|  | //===- ScalarEvolutionsTest.cpp - ScalarEvolution unit tests --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionNormalization.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/AsmParser/Parser.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/Support/SourceMgr.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | // We use this fixture to ensure that we clean up ScalarEvolution before | 
|  | // deleting the PassManager. | 
|  | class ScalarEvolutionsTest : public testing::Test { | 
|  | protected: | 
|  | LLVMContext Context; | 
|  | Module M; | 
|  | TargetLibraryInfoImpl TLII; | 
|  | TargetLibraryInfo TLI; | 
|  |  | 
|  | std::unique_ptr<AssumptionCache> AC; | 
|  | std::unique_ptr<DominatorTree> DT; | 
|  | std::unique_ptr<LoopInfo> LI; | 
|  |  | 
|  | ScalarEvolutionsTest() : M("", Context), TLII(), TLI(TLII) {} | 
|  |  | 
|  | ScalarEvolution buildSE(Function &F) { | 
|  | AC.reset(new AssumptionCache(F)); | 
|  | DT.reset(new DominatorTree(F)); | 
|  | LI.reset(new LoopInfo(*DT)); | 
|  | return ScalarEvolution(F, TLI, *AC, *DT, *LI); | 
|  | } | 
|  |  | 
|  | void runWithSE( | 
|  | Module &M, StringRef FuncName, | 
|  | function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) { | 
|  | auto *F = M.getFunction(FuncName); | 
|  | ASSERT_NE(F, nullptr) << "Could not find " << FuncName; | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | Test(*F, *LI, SE); | 
|  | } | 
|  |  | 
|  | static std::optional<APInt> computeConstantDifference(ScalarEvolution &SE, | 
|  | const SCEV *LHS, | 
|  | const SCEV *RHS) { | 
|  | return SE.computeConstantDifference(LHS, RHS); | 
|  | } | 
|  |  | 
|  | static bool matchURem(ScalarEvolution &SE, const SCEV *Expr, const SCEV *&LHS, | 
|  | const SCEV *&RHS) { | 
|  | return SE.matchURem(Expr, LHS, RHS); | 
|  | } | 
|  |  | 
|  | static bool isImpliedCond( | 
|  | ScalarEvolution &SE, ICmpInst::Predicate Pred, const SCEV *LHS, | 
|  | const SCEV *RHS, ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, | 
|  | const SCEV *FoundRHS) { | 
|  | return SE.isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVUnknownRAUW) { | 
|  | FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), | 
|  | std::vector<Type *>(), false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); | 
|  | BasicBlock *BB = BasicBlock::Create(Context, "entry", F); | 
|  | ReturnInst::Create(Context, nullptr, BB); | 
|  |  | 
|  | Type *Ty = Type::getInt1Ty(Context); | 
|  | Constant *Init = Constant::getNullValue(Ty); | 
|  | Value *V0 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V0"); | 
|  | Value *V1 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V1"); | 
|  | Value *V2 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V2"); | 
|  |  | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  |  | 
|  | const SCEV *S0 = SE.getSCEV(V0); | 
|  | const SCEV *S1 = SE.getSCEV(V1); | 
|  | const SCEV *S2 = SE.getSCEV(V2); | 
|  |  | 
|  | const SCEV *P0 = SE.getAddExpr(S0, SE.getConstant(S0->getType(), 2)); | 
|  | const SCEV *P1 = SE.getAddExpr(S1, SE.getConstant(S0->getType(), 2)); | 
|  | const SCEV *P2 = SE.getAddExpr(S2, SE.getConstant(S0->getType(), 2)); | 
|  |  | 
|  | auto *M0 = cast<SCEVAddExpr>(P0); | 
|  | auto *M1 = cast<SCEVAddExpr>(P1); | 
|  | auto *M2 = cast<SCEVAddExpr>(P2); | 
|  |  | 
|  | EXPECT_EQ(cast<SCEVConstant>(M0->getOperand(0))->getValue()->getZExtValue(), | 
|  | 2u); | 
|  | EXPECT_EQ(cast<SCEVConstant>(M1->getOperand(0))->getValue()->getZExtValue(), | 
|  | 2u); | 
|  | EXPECT_EQ(cast<SCEVConstant>(M2->getOperand(0))->getValue()->getZExtValue(), | 
|  | 2u); | 
|  |  | 
|  | // Before the RAUWs, these are all pointing to separate values. | 
|  | EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0); | 
|  | EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V1); | 
|  | EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V2); | 
|  |  | 
|  | // Do some RAUWs. | 
|  | V2->replaceAllUsesWith(V1); | 
|  | V1->replaceAllUsesWith(V0); | 
|  |  | 
|  | // After the RAUWs, these should all be pointing to V0. | 
|  | EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0); | 
|  | EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V0); | 
|  | EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V0); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SimplifiedPHI) { | 
|  | FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), | 
|  | std::vector<Type *>(), false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); | 
|  | BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); | 
|  | BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); | 
|  | BranchInst::Create(LoopBB, EntryBB); | 
|  | BranchInst::Create(LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)), | 
|  | LoopBB); | 
|  | ReturnInst::Create(Context, nullptr, ExitBB); | 
|  | auto *Ty = Type::getInt32Ty(Context); | 
|  | auto *PN = PHINode::Create(Ty, 2, "", LoopBB->begin()); | 
|  | PN->addIncoming(Constant::getNullValue(Ty), EntryBB); | 
|  | PN->addIncoming(PoisonValue::get(Ty), LoopBB); | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | const SCEV *S1 = SE.getSCEV(PN); | 
|  | const SCEV *S2 = SE.getSCEV(PN); | 
|  | const SCEV *ZeroConst = SE.getConstant(Ty, 0); | 
|  |  | 
|  | // At some point, only the first call to getSCEV returned the simplified | 
|  | // SCEVConstant and later calls just returned a SCEVUnknown referencing the | 
|  | // PHI node. | 
|  | EXPECT_EQ(S1, ZeroConst); | 
|  | EXPECT_EQ(S1, S2); | 
|  | } | 
|  |  | 
|  |  | 
|  | static Instruction *getInstructionByName(Function &F, StringRef Name) { | 
|  | for (auto &I : instructions(F)) | 
|  | if (I.getName() == Name) | 
|  | return &I; | 
|  | llvm_unreachable("Expected to find instruction!"); | 
|  | } | 
|  |  | 
|  | static Value *getArgByName(Function &F, StringRef Name) { | 
|  | for (auto &Arg : F.args()) | 
|  | if (Arg.getName() == Name) | 
|  | return &Arg; | 
|  | llvm_unreachable("Expected to find instruction!"); | 
|  | } | 
|  | TEST_F(ScalarEvolutionsTest, CommutativeExprOperandOrder) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " | 
|  | " " | 
|  | "@var_0 = external global i32, align 4" | 
|  | "@var_1 = external global i32, align 4" | 
|  | "@var_2 = external global i32, align 4" | 
|  | " " | 
|  | "declare i32 @unknown(i32, i32, i32)" | 
|  | " " | 
|  | "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " | 
|  | "    local_unnamed_addr { " | 
|  | "entry: " | 
|  | "  %entrycond = icmp sgt i32 %n, 0 " | 
|  | "  br i1 %entrycond, label %loop.ph, label %for.end " | 
|  | " " | 
|  | "loop.ph: " | 
|  | "  %a = load i32, i32* %A, align 4 " | 
|  | "  %b = load i32, i32* %B, align 4 " | 
|  | "  %mul = mul nsw i32 %b, %a " | 
|  | "  %iv0.init = getelementptr inbounds i8, i8* %arr, i32 %mul " | 
|  | "  br label %loop " | 
|  | " " | 
|  | "loop: " | 
|  | "  %iv0 = phi i8* [ %iv0.inc, %loop ], [ %iv0.init, %loop.ph ] " | 
|  | "  %iv1 = phi i32 [ %iv1.inc, %loop ], [ 0, %loop.ph ] " | 
