blob: ac34ba35232cb4dddcd6bddbacdbc5f953e71e4c [file] [log] [blame]
//===-- Double-precision 2^x function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/exp2.h"
#include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2.
#include "explogxf.h" // ziv_test_denorm.
#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/optional.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/FPUtil/triple_double.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include <errno.h>
namespace LIBC_NAMESPACE {
using fputil::DoubleDouble;
using fputil::TripleDouble;
using Float128 = typename fputil::DyadicFloat<128>;
// Error bounds:
// Errors when using double precision.
#ifdef LIBC_TARGET_CPU_HAS_FMA
constexpr double ERR_D = 0x1.0p-63;
#else
constexpr double ERR_D = 0x1.8p-63;
#endif // LIBC_TARGET_CPU_HAS_FMA
// Errors when using double-double precision.
constexpr double ERR_DD = 0x1.0p-100;
namespace {
// Polynomial approximations with double precision. Generated by Sollya with:
// > P = fpminimax((2^x - 1)/x, 3, [|D...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]);
// > P;
// Error bounds:
// | output - (2^dx - 1) / dx | < 1.5 * 2^-52.
LIBC_INLINE double poly_approx_d(double dx) {
// dx^2
double dx2 = dx * dx;
double c0 =
fputil::multiply_add(dx, 0x1.ebfbdff82c58ep-3, 0x1.62e42fefa39efp-1);
double c1 =
fputil::multiply_add(dx, 0x1.3b2aba7a95a89p-7, 0x1.c6b08e8fc0c0ep-5);
double p = fputil::multiply_add(dx2, c1, c0);
return p;
}
// Polynomial approximation with double-double precision. Generated by Solya
// with:
// > P = fpminimax((2^x - 1)/x, 5, [|DD...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]);
// Error bounds:
// | output - 2^(dx) | < 2^-101
DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
// Taylor polynomial.
constexpr DoubleDouble COEFFS[] = {
{0, 0x1p0},
{0x1.abc9e3b39824p-56, 0x1.62e42fefa39efp-1},
{-0x1.5e43a53e4527bp-57, 0x1.ebfbdff82c58fp-3},
{-0x1.d37963a9444eep-59, 0x1.c6b08d704a0cp-5},
{0x1.4eda1a81133dap-62, 0x1.3b2ab6fba4e77p-7},
{-0x1.c53fd1ba85d14p-64, 0x1.5d87fe7a265a5p-10},
{0x1.d89250b013eb8p-70, 0x1.430912f86cb8ep-13},
};
DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
return p;
}
// Polynomial approximation with 128-bit precision:
// Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7
// For |dx| < 2^-13 + 2^-30:
// | output - exp(dx) | < 2^-126.
Float128 poly_approx_f128(const Float128 &dx) {
using MType = typename Float128::MantissaType;
constexpr Float128 COEFFS_128[]{
{false, -127, MType({0, 0x8000000000000000})}, // 1.0
{false, -128, MType({0xc9e3b39803f2f6af, 0xb17217f7d1cf79ab})},
{false, -128, MType({0xde2d60dd9c9a1d9f, 0x3d7f7bff058b1d50})},
{false, -132, MType({0x9d3b15d9e7fb6897, 0xe35846b82505fc59})},
{false, -134, MType({0x184462f6bcd2b9e7, 0x9d955b7dd273b94e})},
{false, -137, MType({0x39ea1bb964c51a89, 0xaec3ff3c53398883})},
{false, -138, MType({0x842c53418fa8ae61, 0x2861225f345c396a})},
{false, -144, MType({0x7abeb5abd5ad2079, 0xffe5fe2d109a319d})},
};
Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
COEFFS_128[6], COEFFS_128[7]);
return p;
}
// Compute 2^(x) using 128-bit precision.
// TODO(lntue): investigate triple-double precision implementation for this
// step.
