser()); | 
|  | ValueLatticeElement VL = getValueInBlock(V, CxtI->getParent(), CxtI); | 
|  |  | 
|  | // Check whether the only (possibly transitive) use of the value is in a | 
|  | // position where V can be constrained by a select or branch condition. | 
|  | const Use *CurrU = &U; | 
|  | // TODO: Increase limit? | 
|  | const unsigned MaxUsesToInspect = 3; | 
|  | for (unsigned I = 0; I < MaxUsesToInspect; ++I) { | 
|  | std::optional<ValueLatticeElement> CondVal; | 
|  | auto *CurrI = cast<Instruction>(CurrU->getUser()); | 
|  | if (auto *SI = dyn_cast<SelectInst>(CurrI)) { | 
|  | // If the value is undef, a different value may be chosen in | 
|  | // the select condition and at use. | 
|  | if (!isGuaranteedNotToBeUndef(SI->getCondition(), AC)) | 
|  | break; | 
|  | if (CurrU->getOperandNo() == 1) | 
|  | CondVal = | 
|  | *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ true, | 
|  | /*UseBlockValue*/ false); | 
|  | else if (CurrU->getOperandNo() == 2) | 
|  | CondVal = | 
|  | *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ false, | 
|  | /*UseBlockValue*/ false); | 
|  | } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) { | 
|  | // TODO: Use non-local query? | 
|  | CondVal = *getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), | 
|  | PHI->getParent(), /*UseBlockValue*/ false); | 
|  | } | 
|  | if (CondVal) | 
|  | VL = intersect(VL, *CondVal); | 
|  |  | 
|  | // Only follow one-use chain, to allow direct intersection of conditions. | 
|  | // If there are multiple uses, we would have to intersect with the union of | 
|  | // all conditions at different uses. | 
|  | // Stop walking if we hit a non-speculatable instruction. Even if the | 
|  | // result is only used under a specific condition, executing the | 
|  | // instruction itself may cause side effects or UB already. | 
|  | // This also disallows looking through phi nodes: If the phi node is part | 
|  | // of a cycle, we might end up reasoning about values from different cycle | 
|  | // iterations (PR60629). | 
|  | if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI)) | 
|  | break; | 
|  | CurrU = &*CurrI->use_begin(); | 
|  | } | 
|  | return VL; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | TheCache.threadEdgeImpl(OldSucc, NewSucc); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            LazyValueInfo Impl | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { | 
|  | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  |  | 
|  | if (auto *Impl = Info.getImpl()) | 
|  | Impl->clear(); | 
|  |  | 
|  | // Fully lazy. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } | 
|  |  | 
|  | /// This lazily constructs the LazyValueInfoImpl. | 
|  | LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) { | 
|  | if (!PImpl) { | 
|  | assert(M && "getCache() called with a null Module"); | 
|  | const DataLayout &DL = M->getDataLayout(); | 
|  | Function *GuardDecl = | 
|  | M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); | 
|  | PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); | 
|  | } | 
|  | return *static_cast<LazyValueInfoImpl *>(PImpl); | 
|  | } | 
|  |  | 
|  | LazyValueInfoImpl *LazyValueInfo::getImpl() { | 
|  | if (!PImpl) | 
|  | return nullptr; | 
|  | return static_cast<LazyValueInfoImpl *>(PImpl); | 
|  | } | 
|  |  | 
|  | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } | 
|  |  | 
|  | void LazyValueInfo::releaseMemory() { | 
|  | // If the cache was allocated, free it. | 
|  | if (auto *Impl = getImpl()) { | 
|  | delete &*Impl; | 
|  | PImpl = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, | 
|  | FunctionAnalysisManager::Invalidator &Inv) { | 
|  | // We need to invalidate if we have either failed to preserve this analyses | 
|  | // result directly or if any of its dependencies have been invalidated. | 
|  | auto PAC = PA.getChecker<LazyValueAnalysis>(); | 
|  | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } | 