|  | "  %conv = trunc i32 %iv1 to i8 " | 
|  | "  store i8 %conv, i8* %iv0, align 1 " | 
|  | "  %iv0.inc = getelementptr inbounds i8, i8* %iv0, i32 %b " | 
|  | "  %iv1.inc = add nuw nsw i32 %iv1, 1 " | 
|  | "  %exitcond = icmp eq i32 %iv1.inc, %n " | 
|  | "  br i1 %exitcond, label %for.end.loopexit, label %loop " | 
|  | " " | 
|  | "for.end.loopexit: " | 
|  | "  br label %for.end " | 
|  | " " | 
|  | "for.end: " | 
|  | "  ret void " | 
|  | "} " | 
|  | " " | 
|  | "define void @f_2(i32* %X, i32* %Y, i32* %Z) { " | 
|  | "  %x = load i32, i32* %X " | 
|  | "  %y = load i32, i32* %Y " | 
|  | "  %z = load i32, i32* %Z " | 
|  | "  ret void " | 
|  | "} " | 
|  | " " | 
|  | "define void @f_3() { " | 
|  | "  %x = load i32, i32* @var_0" | 
|  | "  %y = load i32, i32* @var_1" | 
|  | "  %z = load i32, i32* @var_2" | 
|  | "  ret void" | 
|  | "} " | 
|  | " " | 
|  | "define void @f_4(i32 %a, i32 %b, i32 %c) { " | 
|  | "  %x = call i32 @unknown(i32 %a, i32 %b, i32 %c)" | 
|  | "  %y = call i32 @unknown(i32 %b, i32 %c, i32 %a)" | 
|  | "  %z = call i32 @unknown(i32 %c, i32 %a, i32 %b)" | 
|  | "  ret void" | 
|  | "} " | 
|  | , | 
|  | Err, C); | 
|  |  | 
|  | assert(M && "Could not parse module?"); | 
|  | assert(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | auto *IV0 = getInstructionByName(F, "iv0"); | 
|  | auto *IV0Inc = getInstructionByName(F, "iv0.inc"); | 
|  |  | 
|  | const SCEV *FirstExprForIV0 = SE.getSCEV(IV0); | 
|  | const SCEV *FirstExprForIV0Inc = SE.getSCEV(IV0Inc); | 
|  | const SCEV *SecondExprForIV0 = SE.getSCEV(IV0); | 
|  |  | 
|  | EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0)); | 
|  | EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0Inc)); | 
|  | EXPECT_TRUE(isa<SCEVAddRecExpr>(SecondExprForIV0)); | 
|  | }); | 
|  |  | 
|  | auto CheckCommutativeMulExprs = [&](ScalarEvolution &SE, const SCEV *A, | 
|  | const SCEV *B, const SCEV *C) { | 
|  | EXPECT_EQ(SE.getMulExpr(A, B), SE.getMulExpr(B, A)); | 
|  | EXPECT_EQ(SE.getMulExpr(B, C), SE.getMulExpr(C, B)); | 
|  | EXPECT_EQ(SE.getMulExpr(A, C), SE.getMulExpr(C, A)); | 
|  |  | 
|  | SmallVector<const SCEV *, 3> Ops0 = {A, B, C}; | 
|  | SmallVector<const SCEV *, 3> Ops1 = {A, C, B}; | 
|  | SmallVector<const SCEV *, 3> Ops2 = {B, A, C}; | 
|  | SmallVector<const SCEV *, 3> Ops3 = {B, C, A}; | 
|  | SmallVector<const SCEV *, 3> Ops4 = {C, B, A}; | 
|  | SmallVector<const SCEV *, 3> Ops5 = {C, A, B}; | 
|  |  | 
|  | const SCEV *Mul0 = SE.getMulExpr(Ops0); | 
|  | const SCEV *Mul1 = SE.getMulExpr(Ops1); | 
|  | const SCEV *Mul2 = SE.getMulExpr(Ops2); | 
|  | const SCEV *Mul3 = SE.getMulExpr(Ops3); | 
|  | const SCEV *Mul4 = SE.getMulExpr(Ops4); | 
|  | const SCEV *Mul5 = SE.getMulExpr(Ops5); | 
|  |  | 
|  | EXPECT_EQ(Mul0, Mul1) << "Expected " << *Mul0 << " == " << *Mul1; | 
|  | EXPECT_EQ(Mul1, Mul2) << "Expected " << *Mul1 << " == " << *Mul2; | 
|  | EXPECT_EQ(Mul2, Mul3) << "Expected " << *Mul2 << " == " << *Mul3; | 
|  | EXPECT_EQ(Mul3, Mul4) << "Expected " << *Mul3 << " == " << *Mul4; | 
|  | EXPECT_EQ(Mul4, Mul5) << "Expected " << *Mul4 << " == " << *Mul5; | 
|  | }; | 
|  |  | 
|  | for (StringRef FuncName : {"f_2", "f_3", "f_4"}) | 
|  | runWithSE( | 
|  | *M, FuncName, [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | CheckCommutativeMulExprs(SE, SE.getSCEV(getInstructionByName(F, "x")), | 
|  | SE.getSCEV(getInstructionByName(F, "y")), | 
|  | SE.getSCEV(getInstructionByName(F, "z"))); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, CompareSCEVComplexity) { | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); | 
|  | BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(Context, "bb1", F); | 
|  | BranchInst::Create(LoopBB, EntryBB); | 
|  |  | 
|  | auto *Ty = Type::getInt32Ty(Context); | 
|  | SmallVector<Instruction*, 8> Muls(8), Acc(8), NextAcc(8); | 
|  |  | 
|  | Acc[0] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  | Acc[1] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  | Acc[2] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  | Acc[3] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  | Acc[4] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  | Acc[5] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  | Acc[6] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  | Acc[7] = PHINode::Create(Ty, 2, "", LoopBB); | 
|  |  | 
|  | for (int i = 0; i < 20; i++) { | 
|  | Muls[0] = BinaryOperator::CreateMul(Acc[0], Acc[0], "", LoopBB); | 
|  | NextAcc[0] = BinaryOperator::CreateAdd(Muls[0], Acc[4], "", LoopBB); | 
|  | Muls[1] = BinaryOperator::CreateMul(Acc[1], Acc[1], "", LoopBB); | 
|  | NextAcc[1] = BinaryOperator::CreateAdd(Muls[1], Acc[5], "", LoopBB); | 
|  | Muls[2] = BinaryOperator::CreateMul(Acc[2], Acc[2], "", LoopBB); | 
|  | NextAcc[2] = BinaryOperator::CreateAdd(Muls[2], Acc[6], "", LoopBB); | 
|  | Muls[3] = BinaryOperator::CreateMul(Acc[3], Acc[3], "", LoopBB); | 
|  | NextAcc[3] = BinaryOperator::CreateAdd(Muls[3], Acc[7], "", LoopBB); | 
|  |  | 
|  | Muls[4] = BinaryOperator::CreateMul(Acc[4], Acc[4], "", LoopBB); | 
|  | NextAcc[4] = BinaryOperator::CreateAdd(Muls[4], Acc[0], "", LoopBB); | 
|  | Muls[5] = BinaryOperator::CreateMul(Acc[5], Acc[5], "", LoopBB); | 
|  | NextAcc[5] = BinaryOperator::CreateAdd(Muls[5], Acc[1], "", LoopBB); | 
|  | Muls[6] = BinaryOperator::CreateMul(Acc[6], Acc[6], "", LoopBB); | 
|  | NextAcc[6] = BinaryOperator::CreateAdd(Muls[6], Acc[2], "", LoopBB); | 
|  | Muls[7] = BinaryOperator::CreateMul(Acc[7], Acc[7], "", LoopBB); | 
|  | NextAcc[7] = BinaryOperator::CreateAdd(Muls[7], Acc[3], "", LoopBB); | 
|  | Acc = NextAcc; | 
|  | } | 
|  |  | 
|  | auto II = LoopBB->begin(); | 
|  | for (int i = 0; i < 8; i++) { | 
|  | PHINode *Phi = cast<PHINode>(&*II++); | 
|  | Phi->addIncoming(Acc[i], LoopBB); | 
|  | Phi->addIncoming(PoisonValue::get(Ty), EntryBB); | 
|  | } | 
|  |  | 
|  | BasicBlock *ExitBB = BasicBlock::Create(Context, "bb2", F); | 
|  | BranchInst::Create(LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)), | 
|  | LoopBB); | 
|  |  | 
|  | Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); | 
|  | Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); | 
|  | Acc[2] = BinaryOperator::CreateAdd(Acc[4], Acc[5], "", ExitBB); | 
|  | Acc[3] = BinaryOperator::CreateAdd(Acc[6], Acc[7], "", ExitBB); | 
|  | Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); | 
|  | Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); | 
|  | Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); | 
|  |  | 
|  | ReturnInst::Create(Context, nullptr, ExitBB); | 
|  |  | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  |  | 
|  | EXPECT_NE(nullptr, SE.getSCEV(Acc[0])); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, CompareValueComplexity) { | 
|  | IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(Context); | 
|  | PointerType *IntPtrPtrTy = PointerType::getUnqual(Context); | 