Float128 exp2_f128(double x, int hi, int idx1, int idx2) {
Float128 dx = Float128(x);
// TODO: Skip recalculating exp_mid1 and exp_mid2.
Float128 exp_mid1 =
fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
Float128(EXP2_MID1[idx1].lo)));
Float128 exp_mid2 =
fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
Float128(EXP2_MID2[idx2].lo)));
Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
Float128 p = poly_approx_f128(dx);
Float128 r = fputil::quick_mul(exp_mid, p);
r.exponent += hi;
return r;
}
// Compute 2^x with double-double precision.
DoubleDouble exp2_double_double(double x, const DoubleDouble &exp_mid) {
DoubleDouble dx({0, x});
// Degree-6 polynomial approximation in double-double precision.
// | p - 2^x | < 2^-103.
DoubleDouble p = poly_approx_dd(dx);
// Error bounds: 2^-102.
DoubleDouble r = fputil::quick_mult(exp_mid, p);
return r;
}
// When output is denormal.
double exp2_denorm(double x) {
// Range reduction.
int k =
static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19);
double kd = static_cast<double>(k);
uint32_t idx1 = (k >> 6) & 0x3f;
uint32_t idx2 = k & 0x3f;
int hi = k >> 12;
DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
// |dx| < 2^-13 + 2^-30.
double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact
double mid_lo = dx * exp_mid.hi;
// Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
double p = poly_approx_d(dx);
double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
LIBC_LIKELY(r.has_value()))
return r.value();
// Use double-double
DoubleDouble r_dd = exp2_double_double(dx, exp_mid);
if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
LIBC_LIKELY(r.has_value()))
return r.value();
// Use 128-bit precision
Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2);
return static_cast<double>(r_f128);
}
// Check for exceptional cases when:
// * log2(1 - 2^-54) < x < log2(1 + 2^-53)
// * x >= 1024
// * x <= -1022
// * x is inf or nan
double set_exceptional(double x) {
using FPBits = typename fputil::FPBits<double>;
FPBits xbits(x);
uint64_t x_u = xbits.uintval();
uint64_t x_abs = xbits.abs().uintval();
// |x| < log2(1 + 2^-53)
if (x_abs <= 0x3ca71547652b82fd) {
// 2^(x) ~ 1 + x/2
return fputil::multiply_add(x, 0.5, 1.0);
}
// x <= -1022 || x >= 1024 or inf/nan.
if (x_u > 0xc08ff00000000000) {
// x <= -1075 or -inf/nan
if (x_u >= 0xc090cc0000000000) {
// exp(-Inf) = 0
if (xbits.is_inf())
return 0.0;
// exp(nan) = nan
if (xbits.is_nan())
return x;
if (fputil::quick_get_round() == FE_UPWARD)
return FPBits::min_denormal();
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_UNDERFLOW);
return 0.0;
}
return exp2_denorm(x);
}
// x >= 1024 or +inf/nan
// x is finite
if (x_u < 0x7ff0'0000'0000'0000ULL) {
int rounding = fputil::quick_get_round();
if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
return FPBits::max_normal();
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_OVERFLOW);
}
// x is +inf or nan
return x + static_cast<double>(FPBits::inf());
}
} // namespace
LLVM_LIBC_FUNCTION(double, exp2, (double x)) {
using FPBits = typename fputil::FPBits<double>;
FPBits xbits(x);
uint64_t x_u = xbits.uintval();
// x < -1022 or x >= 1024 or log2(1 - 2^-54) < x < log2(1 + 2^-53).
if (LIBC_UNLIKELY(x_u > 0xc08ff00000000000 ||
(x_u <= 0xbc971547652b82fe && x_u >= 0x4090000000000000) ||
x_u <= 0x3ca71547652b82fd)) {
return set_exceptional(x);
}
// Now -1075 < x <= log2(1 - 2^-54) or log2(1 + 2^-53) < x < 1024
// Range reduction:
// Let x = (hi + mid1 + mid2) + lo
// in which:
// hi is an integer
// mid1 * 2^6 is an integer
// mid2 * 2^12 is an integer
// then:
// 2^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 2^(lo).