|  |  | 
|  | LazyValueInfo LazyValueAnalysis::run(Function &F, | 
|  | FunctionAnalysisManager &FAM) { | 
|  | auto &AC = FAM.getResult<AssumptionAnalysis>(F); | 
|  |  | 
|  | return LazyValueInfo(&AC, &F.getParent()->getDataLayout()); | 
|  | } | 
|  |  | 
|  | /// Returns true if we can statically tell that this value will never be a | 
|  | /// "useful" constant.  In practice, this means we've got something like an | 
|  | /// alloca or a malloc call for which a comparison against a constant can | 
|  | /// only be guarding dead code.  Note that we are potentially giving up some | 
|  | /// precision in dead code (a constant result) in favour of avoiding a | 
|  | /// expensive search for a easily answered common query. | 
|  | static bool isKnownNonConstant(Value *V) { | 
|  | V = V->stripPointerCasts(); | 
|  | // The return val of alloc cannot be a Constant. | 
|  | if (isa<AllocaInst>(V)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { | 
|  | // Bail out early if V is known not to be a Constant. | 
|  | if (isKnownNonConstant(V)) | 
|  | return nullptr; | 
|  |  | 
|  | BasicBlock *BB = CxtI->getParent(); | 
|  | ValueLatticeElement Result = | 
|  | getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); | 
|  |  | 
|  | if (Result.isConstant()) | 
|  | return Result.getConstant(); | 
|  | if (Result.isConstantRange()) { | 
|  | const ConstantRange &CR = Result.getConstantRange(); | 
|  | if (const APInt *SingleVal = CR.getSingleElement()) | 
|  | return ConstantInt::get(V->getContext(), *SingleVal); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, | 
|  | bool UndefAllowed) { | 
|  | assert(V->getType()->isIntegerTy()); | 
|  | BasicBlock *BB = CxtI->getParent(); | 
|  | ValueLatticeElement Result = | 
|  | getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); | 
|  | return toConstantRange(Result, V->getType(), UndefAllowed); | 
|  | } | 
|  |  | 
|  | ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U, | 
|  | bool UndefAllowed) { | 
|  | auto *Inst = cast<Instruction>(U.getUser()); | 
|  | ValueLatticeElement Result = | 
|  | getOrCreateImpl(Inst->getModule()).getValueAtUse(U); | 
|  | return toConstantRange(Result, U->getType(), UndefAllowed); | 
|  | } | 
|  |  | 
|  | /// Determine whether the specified value is known to be a | 
|  | /// constant on the specified edge. Return null if not. | 
|  | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, | 
|  | BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | Module *M = FromBB->getModule(); | 
|  | ValueLatticeElement Result = | 
|  | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  |  | 
|  | if (Result.isConstant()) | 
|  | return Result.getConstant(); | 
|  | if (Result.isConstantRange()) { | 
|  | const ConstantRange &CR = Result.getConstantRange(); | 
|  | if (const APInt *SingleVal = CR.getSingleElement()) | 
|  | return ConstantInt::get(V->getContext(), *SingleVal); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, | 
|  | BasicBlock *FromBB, | 
|  | BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | Module *M = FromBB->getModule(); | 
|  | ValueLatticeElement Result = | 
|  | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  | // TODO: Should undef be allowed here? | 
|  | return toConstantRange(Result, V->getType(), /*UndefAllowed*/ true); | 
|  | } | 
|  |  | 
|  | static LazyValueInfo::Tristate | 
|  | getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, | 
|  | const DataLayout &DL) { | 
|  | // If we know the value is a constant, evaluate the conditional. | 
|  | Constant *Res = nullptr; | 
|  | if (Val.isConstant()) { | 
|  | Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL); | 
|  | if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res)) | 
|  | return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | if (Val.isConstantRange()) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(C); | 
|  | if (!CI) return LazyValueInfo::Unknown; | 