|  |  | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(Type::getVoidTy(Context), {IntPtrTy, IntPtrTy}, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); | 
|  | BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); | 
|  |  | 
|  | Value *X = &*F->arg_begin(); | 
|  | Value *Y = &*std::next(F->arg_begin()); | 
|  |  | 
|  | const int ValueDepth = 10; | 
|  | for (int i = 0; i < ValueDepth; i++) { | 
|  | X = new LoadInst(IntPtrTy, new IntToPtrInst(X, IntPtrPtrTy, "", EntryBB), | 
|  | "", | 
|  | /*isVolatile*/ false, EntryBB); | 
|  | Y = new LoadInst(IntPtrTy, new IntToPtrInst(Y, IntPtrPtrTy, "", EntryBB), | 
|  | "", | 
|  | /*isVolatile*/ false, EntryBB); | 
|  | } | 
|  |  | 
|  | auto *MulA = BinaryOperator::CreateMul(X, Y, "", EntryBB); | 
|  | auto *MulB = BinaryOperator::CreateMul(Y, X, "", EntryBB); | 
|  | ReturnInst::Create(Context, nullptr, EntryBB); | 
|  |  | 
|  | // This test isn't checking for correctness.  Today making A and B resolve to | 
|  | // the same SCEV would require deeper searching in CompareValueComplexity, | 
|  | // which will slow down compilation.  However, this test can fail (with LLVM's | 
|  | // behavior still being correct) if we ever have a smarter | 
|  | // CompareValueComplexity that is both fast and more accurate. | 
|  |  | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | const SCEV *A = SE.getSCEV(MulA); | 
|  | const SCEV *B = SE.getSCEV(MulB); | 
|  | EXPECT_NE(A, B); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVAddExpr) { | 
|  | Type *Ty32 = Type::getInt32Ty(Context); | 
|  | Type *ArgTys[] = {Type::getInt64Ty(Context), Ty32, Ty32, Ty32, Ty32, Ty32}; | 
|  |  | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(Type::getVoidTy(Context), ArgTys, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); | 
|  |  | 
|  | Argument *A1 = &*F->arg_begin(); | 
|  | Argument *A2 = &*(std::next(F->arg_begin())); | 
|  | BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); | 
|  |  | 
|  | Instruction *Trunc = CastInst::CreateTruncOrBitCast(A1, Ty32, "", EntryBB); | 
|  | Instruction *Mul1 = BinaryOperator::CreateMul(Trunc, A2, "", EntryBB); | 
|  | Instruction *Add1 = BinaryOperator::CreateAdd(Mul1, Trunc, "", EntryBB); | 
|  | Mul1 = BinaryOperator::CreateMul(Add1, Trunc, "", EntryBB); | 
|  | Instruction *Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); | 
|  | // FIXME: The size of this is arbitrary and doesn't seem to change the | 
|  | // result, but SCEV will do quadratic work for these so a large number here | 
|  | // will be extremely slow. We should revisit what and how this is testing | 
|  | // SCEV. | 
|  | for (int i = 0; i < 10; i++) { | 
|  | Mul1 = BinaryOperator::CreateMul(Add2, Add1, "", EntryBB); | 
|  | Add1 = Add2; | 
|  | Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); | 
|  | } | 
|  |  | 
|  | ReturnInst::Create(Context, nullptr, EntryBB); | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | EXPECT_NE(nullptr, SE.getSCEV(Mul1)); | 
|  |  | 
|  | Argument *A3 = &*(std::next(F->arg_begin(), 2)); | 
|  | Argument *A4 = &*(std::next(F->arg_begin(), 3)); | 
|  | Argument *A5 = &*(std::next(F->arg_begin(), 4)); | 
|  | Argument *A6 = &*(std::next(F->arg_begin(), 5)); | 
|  |  | 
|  | auto *AddWithNUW = cast<SCEVAddExpr>(SE.getAddExpr( | 
|  | SE.getAddExpr(SE.getSCEV(A2), SE.getSCEV(A3), SCEV::FlagNUW), | 
|  | SE.getConstant(APInt(/*numBits=*/32, 5)), SCEV::FlagNUW)); | 
|  | EXPECT_EQ(AddWithNUW->getNumOperands(), 3u); | 
|  | EXPECT_EQ(AddWithNUW->getNoWrapFlags(), SCEV::FlagNUW); | 
|  |  | 
|  | const SCEV *AddWithAnyWrap = | 
|  | SE.getAddExpr(SE.getSCEV(A3), SE.getSCEV(A4), SCEV::FlagAnyWrap); | 
|  | auto *AddWithAnyWrapNUW = cast<SCEVAddExpr>( | 
|  | SE.getAddExpr(AddWithAnyWrap, SE.getSCEV(A5), SCEV::FlagNUW)); | 
|  | EXPECT_EQ(AddWithAnyWrapNUW->getNumOperands(), 3u); | 
|  | EXPECT_EQ(AddWithAnyWrapNUW->getNoWrapFlags(), SCEV::FlagAnyWrap); | 
|  |  | 
|  | const SCEV *AddWithNSW = SE.getAddExpr( | 
|  | SE.getSCEV(A2), SE.getConstant(APInt(32, 99)), SCEV::FlagNSW); | 
|  | auto *AddWithNSW_NUW = cast<SCEVAddExpr>( | 
|  | SE.getAddExpr(AddWithNSW, SE.getSCEV(A5), SCEV::FlagNUW)); | 
|  | EXPECT_EQ(AddWithNSW_NUW->getNumOperands(), 3u); | 
|  | EXPECT_EQ(AddWithNSW_NUW->getNoWrapFlags(), SCEV::FlagAnyWrap); | 
|  |  | 
|  | const SCEV *AddWithNSWNUW = | 
|  | SE.getAddExpr(SE.getSCEV(A2), SE.getSCEV(A4), | 
|  | ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW)); | 
|  | auto *AddWithNSWNUW_NUW = cast<SCEVAddExpr>( | 
|  | SE.getAddExpr(AddWithNSWNUW, SE.getSCEV(A5), SCEV::FlagNUW)); | 
|  | EXPECT_EQ(AddWithNSWNUW_NUW->getNumOperands(), 3u); | 
|  | EXPECT_EQ(AddWithNSWNUW_NUW->getNoWrapFlags(), SCEV::FlagNUW); | 
|  |  | 
|  | auto *AddWithNSW_NSWNUW = cast<SCEVAddExpr>( | 
|  | SE.getAddExpr(AddWithNSW, SE.getSCEV(A6), | 
|  | ScalarEvolution::setFlags(SCEV::FlagNUW, SCEV::FlagNSW))); | 
|  | EXPECT_EQ(AddWithNSW_NSWNUW->getNumOperands(), 3u); | 
|  | EXPECT_EQ(AddWithNSW_NSWNUW->getNoWrapFlags(), SCEV::FlagAnyWrap); | 
|  | } | 
|  |  | 
|  | static Instruction &GetInstByName(Function &F, StringRef Name) { | 
|  | for (auto &I : instructions(F)) | 
|  | if (I.getName() == Name) | 
|  | return I; | 
|  | llvm_unreachable("Could not find instructions!"); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVNormalization) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " | 
|  | " " | 
|  | "@var_0 = external global i32, align 4" | 
|  | "@var_1 = external global i32, align 4" | 
|  | "@var_2 = external global i32, align 4" | 
|  | " " | 
|  | "declare i32 @unknown(i32, i32, i32)" | 
|  | " " | 
|  | "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " | 
|  | "    local_unnamed_addr { " | 
|  | "entry: " | 
|  | "  br label %loop.ph " | 
|  | " " | 
|  | "loop.ph: " | 
|  | "  br label %loop " | 
|  | " " | 
|  | "loop: " | 
|  | "  %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] " | 
|  | "  %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] " | 
|  | "  %iv0.inc = add i32 %iv0, 1 " | 
|  | "  %iv1.inc = add i32 %iv1, 3 " | 
|  | "  br i1 poison, label %for.end.loopexit, label %loop " | 
|  | " " | 
|  | "for.end.loopexit: " | 
|  | "  ret void " | 
|  | "} " | 
|  | " " | 
|  | "define void @f_2(i32 %a, i32 %b, i32 %c, i32 %d) " | 
|  | "    local_unnamed_addr { " | 
|  | "entry: " | 
|  | "  br label %loop_0 " | 
|  | " " | 
|  | "loop_0: " | 
|  | "  br i1 poison, label %loop_0, label %loop_1 " | 
|  | " " | 
|  | "loop_1: " | 
|  | "  br i1 poison, label %loop_2, label %loop_1 " | 
|  | " " | 
|  | " " | 
|  | "loop_2: " | 
|  | "  br i1 poison, label %end, label %loop_2 " | 
|  | " " | 
|  | "end: " | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | assert(M && "Could not parse module?"); | 
|  | assert(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | auto &I0 = GetInstByName(F, "iv0"); | 
|  | auto &I1 = *I0.getNextNode(); | 
|  |  | 
|  | auto *S0 = cast<SCEVAddRecExpr>(SE.getSCEV(&I0)); | 
