blob: 7bb50f352f9389c14ea6ca1c6739a4c8e298c98d [file] [log] [blame] [edit]
// RUN: mlir-opt %s -split-input-file -verify-diagnostics
func.func @dcast_invalid_input(%arg0: f32) {
// expected-error@+1 {{operand #0 must be scalar or tensor of quantized type}}
%0 = quant.dcast %arg0 : f32 to f32
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @dcast_invalid_result(%arg0: !qalias) {
// expected-error@+1 {{result #0 must be scalar or tensor of floating-point}}
%0 = quant.dcast %arg0 : !qalias to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @dcast_mismatch_scalar_tensor(%arg0: !qalias) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.dcast %arg0 : !qalias to tensor<f32>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @dcast_mismatch_ranked_unranked_tensor(%arg0: tensor<!qalias>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.dcast %arg0 : tensor<!qalias> to tensor<*xf32>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @dcast_mismatch_static_dynamic_tensor(%arg0: tensor<2x3x!qalias>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.dcast %arg0 : tensor<2x3x!qalias> to tensor<?x3xf32>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @dcast_float_type_mismatch(%arg0: !qalias) {
// expected-error@+1 {{expressed type in quantized type expected to match float type}}
%0 = quant.dcast %arg0 : !qalias to f64
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0}>
func.func @dcast_per_axis_scalar(%arg0: !qalias) {
// expected-error@+1 {{scalar types may not use per-axis quantization}}
%0 = quant.dcast %arg0 : !qalias to f32
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0}>
func.func @dcast_per_axis_invalid_rank(%arg0: tensor<2x3x!qalias>) {
// expected-error@+1 {{quantized dimension must be less than tensor rank}}
%0 = quant.dcast %arg0 : tensor<2x3x!qalias> to tensor<2x3xf32>
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0, 3.0}>
func.func @dcast_per_axis_invalid_rank(%arg0: tensor<2x3x4x!qalias>) {
// expected-error@+1 {{quantized dimension size does not match number of scales}}
%0 = quant.dcast %arg0 : tensor<2x3x4x!qalias> to tensor<2x3x4xf32>
return
}
// -----
func.func @qcast_invalid_input(%arg0: f32) {
// expected-error@+1 {{result #0 must be scalar or tensor of quantized type}}
%0 = quant.qcast %arg0 : f32 to f32
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @qcast_invalid_result(%arg0: !qalias) {
// expected-error@+1 {{operand #0 must be scalar or tensor of floating-point}}
%0 = quant.qcast %arg0 : !qalias to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @qcast_mismatch_scalar_tensor(%arg0: tensor<f32>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.qcast %arg0 : tensor<f32> to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @qcast_mismatch_ranked_unranked_tensor(%arg0: tensor<f32>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.qcast %arg0 : tensor<f32> to tensor<*x!qalias>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @qcast_mismatch_static_dynamic_tensor(%arg0: tensor<2x3xf32>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.qcast %arg0 : tensor<2x3xf32> to tensor<?x3x!qalias>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @qcast_float_type_mismatch(%arg0: f64) {
// expected-error@+1 {{expressed type in quantized type expected to match float type}}
%0 = quant.qcast %arg0 : f64 to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0}>
func.func @qcast_per_axis_scalar(%arg0: f32) {
// expected-error@+1 {{scalar types may not use per-axis quantization}}
%0 = quant.qcast %arg0 : f32 to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0}>
func.func @qcast_per_axis_invalid_rank(%arg0: tensor<2x3xf32>) {
// expected-error@+1 {{quantized dimension must be less than tensor rank}}
%0 = quant.qcast %arg0 : tensor<2x3xf32> to tensor<2x3x!qalias>
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0, 3.0}>
func.func @qcast_per_axis_invalid_rank(%arg0: tensor<2x3x4xf32>) {
// expected-error@+1 {{quantized dimension size does not match number of scales}}
%0 = quant.qcast %arg0 : tensor<2x3x4xf32> to tensor<2x3x4x!qalias>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @scast_invalid_input(%arg0: si32) {
// expected-error@+1 {{operand #0 must be scalar or tensor of signless integer or quantized type}}
%0 = quant.scast %arg0 : si32 to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @scast_invalid_result(%arg0: !qalias) {
// expected-error@+1 {{result #0 must be scalar or tensor of signless integer or quantized type}}
