|  | //===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/Utils/TFUtils.h" | 
|  | #include "llvm/Analysis/ModelUnderTrainingRunner.h" | 
|  | #include "llvm/Analysis/TensorSpec.h" | 
|  | #include "llvm/AsmParser/Parser.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include "llvm/Support/SourceMgr.h" | 
|  | #include "llvm/Testing/Support/SupportHelpers.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | extern const char *TestMainArgv0; | 
|  |  | 
|  | // NOTE! This test model is currently also used by test/Transforms/Inline/ML tests | 
|  | //- relevant if updating this model. | 
|  | static std::string getModelPath() { | 
|  | SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0); | 
|  | llvm::sys::path::append(InputsDir, "ir2native_x86_64_model"); | 
|  | return std::string(InputsDir); | 
|  | } | 
|  |  | 
|  | // Test observable behavior when no model is provided. | 
|  | TEST(TFUtilsTest, NoModel) { | 
|  | TFModelEvaluator Evaluator("", {}, {}); | 
|  | EXPECT_FALSE(Evaluator.isValid()); | 
|  | } | 
|  |  | 
|  | // Test we can correctly load a savedmodel and evaluate it. | 
|  | TEST(TFUtilsTest, LoadAndExecuteTest) { | 
|  | // We use the ir2native model for test. We know it has one feature of | 
|  | // dimension (1, 214) | 
|  | const static int64_t KnownSize = 214; | 
|  | std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>( | 
|  | "serving_default_input_1", {1, KnownSize})}; | 
|  | std::vector<TensorSpec> OutputSpecs{ | 
|  | TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})}; | 
|  |  | 
|  | TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs); | 
|  | EXPECT_TRUE(Evaluator.isValid()); | 
|  |  | 
|  | int32_t *V = Evaluator.getInput<int32_t>(0); | 
|  | // Fill it up with 1's, we know the output. | 
|  | for (auto I = 0; I < KnownSize; ++I) { | 
|  | V[I] = 1; | 
|  | } | 
|  | { | 
|  | auto ER = Evaluator.evaluate(); | 
|  | EXPECT_TRUE(ER.has_value()); | 
|  | float Ret = *ER->getTensorValue<float>(0); | 
|  | EXPECT_EQ(static_cast<int64_t>(Ret), 80); | 
|  | EXPECT_EQ(ER->getUntypedTensorValue(0), | 
|  | reinterpret_cast<const void *>(ER->getTensorValue<float>(0))); | 
|  | } | 
|  | // The input vector should be unchanged | 
|  | for (auto I = 0; I < KnownSize; ++I) { | 
|  | EXPECT_EQ(V[I], 1); | 
|  | } | 
|  | // Zero-out the unused position '0' of the instruction histogram, which is | 
|  | // after the first 9 calculated values. Should the the same result. | 
|  | V[9] = 0; | 
|  | { | 
|  | auto ER = Evaluator.evaluate(); | 
|  | EXPECT_TRUE(ER.has_value()); | 
|  | float Ret = *ER->getTensorValue<float>(0); | 
|  | EXPECT_EQ(static_cast<int64_t>(Ret), 80); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test incorrect input setup | 
|  | TEST(TFUtilsTest, EvalError) { | 
|  | // We use the ir2native model for test. We know it has one feature of | 
|  | // dimension (1, 214) | 
|  | const static int64_t KnownSize = 213; | 
|  | std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>( | 
|  | "serving_default_input_1", {1, KnownSize})}; | 
|  | std::vector<TensorSpec> OutputSpecs{ | 
|  | TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})}; | 
|  |  | 
|  | TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs); | 
|  | EXPECT_FALSE(Evaluator.isValid()); | 
|  | } | 
|  |  | 
|  | TEST(TFUtilsTest, UnsupportedFeature) { | 
|  | const static int64_t KnownSize = 214; | 
|  | std::vector<TensorSpec> InputSpecs{ | 
|  | TensorSpec::createSpec<int32_t>("serving_default_input_1", | 
|  | {1, KnownSize}), | 
|  | TensorSpec::createSpec<float>("this_feature_does_not_exist", {2, 5})}; | 
|  |  | 
|  | LLVMContext Ctx; | 
|  | ModelUnderTrainingRunner Evaluator( | 
|  | Ctx, getModelPath(), InputSpecs, | 
|  | {TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})}); | 
|  | EXPECT_TRUE(Evaluator.isValid()); | 
|  | int32_t *V = Evaluator.getTensor<int32_t>(0); | 
|  | // Fill it up with 1s, we know the output. | 
|  | for (auto I = 0; I < KnownSize; ++I) | 
|  | V[I] = 1; | 
|  |  | 
|  | float *F = Evaluator.getTensor<float>(1); | 
|  | for (auto I = 0; I < 2 * 5; ++I) | 
|  | F[I] = 3.14 + I; | 
|  | float Ret = Evaluator.evaluate<float>(); | 
|  | EXPECT_EQ(static_cast<int64_t>(Ret), 80); | 
|  | // The input vector should be unchanged | 
|  | for (auto I = 0; I < KnownSize; ++I) | 
|  | EXPECT_EQ(V[I], 1); | 
|  | for (auto I = 0; I < 2 * 5; ++I) | 
|  | EXPECT_FLOAT_EQ(F[I], 3.14 + I); | 
|  | } | 
|  |  | 
|  | TEST(TFUtilsTest, MissingFeature) { | 
|  | std::vector<TensorSpec> InputSpecs{}; | 
|  | std::vector<TensorSpec> OutputSpecs{ | 
|  | TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})}; | 
|  |  | 
|  | TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs); | 
|  | EXPECT_FALSE(Evaluator.isValid()); | 
|  | } |