|  | PostIncLoopSet Loops; | 
|  | Loops.insert(S0->getLoop()); | 
|  | auto *N0 = normalizeForPostIncUse(S0, Loops, SE); | 
|  | auto *D0 = denormalizeForPostIncUse(N0, Loops, SE); | 
|  | EXPECT_EQ(S0, D0) << *S0 << " " << *D0; | 
|  |  | 
|  | auto *S1 = cast<SCEVAddRecExpr>(SE.getSCEV(&I1)); | 
|  | Loops.clear(); | 
|  | Loops.insert(S1->getLoop()); | 
|  | auto *N1 = normalizeForPostIncUse(S1, Loops, SE); | 
|  | auto *D1 = denormalizeForPostIncUse(N1, Loops, SE); | 
|  | EXPECT_EQ(S1, D1) << *S1 << " " << *D1; | 
|  | }); | 
|  |  | 
|  | runWithSE(*M, "f_2", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | auto *L2 = *LI.begin(); | 
|  | auto *L1 = *std::next(LI.begin()); | 
|  | auto *L0 = *std::next(LI.begin(), 2); | 
|  |  | 
|  | auto GetAddRec = [&SE](const Loop *L, std::initializer_list<const SCEV *> Ops) { | 
|  | SmallVector<const SCEV *, 4> OpsCopy(Ops); | 
|  | return SE.getAddRecExpr(OpsCopy, L, SCEV::FlagAnyWrap); | 
|  | }; | 
|  |  | 
|  | auto GetAdd = [&SE](std::initializer_list<const SCEV *> Ops) { | 
|  | SmallVector<const SCEV *, 4> OpsCopy(Ops); | 
|  | return SE.getAddExpr(OpsCopy, SCEV::FlagAnyWrap); | 
|  | }; | 
|  |  | 
|  | // We first populate the AddRecs vector with a few "interesting" SCEV | 
|  | // expressions, and then we go through the list and assert that each | 
|  | // expression in it has an invertible normalization. | 
|  |  | 
|  | std::vector<const SCEV *> Exprs; | 
|  | { | 
|  | const SCEV *V0 = SE.getSCEV(&*F.arg_begin()); | 
|  | const SCEV *V1 = SE.getSCEV(&*std::next(F.arg_begin(), 1)); | 
|  | const SCEV *V2 = SE.getSCEV(&*std::next(F.arg_begin(), 2)); | 
|  | const SCEV *V3 = SE.getSCEV(&*std::next(F.arg_begin(), 3)); | 
|  |  | 
|  | Exprs.push_back(GetAddRec(L0, {V0}));             // 0 | 
|  | Exprs.push_back(GetAddRec(L0, {V0, V1}));         // 1 | 
|  | Exprs.push_back(GetAddRec(L0, {V0, V1, V2}));     // 2 | 
|  | Exprs.push_back(GetAddRec(L0, {V0, V1, V2, V3})); // 3 | 
|  |  | 
|  | Exprs.push_back( | 
|  | GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[3], Exprs[0]})); // 4 | 
|  | Exprs.push_back( | 
|  | GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[0], Exprs[3]})); // 5 | 
|  | Exprs.push_back( | 
|  | GetAddRec(L1, {Exprs[1], Exprs[3], Exprs[3], Exprs[1]})); // 6 | 
|  |  | 
|  | Exprs.push_back(GetAdd({Exprs[6], Exprs[3], V2})); // 7 | 
|  |  | 
|  | Exprs.push_back( | 
|  | GetAddRec(L2, {Exprs[4], Exprs[3], Exprs[3], Exprs[5]})); // 8 | 
|  |  | 
|  | Exprs.push_back( | 
|  | GetAddRec(L2, {Exprs[4], Exprs[6], Exprs[7], Exprs[3], V0})); // 9 | 
|  | } | 
|  |  | 
|  | std::vector<PostIncLoopSet> LoopSets; | 
|  | for (int i = 0; i < 8; i++) { | 
|  | LoopSets.emplace_back(); | 
|  | if (i & 1) | 
|  | LoopSets.back().insert(L0); | 
|  | if (i & 2) | 
|  | LoopSets.back().insert(L1); | 
|  | if (i & 4) | 
|  | LoopSets.back().insert(L2); | 
|  | } | 
|  |  | 
|  | for (const auto &LoopSet : LoopSets) | 
|  | for (auto *S : Exprs) { | 
|  | { | 
|  | auto *N = llvm::normalizeForPostIncUse(S, LoopSet, SE); | 
|  | auto *D = llvm::denormalizeForPostIncUse(N, LoopSet, SE); | 
|  |  | 
|  | // Normalization and then denormalizing better give us back the same | 
|  | // value. | 
|  | EXPECT_EQ(S, D) << "S = " << *S << "  D = " << *D << " N = " << *N; | 
|  | } | 
|  | { | 
|  | auto *D = llvm::denormalizeForPostIncUse(S, LoopSet, SE); | 
|  | auto *N = llvm::normalizeForPostIncUse(D, LoopSet, SE); | 
|  |  | 
|  | // Denormalization and then normalizing better give us back the same | 
|  | // value. | 
|  | EXPECT_EQ(S, N) << "S = " << *S << "  N = " << *N; | 
|  | } | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Expect the call of getZeroExtendExpr will not cost exponential time. | 
|  | TEST_F(ScalarEvolutionsTest, SCEVZeroExtendExpr) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  |  | 
|  | // Generate a function like below: | 
|  | // define void @foo() { | 
|  | // entry: | 
|  | //   br label %for.cond | 
|  | // | 
|  | // for.cond: | 
|  | //   %0 = phi i64 [ 100, %entry ], [ %dec, %for.inc ] | 
|  | //   %cmp = icmp sgt i64 %0, 90 | 
|  | //   br i1 %cmp, label %for.inc, label %for.cond1 | 
|  | // | 
|  | // for.inc: | 
|  | //   %dec = add nsw i64 %0, -1 | 
|  | //   br label %for.cond | 
|  | // | 
|  | // for.cond1: | 
|  | //   %1 = phi i64 [ 100, %for.cond ], [ %dec5, %for.inc2 ] | 
|  | //   %cmp3 = icmp sgt i64 %1, 90 | 
|  | //   br i1 %cmp3, label %for.inc2, label %for.cond4 | 
|  | // | 
|  | // for.inc2: | 
|  | //   %dec5 = add nsw i64 %1, -1 | 
|  | //   br label %for.cond1 | 
|  | // | 
|  | // ...... | 
|  | // | 
|  | // for.cond89: | 
|  | //   %19 = phi i64 [ 100, %for.cond84 ], [ %dec94, %for.inc92 ] | 
|  | //   %cmp93 = icmp sgt i64 %19, 90 | 
|  | //   br i1 %cmp93, label %for.inc92, label %for.end | 
|  | // | 
|  | // for.inc92: | 
|  | //   %dec94 = add nsw i64 %19, -1 | 
|  | //   br label %for.cond89 | 
|  | // | 
|  | // for.end: | 
|  | //   %gep = getelementptr i8, i8* null, i64 %dec | 
|  | //   %gep6 = getelementptr i8, i8* %gep, i64 %dec5 | 
|  | //   ...... | 
|  | //   %gep95 = getelementptr i8, i8* %gep91, i64 %dec94 | 
|  | //   ret void | 
|  | // } | 
|  | FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M); | 
|  |  | 
|  | BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); | 
|  | BasicBlock *CondBB = BasicBlock::Create(Context, "for.cond", F); | 
|  | BasicBlock *EndBB = BasicBlock::Create(Context, "for.end", F); | 
|  | BranchInst::Create(CondBB, EntryBB); | 
|  | BasicBlock *PrevBB = EntryBB; | 
|  |  | 
|  | Type *I64Ty = Type::getInt64Ty(Context); | 
|  | Type *I8Ty = Type::getInt8Ty(Context); | 
|  | Type *I8PtrTy = PointerType::getUnqual(Context); | 
|  | Value *Accum = Constant::getNullValue(I8PtrTy); | 
|  | int Iters = 20; | 
|  | for (int i = 0; i < Iters; i++) { | 
|  | BasicBlock *IncBB = BasicBlock::Create(Context, "for.inc", F, EndBB); | 
|  | auto *PN = PHINode::Create(I64Ty, 2, "", CondBB); | 
|  | PN->addIncoming(ConstantInt::get(Context, APInt(64, 100)), PrevBB); | 
|  | auto *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_SGT, PN, | 
|  | ConstantInt::get(Context, APInt(64, 90)), "cmp", | 
|  | CondBB); | 
|  | BasicBlock *NextBB; | 
|  | if (i != Iters - 1) | 
|  | NextBB = BasicBlock::Create(Context, "for.cond", F, EndBB); | 
|  | else | 
|  | NextBB = EndBB; | 
|  | BranchInst::Create(IncBB, NextBB, Cmp, CondBB); | 
|  | auto *Dec = BinaryOperator::CreateNSWAdd( | 
|  | PN, ConstantInt::get(Context, APInt(64, -1)), "dec", IncBB); | 
|  | PN->addIncoming(Dec, IncBB); | 
|  | BranchInst::Create(CondBB, IncBB); | 
|  |  | 
|  | Accum = GetElementPtrInst::Create(I8Ty, Accum, PN, "gep", EndBB); | 
|  |  | 
|  | PrevBB = CondBB; | 
|  | CondBB = NextBB; | 
|  | } | 
|  | ReturnInst::Create(Context, nullptr, EndBB); | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | const SCEV *S = SE.getSCEV(Accum); | 
|  | S = SE.getLosslessPtrToIntExpr(S); | 