|  |  | 
|  | const ConstantRange &CR = Val.getConstantRange(); | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | if (!CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::False; | 
|  |  | 
|  | if (CR.isSingleElement()) | 
|  | return LazyValueInfo::True; | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | if (!CR.contains(CI->getValue())) | 
|  | return LazyValueInfo::True; | 
|  |  | 
|  | if (CR.isSingleElement()) | 
|  | return LazyValueInfo::False; | 
|  | } else { | 
|  | // Handle more complex predicates. | 
|  | ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( | 
|  | (ICmpInst::Predicate)Pred, CI->getValue()); | 
|  | if (TrueValues.contains(CR)) | 
|  | return LazyValueInfo::True; | 
|  | if (TrueValues.inverse().contains(CR)) | 
|  | return LazyValueInfo::False; | 
|  | } | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | if (Val.isNotConstant()) { | 
|  | // If this is an equality comparison, we can try to fold it knowing that | 
|  | // "V != C1". | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | // !C1 == C -> false iff C1 == C. | 
|  | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | 
|  | Val.getNotConstant(), C, DL); | 
|  | if (Res && Res->isNullValue()) | 
|  | return LazyValueInfo::False; | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | // !C1 != C -> true iff C1 == C. | 
|  | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | 
|  | Val.getNotConstant(), C, DL); | 
|  | if (Res && Res->isNullValue()) | 
|  | return LazyValueInfo::True; | 
|  | } | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | /// Determine whether the specified value comparison with a constant is known to | 
|  | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. | 
|  | LazyValueInfo::Tristate | 
|  | LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, | 
|  | BasicBlock *FromBB, BasicBlock *ToBB, | 
|  | Instruction *CxtI) { | 
|  | Module *M = FromBB->getModule(); | 
|  | ValueLatticeElement Result = | 
|  | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); | 
|  |  | 
|  | return getPredicateResult(Pred, C, Result, M->getDataLayout()); | 
|  | } | 
|  |  | 
|  | LazyValueInfo::Tristate | 
|  | LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, | 
|  | Instruction *CxtI, bool UseBlockValue) { | 
|  | // Is or is not NonNull are common predicates being queried. If | 
|  | // isKnownNonZero can tell us the result of the predicate, we can | 
|  | // return it quickly. But this is only a fastpath, and falling | 
|  | // through would still be correct. | 
|  | Module *M = CxtI->getModule(); | 
|  | const DataLayout &DL = M->getDataLayout(); | 
|  | if (V->getType()->isPointerTy() && C->isNullValue() && | 
|  | isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { | 
|  | if (Pred == ICmpInst::ICMP_EQ) | 
|  | return LazyValueInfo::False; | 
|  | else if (Pred == ICmpInst::ICMP_NE) | 
|  | return LazyValueInfo::True; | 
|  | } | 
|  |  | 
|  | auto &Impl = getOrCreateImpl(M); | 
|  | ValueLatticeElement Result = | 
|  | UseBlockValue ? Impl.getValueInBlock(V, CxtI->getParent(), CxtI) | 
|  | : Impl.getValueAt(V, CxtI); | 
|  | Tristate Ret = getPredicateResult(Pred, C, Result, DL); | 
|  | if (Ret != Unknown) | 
|  | return Ret; | 
|  |  | 
|  | // Note: The following bit of code is somewhat distinct from the rest of LVI; | 
|  | // LVI as a whole tries to compute a lattice value which is conservatively | 
|  | // correct at a given location.  In this case, we have a predicate which we | 
|  | // weren't able to prove about the merged result, and we're pushing that | 
|  | // predicate back along each incoming edge to see if we can prove it | 
|  | // separately for each input.  As a motivating example, consider: | 
|  | // bb1: | 
|  | //   %v1 = ... ; constantrange<1, 5> | 
|  | //   br label %merge | 
|  | // bb2: | 
|  | //   %v2 = ... ; constantrange<10, 20> | 
|  | //   br label %merge | 
|  | // merge: | 