// With this formula:
// - multiplying by 2^hi is exact and cheap, simply by adding the exponent
// field.
// - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
// - 2^(lo) ~ 1 + a0*lo + a1 * lo^2 + ...
//
// We compute (hi + mid1 + mid2) together by perform the rounding on x * 2^12.
// Since |x| < |-1075)| < 2^11,
// |x * 2^12| < 2^11 * 2^12 < 2^23,
// So we can fit the rounded result round(x * 2^12) in int32_t.
// Thus, the goal is to be able to use an additional addition and fixed width
// shift to get an int32_t representing round(x * 2^12).
//
// Assuming int32_t using 2-complement representation, since the mantissa part
// of a double precision is unsigned with the leading bit hidden, if we add an
// extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
// part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
// considered as a proper 2-complement representations of x*2^12.
//
// One small problem with this approach is that the sum (x*2^12 + C) in
// double precision is rounded to the least significant bit of the dorminant
// factor C. In order to minimize the rounding errors from this addition, we
// want to minimize e1. Another constraint that we want is that after
// shifting the mantissa so that the least significant bit of int32_t
// corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
// any adjustment. So combining these 2 requirements, we can choose
// C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
// after right shifting the mantissa, the resulting int32_t has correct sign.
// With this choice of C, the number of mantissa bits we need to shift to the
// right is: 52 - 33 = 19.
//
// Moreover, since the integer right shifts are equivalent to rounding down,
// we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
// +infinity. So in particular, we can compute:
// hmm = x * 2^12 + C,
// where C = 2^33 + 2^32 + 2^-1, then if
// k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19),
// the reduced argument:
// lo = x - 2^-12 * k is bounded by:
// |lo| <= 2^-13 + 2^-12*2^-19
// = 2^-13 + 2^-31.
//
// Finally, notice that k only uses the mantissa of x * 2^12, so the
// exponent 2^12 is not needed. So we can simply define
// C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
// k = int32_t(lower 51 bits of double(x + C) >> 19).
// Rounding errors <= 2^-31.
int k =
static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19);
double kd = static_cast<double>(k);
uint32_t idx1 = (k >> 6) & 0x3f;
uint32_t idx2 = k & 0x3f;
int hi = k >> 12;
DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
// |dx| < 2^-13 + 2^-30.
double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact
// We use the degree-4 polynomial to approximate 2^(lo):
// 2^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 = 1 + lo * P(lo)
// So that the errors are bounded by:
// |P(lo) - (2^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
// Let P_ be an evaluation of P where all intermediate computations are in
// double precision. Using either Horner's or Estrin's schemes, the evaluated
// errors can be bounded by:
// |P_(lo) - P(lo)| < 2^-51
// => |lo * P_(lo) - (2^lo - 1) | < 2^-64
// => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-63.
// Since we approximate
// 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
// We use the expression:
// (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
// ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
// with errors bounded by 2^-63.
double mid_lo = dx * exp_mid.hi;
// Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
double p = poly_approx_d(dx);
double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
double upper = exp_mid.hi + (lo + ERR_D);
double lower = exp_mid.hi + (lo - ERR_D);
if (LIBC_LIKELY(upper == lower)) {
// To multiply by 2^hi, a fast way is to simply add hi to the exponent
// field.
int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
return r;
}
// Use double-double
DoubleDouble r_dd = exp2_double_double(dx, exp_mid);
double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
if (LIBC_LIKELY(upper_dd == lower_dd)) {
// To multiply by 2^hi, a fast way is to simply add hi to the exponent
// field.
int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
return r;
}
// Use 128-bit precision
Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2);
return static_cast<double>(r_f128);
}
} // namespace LIBC_NAMESPACE