|  | Type *I128Ty = Type::getInt128Ty(Context); | 
|  | SE.getZeroExtendExpr(S, I128Ty); | 
|  | } | 
|  |  | 
|  | // Make sure that SCEV invalidates exit limits after invalidating the values it | 
|  | // depends on when we forget a loop. | 
|  | TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetLoop) { | 
|  | /* | 
|  | * Create the following code: | 
|  | * func(i64 addrspace(10)* %arg) | 
|  | * top: | 
|  | *  br label %L.ph | 
|  | * L.ph: | 
|  | *  br label %L | 
|  | * L: | 
|  | *  %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] | 
|  | *  %add = add i64 %phi2, 1 | 
|  | *  %cond = icmp slt i64 %add, 1000; then becomes 2000. | 
|  | *  br i1 %cond, label %post, label %L2 | 
|  | * post: | 
|  | *  ret void | 
|  | * | 
|  | */ | 
|  |  | 
|  | // Create a module with non-integral pointers in it's datalayout | 
|  | Module NIM("nonintegral", Context); | 
|  | std::string DataLayout = M.getDataLayoutStr(); | 
|  | if (!DataLayout.empty()) | 
|  | DataLayout += "-"; | 
|  | DataLayout += "ni:10"; | 
|  | NIM.setDataLayout(DataLayout); | 
|  |  | 
|  | Type *T_int64 = Type::getInt64Ty(Context); | 
|  | Type *T_pint64 = PointerType::get(Context, 10); | 
|  |  | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM); | 
|  |  | 
|  | BasicBlock *Top = BasicBlock::Create(Context, "top", F); | 
|  | BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); | 
|  | BasicBlock *L = BasicBlock::Create(Context, "L", F); | 
|  | BasicBlock *Post = BasicBlock::Create(Context, "post", F); | 
|  |  | 
|  | IRBuilder<> Builder(Top); | 
|  | Builder.CreateBr(LPh); | 
|  |  | 
|  | Builder.SetInsertPoint(LPh); | 
|  | Builder.CreateBr(L); | 
|  |  | 
|  | Builder.SetInsertPoint(L); | 
|  | PHINode *Phi = Builder.CreatePHI(T_int64, 2); | 
|  | auto *Add = cast<Instruction>( | 
|  | Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); | 
|  | auto *Limit = ConstantInt::get(T_int64, 1000); | 
|  | auto *Cond = cast<Instruction>( | 
|  | Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond")); | 
|  | auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post)); | 
|  | Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); | 
|  | Phi->addIncoming(Add, L); | 
|  |  | 
|  | Builder.SetInsertPoint(Post); | 
|  | Builder.CreateRetVoid(); | 
|  |  | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | auto *Loop = LI->getLoopFor(L); | 
|  | const SCEV *EC = SE.getBackedgeTakenCount(Loop); | 
|  | EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC)); | 
|  | EXPECT_TRUE(isa<SCEVConstant>(EC)); | 
|  | EXPECT_EQ(cast<SCEVConstant>(EC)->getAPInt().getLimitedValue(), 999u); | 
|  |  | 
|  | // The add recurrence {5,+,1} does not correspond to any PHI in the IR, and | 
|  | // that is relevant to this test. | 
|  | const SCEV *Five = SE.getConstant(APInt(/*numBits=*/64, 5)); | 
|  | const SCEV *AR = | 
|  | SE.getAddRecExpr(Five, SE.getOne(T_int64), Loop, SCEV::FlagAnyWrap); | 
|  | const SCEV *ARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); | 
|  | EXPECT_FALSE(isa<SCEVCouldNotCompute>(ARAtLoopExit)); | 
|  | EXPECT_TRUE(isa<SCEVConstant>(ARAtLoopExit)); | 
|  | EXPECT_EQ(cast<SCEVConstant>(ARAtLoopExit)->getAPInt().getLimitedValue(), | 
|  | 1004u); | 
|  |  | 
|  | SE.forgetLoop(Loop); | 
|  | Br->eraseFromParent(); | 
|  | Cond->eraseFromParent(); | 
|  |  | 
|  | Builder.SetInsertPoint(L); | 
|  | auto *NewCond = Builder.CreateICmp( | 
|  | ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); | 
|  | Builder.CreateCondBr(NewCond, L, Post); | 
|  | const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); | 
|  | EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC)); | 
|  | EXPECT_TRUE(isa<SCEVConstant>(NewEC)); | 
|  | EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u); | 
|  | const SCEV *NewARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); | 
|  | EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewARAtLoopExit)); | 
|  | EXPECT_TRUE(isa<SCEVConstant>(NewARAtLoopExit)); | 
|  | EXPECT_EQ(cast<SCEVConstant>(NewARAtLoopExit)->getAPInt().getLimitedValue(), | 
|  | 2004u); | 
|  | } | 
|  |  | 
|  | // Make sure that SCEV invalidates exit limits after invalidating the values it | 
|  | // depends on when we forget a value. | 
|  | TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetValue) { | 
|  | /* | 
|  | * Create the following code: | 
|  | * func(i64 addrspace(10)* %arg) | 
|  | * top: | 
|  | *  br label %L.ph | 
|  | * L.ph: | 
|  | *  %load = load i64 addrspace(10)* %arg | 
|  | *  br label %L | 
|  | * L: | 
|  | *  %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] | 
|  | *  %add = add i64 %phi2, 1 | 
|  | *  %cond = icmp slt i64 %add, %load ; then becomes 2000. | 
|  | *  br i1 %cond, label %post, label %L2 | 
|  | * post: | 
|  | *  ret void | 
|  | * | 
|  | */ | 
|  |  | 
|  | // Create a module with non-integral pointers in it's datalayout | 
|  | Module NIM("nonintegral", Context); | 
|  | std::string DataLayout = M.getDataLayoutStr(); | 
|  | if (!DataLayout.empty()) | 
|  | DataLayout += "-"; | 
|  | DataLayout += "ni:10"; | 
|  | NIM.setDataLayout(DataLayout); | 
|  |  | 
|  | Type *T_int64 = Type::getInt64Ty(Context); | 
|  | Type *T_pint64 = PointerType::get(Context, 10); | 
|  |  | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", NIM); | 
|  |  | 
|  | Argument *Arg = &*F->arg_begin(); | 
|  |  | 
|  | BasicBlock *Top = BasicBlock::Create(Context, "top", F); | 
|  | BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); | 
|  | BasicBlock *L = BasicBlock::Create(Context, "L", F); | 
|  | BasicBlock *Post = BasicBlock::Create(Context, "post", F); | 
|  |  | 
|  | IRBuilder<> Builder(Top); | 
|  | Builder.CreateBr(LPh); | 
|  |  | 
|  | Builder.SetInsertPoint(LPh); | 
|  | auto *Load = cast<Instruction>(Builder.CreateLoad(T_int64, Arg, "load")); | 
|  | Builder.CreateBr(L); | 
|  |  | 
|  | Builder.SetInsertPoint(L); | 
|  | PHINode *Phi = Builder.CreatePHI(T_int64, 2); | 
|  | auto *Add = cast<Instruction>( | 
|  | Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); | 
|  | auto *Cond = cast<Instruction>( | 
|  | Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Load, "cond")); | 
|  | auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post)); | 
|  | Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); | 
|  | Phi->addIncoming(Add, L); | 
|  |  | 
|  | Builder.SetInsertPoint(Post); | 
|  | Builder.CreateRetVoid(); | 
|  |  | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | auto *Loop = LI->getLoopFor(L); | 
|  | const SCEV *EC = SE.getBackedgeTakenCount(Loop); | 
|  | EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC)); | 
|  | EXPECT_FALSE(isa<SCEVConstant>(EC)); | 
|  |  | 
|  | SE.forgetValue(Load); | 
|  | Br->eraseFromParent(); | 
|  | Cond->eraseFromParent(); | 
|  | Load->eraseFromParent(); | 
|  |  | 
|  | Builder.SetInsertPoint(L); | 
|  | auto *NewCond = Builder.CreateICmp( | 
|  | ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); | 