|  | //   %phi = phi [%v1, %v2] ; constantrange<1,20> | 
|  | //   %pred = icmp eq i32 %phi, 8 | 
|  | // We can't tell from the lattice value for '%phi' that '%pred' is false | 
|  | // along each path, but by checking the predicate over each input separately, | 
|  | // we can. | 
|  | // We limit the search to one step backwards from the current BB and value. | 
|  | // We could consider extending this to search further backwards through the | 
|  | // CFG and/or value graph, but there are non-obvious compile time vs quality | 
|  | // tradeoffs. | 
|  | BasicBlock *BB = CxtI->getParent(); | 
|  |  | 
|  | // Function entry or an unreachable block.  Bail to avoid confusing | 
|  | // analysis below. | 
|  | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | 
|  | if (PI == PE) | 
|  | return Unknown; | 
|  |  | 
|  | // If V is a PHI node in the same block as the context, we need to ask | 
|  | // questions about the predicate as applied to the incoming value along | 
|  | // each edge. This is useful for eliminating cases where the predicate is | 
|  | // known along all incoming edges. | 
|  | if (auto *PHI = dyn_cast<PHINode>(V)) | 
|  | if (PHI->getParent() == BB) { | 
|  | Tristate Baseline = Unknown; | 
|  | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { | 
|  | Value *Incoming = PHI->getIncomingValue(i); | 
|  | BasicBlock *PredBB = PHI->getIncomingBlock(i); | 
|  | // Note that PredBB may be BB itself. | 
|  | Tristate Result = | 
|  | getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); | 
|  |  | 
|  | // Keep going as long as we've seen a consistent known result for | 
|  | // all inputs. | 
|  | Baseline = (i == 0) ? Result /* First iteration */ | 
|  | : (Baseline == Result ? Baseline | 
|  | : Unknown); /* All others */ | 
|  | if (Baseline == Unknown) | 
|  | break; | 
|  | } | 
|  | if (Baseline != Unknown) | 
|  | return Baseline; | 
|  | } | 
|  |  | 
|  | // For a comparison where the V is outside this block, it's possible | 
|  | // that we've branched on it before. Look to see if the value is known | 
|  | // on all incoming edges. | 
|  | if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { | 
|  | // For predecessor edge, determine if the comparison is true or false | 
|  | // on that edge. If they're all true or all false, we can conclude | 
|  | // the value of the comparison in this block. | 
|  | Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | 
|  | if (Baseline != Unknown) { | 
|  | // Check that all remaining incoming values match the first one. | 
|  | while (++PI != PE) { | 
|  | Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | 
|  | if (Ret != Baseline) | 
|  | break; | 
|  | } | 
|  | // If we terminated early, then one of the values didn't match. | 
|  | if (PI == PE) { | 
|  | return Baseline; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Unknown; | 
|  | } | 
|  |  | 
|  | LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, | 
|  | Value *RHS, | 
|  | Instruction *CxtI, | 
|  | bool UseBlockValue) { | 
|  | CmpInst::Predicate Pred = (CmpInst::Predicate)P; | 
|  |  | 
|  | if (auto *C = dyn_cast<Constant>(RHS)) | 
|  | return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); | 
|  | if (auto *C = dyn_cast<Constant>(LHS)) | 
|  | return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, | 
|  | UseBlockValue); | 
|  |  | 
|  | // Got two non-Constant values. Try to determine the comparison results based | 
|  | // on the block values of the two operands, e.g. because they have | 
|  | // non-overlapping ranges. | 
|  | if (UseBlockValue) { | 
|  | Module *M = CxtI->getModule(); | 
|  | ValueLatticeElement L = | 
|  | getOrCreateImpl(M).getValueInBlock(LHS, CxtI->getParent(), CxtI); | 
|  | if (L.isOverdefined()) | 
|  | return LazyValueInfo::Unknown; | 
|  |  | 
|  | ValueLatticeElement R = | 
|  | getOrCreateImpl(M).getValueInBlock(RHS, CxtI->getParent(), CxtI); | 
|  | Type *Ty = CmpInst::makeCmpResultType(LHS->getType()); | 