%0 = quant.scast %arg0 : !qalias to si32
return
}
// -----
func.func @scast_both_integers(%arg0: i8) {
// expected-error@+1 {{input must be integer and result must be quantized, or vice versa}}
%0 = quant.scast %arg0 : i8 to i8
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @scast_both_quantized(%arg0: !qalias) {
// expected-error@+1 {{input must be integer and result must be quantized, or vice versa}}
%0 = quant.scast %arg0 : !qalias to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @scast_mismatch_scalar_tensor(%arg0: tensor<i8>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.scast %arg0 : tensor<i8> to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @scast_mismatch_ranked_unranked_tensor(%arg0: tensor<i8>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.scast %arg0 : tensor<i8> to tensor<*x!qalias>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @scast_mismatch_static_dynamic_tensor(%arg0: tensor<2x3xi8>) {
// expected-error@+1 {{input and result are both scalars or both tensors with matching shape}}
%0 = quant.scast %arg0 : tensor<2x3xi8> to tensor<?x3x!qalias>
return
}
// -----
!qalias = !quant.uniform<i8:f32, 1.0>
func.func @qcast_integer_type_mismatch(%arg0: i32) {
// expected-error@+1 {{storage type in quantized type expected to match integer type}}
%0 = quant.scast %arg0 : i32 to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0}>
func.func @scast_per_axis_scalar(%arg0: i8) {
// expected-error@+1 {{scalar types may not use per-axis quantization}}
%0 = quant.scast %arg0 : i8 to !qalias
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0}>
func.func @scast_per_axis_invalid_rank(%arg0: tensor<2x3xi8>) {
// expected-error@+1 {{quantized dimension must be less than tensor rank}}
%0 = quant.scast %arg0 : tensor<2x3xi8> to tensor<2x3x!qalias>
return
}
// -----
!qalias = !quant.uniform<i8:f32:2, {1.0, 2.0, 3.0}>
func.func @scast_per_axis_invalid_rank(%arg0: tensor<2x3x4xi8>) {
// expected-error@+1 {{quantized dimension size does not match number of scales}}
%0 = quant.scast %arg0 : tensor<2x3x4xi8> to tensor<2x3x4x!qalias>
return
}
// -----
!qalias = !quant.uniform<u8:f32:{0:1,1:2},
{{2.000000e+02:120,9.987200e-01:127}, {2.000000e+02,9.987200e-01}}>
func.func @qcast_sub_channel_scalar(%arg0: f32) {
// expected-error@+1 {{scalar types may not use sub-channel quantization}}
%0 = quant.qcast %arg0 : f32 to !qalias
return
}
// -----
!qalias = !quant.uniform<u8:f32:{0:1,1:2},
{{2.000000e+02:120,9.987200e-01:127}, {2.000000e+02,9.987200e-01}}>
func.func @qcast_sub_channel_unranked(%arg0: tensor<*xf32>) {
// expected-error@+1 {{tensor containing the sub-channel quantized type must be ranked}}
%0 = quant.qcast %arg0 : tensor<*xf32> to tensor<*x!qalias>
return
}
// -----
!qalias = !quant.uniform<u8:f32:{0:1,3:2},
{{2.000000e+02:120,9.987200e-01:127}, {2.000000e+02,9.987200e-01}}>
func.func @qcast_sub_channel_invalid_quantized_dimension(%arg0: tensor<2x4xf32>) {
// expected-error@+1 {{quantized dimension 3 must be less than tensor rank 2}}
%0 = quant.qcast %arg0 : tensor<2x4xf32> to tensor<2x4x!qalias>
return
}
// -----
!qalias = !quant.uniform<u8:f32:{0:1,1:3},
{{2.000000e+02:120,9.987200e-01:127}, {2.000000e+02,9.987200e-01}}>
func.func @qcast_sub_channel_invalid_tensor_dim_size(%arg0: tensor<2x4xf32>) {
// expected-error@+1 {{tensor dimension size 4 at axis 1 must be divisible by the corresponding block size 3}}
%0 = quant.qcast %arg0 : tensor<2x4xf32> to tensor<2x4x!qalias>
return
}
// -----
!qalias = !quant.uniform<u8:f32:{1:2},
{{2.000000e+02:120,9.987200e-01:127}, {2.000000e+02,9.987200e-01}}>
func.func @qcast_sub_channel_invalid_zero_tensor_dim_size(%arg0: tensor<0x4xf32>) {
// expected-error@+1 {{tensor dimension size of zero is not allowed with sub-channel quantization}}
%0 = quant.qcast %arg0 : tensor<0x4xf32> to tensor<0x4x!qalias>
return
}
// -----
!qalias = !quant.uniform<u8:f32:{0:1,1:2},
{{2.000000e+02:120}, {2.000000e+02}}>
func.func @qcast_sub_channel_invalid_scale_dim_size(%arg0: tensor<2x4xf32>) {
// expected-error@+1 {{dimension size 2 of scales tensor at axis 1 should match (tensor dimension at axis / block sizes at axis) = 2}}
%0 = quant.qcast %arg0 : tensor<2x4xf32> to tensor<2x4x!qalias>
return
}
// -----
!qalias = !quant.uniform<u8:f32:{},{{{2.000000e+02:120}}}>
func.func @qcast_sub_channel_invalid_scale_dim_size(%arg0: tensor<?x?xf32>) {
// expected-error@+1 {{Rank of scales 3 must match the rank of the tensor 2}}
%0 = quant.qcast %arg0 : tensor<?x?xf32> to tensor<?x?x!qalias>
return
}