|  | Builder.CreateCondBr(NewCond, L, Post); | 
|  | const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); | 
|  | EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC)); | 
|  | EXPECT_TRUE(isa<SCEVConstant>(NewEC)); | 
|  | EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstants) { | 
|  | // Reference: https://reviews.llvm.org/D37265 | 
|  | // Make sure that SCEV does not blow up when constructing an AddRec | 
|  | // with predicates for a phi with the update pattern: | 
|  | //  (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum | 
|  | // when either the initial value of the Phi or the InvariantAccum are | 
|  | // constants that are too large to fit in an ix but are zero when truncated to | 
|  | // ix. | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false); | 
|  | Function *F = | 
|  | Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M); | 
|  |  | 
|  | /* | 
|  | Create IR: | 
|  | entry: | 
|  | br label %loop | 
|  | loop: | 
|  | %0 = phi i64 [-9223372036854775808, %entry], [%3, %loop] | 
|  | %1 = shl i64 %0, 32 | 
|  | %2 = ashr exact i64 %1, 32 | 
|  | %3 = add i64 %2, -9223372036854775808 | 
|  | br i1 poison, label %exit, label %loop | 
|  | exit: | 
|  | ret void | 
|  | */ | 
|  | BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); | 
|  | BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); | 
|  |  | 
|  | // entry: | 
|  | BranchInst::Create(LoopBB, EntryBB); | 
|  | // loop: | 
|  | auto *MinInt64 = | 
|  | ConstantInt::get(Context, APInt(64, 0x8000000000000000U, true)); | 
|  | auto *Int64_32 = ConstantInt::get(Context, APInt(64, 32)); | 
|  | auto *Br = BranchInst::Create( | 
|  | LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)), LoopBB); | 
|  | auto *Phi = | 
|  | PHINode::Create(Type::getInt64Ty(Context), 2, "", Br->getIterator()); | 
|  | auto *Shl = BinaryOperator::CreateShl(Phi, Int64_32, "", Br->getIterator()); | 
|  | auto *AShr = | 
|  | BinaryOperator::CreateExactAShr(Shl, Int64_32, "", Br->getIterator()); | 
|  | auto *Add = BinaryOperator::CreateAdd(AShr, MinInt64, "", Br->getIterator()); | 
|  | Phi->addIncoming(MinInt64, EntryBB); | 
|  | Phi->addIncoming(Add, LoopBB); | 
|  | // exit: | 
|  | ReturnInst::Create(Context, nullptr, ExitBB); | 
|  |  | 
|  | // Make sure that SCEV doesn't blow up | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | const SCEV *Expr = SE.getSCEV(Phi); | 
|  | EXPECT_NE(nullptr, Expr); | 
|  | EXPECT_TRUE(isa<SCEVUnknown>(Expr)); | 
|  | auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr)); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstantAccum) { | 
|  | // Make sure that SCEV does not blow up when constructing an AddRec | 
|  | // with predicates for a phi with the update pattern: | 
|  | //  (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum | 
|  | // when the InvariantAccum is a constant that is too large to fit in an | 
|  | // ix but are zero when truncated to ix, and the initial value of the | 
|  | // phi is not a constant. | 
|  | Type *Int32Ty = Type::getInt32Ty(Context); | 
|  | SmallVector<Type *, 1> Types; | 
|  | Types.push_back(Int32Ty); | 
|  | FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); | 
|  | Function *F = | 
|  | Function::Create(FTy, Function::ExternalLinkage, "addrecphitest", M); | 
|  |  | 
|  | /* | 
|  | Create IR: | 
|  | define @addrecphitest(i32) | 
|  | entry: | 
|  | br label %loop | 
|  | loop: | 
|  | %1 = phi i32 [%0, %entry], [%4, %loop] | 
|  | %2 = shl i32 %1, 16 | 
|  | %3 = ashr exact i32 %2, 16 | 
|  | %4 = add i32 %3, -2147483648 | 
|  | br i1 poison, label %exit, label %loop | 
|  | exit: | 
|  | ret void | 
|  | */ | 
|  | BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); | 
|  | BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); | 
|  | BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); | 
|  |  | 
|  | // entry: | 
|  | BranchInst::Create(LoopBB, EntryBB); | 
|  | // loop: | 
|  | auto *MinInt32 = ConstantInt::get(Context, APInt(32, 0x80000000U)); | 
|  | auto *Int32_16 = ConstantInt::get(Context, APInt(32, 16)); | 
|  | auto *Br = BranchInst::Create( | 
|  | LoopBB, ExitBB, PoisonValue::get(Type::getInt1Ty(Context)), LoopBB); | 
|  | auto *Phi = PHINode::Create(Int32Ty, 2, "", Br->getIterator()); | 
|  | auto *Shl = BinaryOperator::CreateShl(Phi, Int32_16, "", Br->getIterator()); | 
|  | auto *AShr = | 
|  | BinaryOperator::CreateExactAShr(Shl, Int32_16, "", Br->getIterator()); | 
|  | auto *Add = BinaryOperator::CreateAdd(AShr, MinInt32, "", Br->getIterator()); | 
|  | auto *Arg = &*(F->arg_begin()); | 
|  | Phi->addIncoming(Arg, EntryBB); | 
|  | Phi->addIncoming(Add, LoopBB); | 
|  | // exit: | 
|  | ReturnInst::Create(Context, nullptr, ExitBB); | 
|  |  | 
|  | // Make sure that SCEV doesn't blow up | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | const SCEV *Expr = SE.getSCEV(Phi); | 
|  | EXPECT_NE(nullptr, Expr); | 
|  | EXPECT_TRUE(isa<SCEVUnknown>(Expr)); | 
|  | auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr)); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVFoldSumOfTruncs) { | 
|  | // Verify that the following SCEV gets folded to a zero: | 
|  | //  (-1 * (trunc i64 (-1 * %0) to i32)) + (-1 * (trunc i64 %0 to i32) | 
|  | Type *ArgTy = Type::getInt64Ty(Context); | 
|  | Type *Int32Ty = Type::getInt32Ty(Context); | 
|  | SmallVector<Type *, 1> Types; | 
|  | Types.push_back(ArgTy); | 
|  | FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M); | 
|  | BasicBlock *BB = BasicBlock::Create(Context, "entry", F); | 
|  | ReturnInst::Create(Context, nullptr, BB); | 
|  |  | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  |  | 
|  | auto *Arg = &*(F->arg_begin()); | 
|  | const SCEV *ArgSCEV = SE.getSCEV(Arg); | 
|  |  | 
|  | // Build the SCEV | 
|  | const SCEV *A0 = SE.getNegativeSCEV(ArgSCEV); | 
|  | const SCEV *A1 = SE.getTruncateExpr(A0, Int32Ty); | 
|  | const SCEV *A = SE.getNegativeSCEV(A1); | 
|  |  | 
|  | const SCEV *B0 = SE.getTruncateExpr(ArgSCEV, Int32Ty); | 
|  | const SCEV *B = SE.getNegativeSCEV(B0); | 
|  |  | 
|  | const SCEV *Expr = SE.getAddExpr(A, B); | 
|  | // Verify that the SCEV was folded to 0 | 
|  | const SCEV *ZeroConst = SE.getConstant(Int32Ty, 0); | 
|  | EXPECT_EQ(Expr, ZeroConst); | 
|  | } | 
|  |  | 
|  | // Check logic of SCEV expression size computation. | 
|  | TEST_F(ScalarEvolutionsTest, SCEVComputeExpressionSize) { | 
|  | /* | 
|  | * Create the following code: | 
|  | * void func(i64 %a, i64 %b) | 
|  | * entry: | 
|  | *  %s1 = add i64 %a, 1 | 
|  | *  %s2 = udiv i64 %s1, %b | 
|  | *  br label %exit | 
|  | * exit: | 
|  | *  ret | 
|  | */ | 
|  |  | 
|  | // Create a module. | 
|  | Module M("SCEVComputeExpressionSize", Context); | 
|  |  | 
|  | Type *T_int64 = Type::getInt64Ty(Context); | 
|  |  | 
|  | FunctionType *FTy = | 
|  | FunctionType::get(Type::getVoidTy(Context), { T_int64, T_int64 }, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "func", M); | 