|  | if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R, | 
|  | M->getDataLayout())) { | 
|  | if (Res->isNullValue()) | 
|  | return LazyValueInfo::False; | 
|  | if (Res->isOneValue()) | 
|  | return LazyValueInfo::True; | 
|  | } | 
|  | } | 
|  | return LazyValueInfo::Unknown; | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | 
|  | BasicBlock *NewSucc) { | 
|  | if (auto *Impl = getImpl()) | 
|  | Impl->threadEdge(PredBB, OldSucc, NewSucc); | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::forgetValue(Value *V) { | 
|  | if (auto *Impl = getImpl()) | 
|  | Impl->forgetValue(V); | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::eraseBlock(BasicBlock *BB) { | 
|  | if (auto *Impl = getImpl()) | 
|  | Impl->eraseBlock(BB); | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::clear() { | 
|  | if (auto *Impl = getImpl()) | 
|  | Impl->clear(); | 
|  | } | 
|  |  | 
|  | void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | 
|  | if (auto *Impl = getImpl()) | 
|  | Impl->printLVI(F, DTree, OS); | 
|  | } | 
|  |  | 
|  | // Print the LVI for the function arguments at the start of each basic block. | 
|  | void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( | 
|  | const BasicBlock *BB, formatted_raw_ostream &OS) { | 
|  | // Find if there are latticevalues defined for arguments of the function. | 
|  | auto *F = BB->getParent(); | 
|  | for (const auto &Arg : F->args()) { | 
|  | ValueLatticeElement Result = LVIImpl->getValueInBlock( | 
|  | const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); | 
|  | if (Result.isUnknown()) | 
|  | continue; | 
|  | OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This function prints the LVI analysis for the instruction I at the beginning | 
|  | // of various basic blocks. It relies on calculated values that are stored in | 
|  | // the LazyValueInfoCache, and in the absence of cached values, recalculate the | 
|  | // LazyValueInfo for `I`, and print that info. | 
|  | void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( | 
|  | const Instruction *I, formatted_raw_ostream &OS) { | 
|  |  | 
|  | auto *ParentBB = I->getParent(); | 
|  | SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; | 
|  | // We can generate (solve) LVI values only for blocks that are dominated by | 
|  | // the I's parent. However, to avoid generating LVI for all dominating blocks, | 
|  | // that contain redundant/uninteresting information, we print LVI for | 
|  | // blocks that may use this LVI information (such as immediate successor | 
|  | // blocks, and blocks that contain uses of `I`). | 
|  | auto printResult = [&](const BasicBlock *BB) { | 
|  | if (!BlocksContainingLVI.insert(BB).second) | 
|  | return; | 
|  | ValueLatticeElement Result = LVIImpl->getValueInBlock( | 
|  | const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); | 
|  | OS << "; LatticeVal for: '" << *I << "' in BB: '"; | 
|  | BB->printAsOperand(OS, false); | 
|  | OS << "' is: " << Result << "\n"; | 
|  | }; | 
|  |  | 
|  | printResult(ParentBB); | 
|  | // Print the LVI analysis results for the immediate successor blocks, that | 
|  | // are dominated by `ParentBB`. | 
|  | for (const auto *BBSucc : successors(ParentBB)) | 
|  | if (DT.dominates(ParentBB, BBSucc)) | 
|  | printResult(BBSucc); | 
|  |  | 
|  | // Print LVI in blocks where `I` is used. | 
|  | for (const auto *U : I->users()) | 
|  | if (auto *UseI = dyn_cast<Instruction>(U)) | 
|  | if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) | 
|  | printResult(UseI->getParent()); | 
|  |  | 
|  | } | 
|  |  | 
|  | PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | OS << "LVI for function '" << F.getName() << "':\n"; | 
|  | auto &LVI = AM.getResult<LazyValueAnalysis>(F); | 
|  | auto &DTree = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | LVI.printLVI(F, DTree, OS); | 
|  | return PreservedAnalyses::all(); | 
|  | } |