|  | Argument *A = &*F->arg_begin(); | 
|  | Argument *B = &*std::next(F->arg_begin()); | 
|  | ConstantInt *C = ConstantInt::get(Context, APInt(64, 1)); | 
|  |  | 
|  | BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); | 
|  | BasicBlock *Exit = BasicBlock::Create(Context, "exit", F); | 
|  |  | 
|  | IRBuilder<> Builder(Entry); | 
|  | auto *S1 = cast<Instruction>(Builder.CreateAdd(A, C, "s1")); | 
|  | auto *S2 = cast<Instruction>(Builder.CreateUDiv(S1, B, "s2")); | 
|  | Builder.CreateBr(Exit); | 
|  |  | 
|  | Builder.SetInsertPoint(Exit); | 
|  | Builder.CreateRetVoid(); | 
|  |  | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  | // Get S2 first to move it to cache. | 
|  | const SCEV *AS = SE.getSCEV(A); | 
|  | const SCEV *BS = SE.getSCEV(B); | 
|  | const SCEV *CS = SE.getSCEV(C); | 
|  | const SCEV *S1S = SE.getSCEV(S1); | 
|  | const SCEV *S2S = SE.getSCEV(S2); | 
|  | EXPECT_EQ(AS->getExpressionSize(), 1u); | 
|  | EXPECT_EQ(BS->getExpressionSize(), 1u); | 
|  | EXPECT_EQ(CS->getExpressionSize(), 1u); | 
|  | EXPECT_EQ(S1S->getExpressionSize(), 3u); | 
|  | EXPECT_EQ(S2S->getExpressionSize(), 5u); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVLoopDecIntrinsic) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "define void @foo(i32 %N) { " | 
|  | "entry: " | 
|  | "  %cmp3 = icmp sgt i32 %N, 0 " | 
|  | "  br i1 %cmp3, label %for.body, label %for.cond.cleanup " | 
|  | "for.cond.cleanup: " | 
|  | "  ret void " | 
|  | "for.body: " | 
|  | "  %i.04 = phi i32 [ %inc, %for.body ], [ 100, %entry ] " | 
|  | "  %inc = call i32 @llvm.loop.decrement.reg.i32.i32.i32(i32 %i.04, i32 1) " | 
|  | "  %exitcond = icmp ne i32 %inc, 0 " | 
|  | "  br i1 %exitcond, label %for.cond.cleanup, label %for.body " | 
|  | "} " | 
|  | "declare i32 @llvm.loop.decrement.reg.i32.i32.i32(i32, i32) ", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *ScevInc = SE.getSCEV(getInstructionByName(F, "inc")); | 
|  | EXPECT_TRUE(isa<SCEVAddRecExpr>(ScevInc)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVComputeConstantDifference) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | R"(define void @foo(ptr %ptr, i32 %sz, i32 %pp, i32 %x) { | 
|  | entry: | 
|  | %v0 = add i32 %pp, 0 | 
|  | %v3 = add i32 %pp, 3 | 
|  | %vx = add i32 %pp, %x | 
|  | %vx3 = add i32 %vx, 3 | 
|  | br label %loop.body | 
|  | loop.body: | 
|  | %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] | 
|  | %xa = add nsw i32 %iv, %v0 | 
|  | %yy = add nsw i32 %iv, %v3 | 
|  | %xb = sub nsw i32 %yy, 3 | 
|  | %iv.next = add nsw i32 %iv, 1 | 
|  | %cmp = icmp sle i32 %iv.next, %sz | 
|  | br i1 %cmp, label %loop.body, label %loop2.body | 
|  | loop2.body: | 
|  | %iv2 = phi i32 [ %iv2.next, %loop2.body ], [ %iv, %loop.body ] | 
|  | %iv2.next = add nsw i32 %iv2, 1 | 
|  | %iv2p3 = add i32 %iv2, 3 | 
|  | %var = load i32, ptr %ptr | 
|  | %iv2pvar = add i32 %iv2, %var | 
|  | %iv2pvarp3 = add i32 %iv2pvar, 3 | 
|  | %iv2pvarm3 = mul i32 %iv2pvar, 3 | 
|  | %iv2pvarp3m3 = mul i32 %iv2pvarp3, 3 | 
|  | %cmp2 = icmp sle i32 %iv2.next, %sz | 
|  | br i1 %cmp2, label %loop2.body, label %exit | 
|  | exit: | 
|  | ret void | 
|  | })", | 
|  | Err, C); | 
|  |  | 
|  | if (!M) { | 
|  | Err.print("ScalarEvolutionTest", errs()); | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | } | 
|  | ASSERT_TRUE(!verifyModule(*M, &errs()) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *ScevV0 = SE.getSCEV(getInstructionByName(F, "v0")); // %pp | 
|  | const SCEV *ScevV3 = SE.getSCEV(getInstructionByName(F, "v3")); // (3 + %pp) | 
|  | const SCEV *ScevVX = | 
|  | SE.getSCEV(getInstructionByName(F, "vx")); // (%pp + %x) | 
|  | // (%pp + %x + 3) | 
|  | const SCEV *ScevVX3 = SE.getSCEV(getInstructionByName(F, "vx3")); | 
|  | const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} | 
|  | const SCEV *ScevXA = SE.getSCEV(getInstructionByName(F, "xa")); // {%pp,+,1} | 
|  | const SCEV *ScevYY = | 
|  | SE.getSCEV(getInstructionByName(F, "yy")); // {(3 + %pp),+,1} | 
|  | const SCEV *ScevXB = SE.getSCEV(getInstructionByName(F, "xb")); // {%pp,+,1} | 
|  | const SCEV *ScevIVNext = | 
|  | SE.getSCEV(getInstructionByName(F, "iv.next")); // {1,+,1} | 
|  | // {{0,+,1},+,1} | 
|  | const SCEV *ScevIV2 = SE.getSCEV(getInstructionByName(F, "iv2")); | 
|  | // {{3,+,1},+,1} | 
|  | const SCEV *ScevIV2P3 = SE.getSCEV(getInstructionByName(F, "iv2p3")); | 
|  | // %var + {{0,+,1},+,1} | 
|  | const SCEV *ScevIV2PVar = SE.getSCEV(getInstructionByName(F, "iv2pvar")); | 
|  | // %var + {{3,+,1},+,1} | 
|  | const SCEV *ScevIV2PVarP3 = | 
|  | SE.getSCEV(getInstructionByName(F, "iv2pvarp3")); | 
|  | // 3 * (%var + {{0,+,1},+,1}) | 
|  | const SCEV *ScevIV2PVarM3 = | 
|  | SE.getSCEV(getInstructionByName(F, "iv2pvarm3")); | 
|  | // 3 * (%var + {{3,+,1},+,1}) | 
|  | const SCEV *ScevIV2PVarP3M3 = | 
|  | SE.getSCEV(getInstructionByName(F, "iv2pvarp3m3")); | 
|  |  | 
|  | auto diff = [&SE](const SCEV *LHS, const SCEV *RHS) -> std::optional<int> { | 
|  | auto ConstantDiffOrNone = computeConstantDifference(SE, LHS, RHS); | 
|  | if (!ConstantDiffOrNone) | 
|  | return std::nullopt; | 
|  |  | 
|  | auto ExtDiff = ConstantDiffOrNone->getSExtValue(); | 
|  | int Diff = ExtDiff; | 
|  | assert(Diff == ExtDiff && "Integer overflow"); | 
|  | return Diff; | 
|  | }; | 
|  |  | 
|  | EXPECT_EQ(diff(ScevV3, ScevV0), 3); | 
|  | EXPECT_EQ(diff(ScevV0, ScevV3), -3); | 
|  | EXPECT_EQ(diff(ScevV0, ScevV0), 0); | 
|  | EXPECT_EQ(diff(ScevV3, ScevV3), 0); | 
|  | EXPECT_EQ(diff(ScevVX3, ScevVX), 3); | 
|  | EXPECT_EQ(diff(ScevIV, ScevIV), 0); | 
|  | EXPECT_EQ(diff(ScevXA, ScevXB), 0); | 
|  | EXPECT_EQ(diff(ScevXA, ScevYY), -3); | 
|  | EXPECT_EQ(diff(ScevYY, ScevXB), 3); | 
|  | EXPECT_EQ(diff(ScevIV, ScevIVNext), -1); | 
|  | EXPECT_EQ(diff(ScevIVNext, ScevIV), 1); | 
|  | EXPECT_EQ(diff(ScevIVNext, ScevIVNext), 0); | 
|  | EXPECT_EQ(diff(ScevIV2P3, ScevIV2), 3); | 
|  | EXPECT_EQ(diff(ScevIV2PVar, ScevIV2PVarP3), -3); | 
|  | EXPECT_EQ(diff(ScevIV2PVarP3M3, ScevIV2PVarM3), 9); | 
|  | EXPECT_EQ(diff(ScevV0, ScevIV), std::nullopt); | 
|  | EXPECT_EQ(diff(ScevIVNext, ScevV3), std::nullopt); | 
|  | EXPECT_EQ(diff(ScevYY, ScevV3), std::nullopt); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVrewriteUnknowns) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "define void @foo(i32 %i) { " | 
|  | "entry: " | 
|  | "  %cmp3 = icmp ult i32 %i, 16 " | 
|  | "  br i1 %cmp3, label %loop.body, label %exit " | 
|  | "loop.body: " | 
|  | "  %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] " | 
|  | "  %iv.next = add nsw i32 %iv, 1 " | 
|  | "  %cmp = icmp eq i32 %iv.next, 16 " | 
|  | "  br i1 %cmp, label %exit, label %loop.body " | 
|  | "exit: " | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} | 
|  | const SCEV *ScevI = SE.getSCEV(getArgByName(F, "i"));           // {0,+,1} | 
|  |  | 
|  | ValueToSCEVMapTy RewriteMap; | 
|  | RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] = | 
|  | SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)); | 
|  | const SCEV *WithUMin = | 
|  | SCEVParameterRewriter::rewrite(ScevIV, SE, RewriteMap); | 
|  |  | 
|  | EXPECT_NE(WithUMin, ScevIV); | 
|  | const auto *AR = dyn_cast<SCEVAddRecExpr>(WithUMin); | 
|  | EXPECT_TRUE(AR); | 
|  | EXPECT_EQ(AR->getStart(), | 
|  | SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17))); | 
|  | EXPECT_EQ(AR->getStepRecurrence(SE), | 
|  | cast<SCEVAddRecExpr>(ScevIV)->getStepRecurrence(SE)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVAddNUW) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString("define void @foo(i32 %x) { " | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *X = SE.getSCEV(getArgByName(F, "x")); | 
|  | const SCEV *One = SE.getOne(X->getType()); | 
|  | const SCEV *Sum = SE.getAddExpr(X, One, SCEV::FlagNUW); | 
|  | EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGE, Sum, X)); | 
|  | EXPECT_TRUE(SE.isKnownPredicate(ICmpInst::ICMP_UGT, Sum, X)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVgetRanges) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "define void @foo(i32 %i) { " | 
|  | "entry: " | 
|  | "  br label %loop.body " | 
|  | "loop.body: " | 
|  | "  %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] " | 
|  | "  %iv.next = add nsw i32 %iv, 1 " | 
|  | "  %cmp = icmp eq i32 %iv.next, 16 " | 
|  | "  br i1 %cmp, label %exit, label %loop.body " | 
|  | "exit: " | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} | 
|  | const SCEV *ScevI = SE.getSCEV(getArgByName(F, "i")); | 
|  | EXPECT_EQ(SE.getUnsignedRange(ScevIV).getLower(), 0); | 
|  | EXPECT_EQ(SE.getUnsignedRange(ScevIV).getUpper(), 16); | 
|  |  | 
|  | const SCEV *Add = SE.getAddExpr(ScevI, ScevIV); | 
|  | ValueToSCEVMapTy RewriteMap; | 
|  | RewriteMap[cast<SCEVUnknown>(ScevI)->getValue()] = | 
|  | SE.getUMinExpr(ScevI, SE.getConstant(ScevI->getType(), 17)); | 
|  | const SCEV *AddWithUMin = | 
|  | SCEVParameterRewriter::rewrite(Add, SE, RewriteMap); | 
|  | EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getLower(), 0); | 
|  | EXPECT_EQ(SE.getUnsignedRange(AddWithUMin).getUpper(), 33); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVgetExitLimitForGuardedLoop) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "define void @foo(i32 %i) { " | 
|  | "entry: " | 
|  | "  %cmp3 = icmp ult i32 %i, 16 " | 
|  | "  br i1 %cmp3, label %loop.body, label %exit " | 
|  | "loop.body: " | 
|  | "  %iv = phi i32 [ %iv.next, %loop.body ], [ %i, %entry ] " | 
|  | "  %iv.next = add nsw i32 %iv, 1 " | 
|  | "  %cmp = icmp eq i32 %iv.next, 16 " | 
|  | "  br i1 %cmp, label %exit, label %loop.body " | 
|  | "exit: " | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *ScevIV = SE.getSCEV(getInstructionByName(F, "iv")); // {0,+,1} | 
|  | const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop(); | 
|  |  | 
|  | const SCEV *BTC = SE.getBackedgeTakenCount(L); | 
|  | EXPECT_FALSE(isa<SCEVConstant>(BTC)); | 
|  | const SCEV *MaxBTC = SE.getConstantMaxBackedgeTakenCount(L); | 
|  | EXPECT_EQ(cast<SCEVConstant>(MaxBTC)->getAPInt(), 15); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, ImpliedViaAddRecStart) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "define void @foo(i32* %p) { " | 
|  | "entry: " | 
|  | "  %x = load i32, i32* %p, !range !0 " | 
|  | "  br label %loop " | 
|  | "loop: " | 
|  | "  %iv = phi i32 [ %x, %entry], [%iv.next, %backedge] " | 
|  | "  %ne.check = icmp ne i32 %iv, 0 " | 
|  | "  br i1 %ne.check, label %backedge, label %exit " | 
|  | "backedge: " | 
|  | "  %iv.next = add i32 %iv, -1 " | 
|  | "  br label %loop " | 
|  | "exit:" | 
|  | "  ret void " | 
|  | "} " | 
|  | "!0 = !{i32 0, i32 2147483647}", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *X = SE.getSCEV(getInstructionByName(F, "x")); | 
|  | auto *Context = getInstructionByName(F, "iv.next"); | 
|  | EXPECT_TRUE(SE.isKnownPredicateAt(ICmpInst::ICMP_NE, X, | 
|  | SE.getZero(X->getType()), Context)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, UnsignedIsImpliedViaOperations) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = | 
|  | parseAssemblyString("define void @foo(i32* %p1, i32* %p2) { " | 
|  | "entry: " | 
|  | "  %x = load i32, i32* %p1, !range !0 " | 
|  | "  %cond = icmp ne i32 %x, 0 " | 
|  | "  br i1 %cond, label %guarded, label %exit " | 
|  | "guarded: " | 
|  | "  %y = add i32 %x, -1 " | 
|  | "  ret void " | 
|  | "exit: " | 
|  | "  ret void " | 
|  | "} " | 
|  | "!0 = !{i32 0, i32 2147483647}", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *X = SE.getSCEV(getInstructionByName(F, "x")); | 
|  | const SCEV *Y = SE.getSCEV(getInstructionByName(F, "y")); | 
|  | auto *Guarded = getInstructionByName(F, "y")->getParent(); | 
|  | ASSERT_TRUE(Guarded); | 
|  | EXPECT_TRUE( | 
|  | SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_ULT, Y, X)); | 
|  | EXPECT_TRUE( | 
|  | SE.isBasicBlockEntryGuardedByCond(Guarded, ICmpInst::ICMP_UGT, X, Y)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, ProveImplicationViaNarrowing) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "define i32 @foo(i32 %start, i32* %q) { " | 
|  | "entry: " | 
|  | "  %wide.start = zext i32 %start to i64 " | 
|  | "  br label %loop " | 
|  | "loop: " | 
|  | "  %wide.iv = phi i64 [%wide.start, %entry], [%wide.iv.next, %backedge] " | 
|  | "  %iv = phi i32 [%start, %entry], [%iv.next, %backedge] " | 
|  | "  %cond = icmp eq i64 %wide.iv, 0 " | 
|  | "  br i1 %cond, label %exit, label %backedge " | 
|  | "backedge: " | 
|  | "  %iv.next = add i32 %iv, -1 " | 
|  | "  %index = zext i32 %iv.next to i64 " | 
|  | "  %load.addr = getelementptr i32, i32* %q, i64 %index " | 
|  | "  %stop = load i32, i32* %load.addr " | 
|  | "  %loop.cond = icmp eq i32 %stop, 0 " | 
|  | "  %wide.iv.next = add nsw i64 %wide.iv, -1 " | 
|  | "  br i1 %loop.cond, label %loop, label %failure " | 
|  | "exit: " | 
|  | "  ret i32 0 " | 
|  | "failure: " | 
|  | "  unreachable " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *IV = SE.getSCEV(getInstructionByName(F, "iv")); | 
|  | const SCEV *Zero = SE.getZero(IV->getType()); | 
|  | auto *Backedge = getInstructionByName(F, "iv.next")->getParent(); | 
|  | ASSERT_TRUE(Backedge); | 
|  | (void)IV; | 
|  | (void)Zero; | 
|  | // FIXME: This can only be proved with turned on option | 
|  | // scalar-evolution-use-expensive-range-sharpening which is currently off. | 
|  | // Enable the check once it's switched true by default. | 
|  | // EXPECT_TRUE(SE.isBasicBlockEntryGuardedByCond(Backedge, | 
|  | //                                               ICmpInst::ICMP_UGT, | 
|  | //                                               IV, Zero)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, ImpliedCond) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "define void @foo(i32 %len) { " | 
|  | "entry: " | 
|  | "  br label %loop " | 
|  | "loop: " | 
|  | "  %iv = phi i32 [ 0, %entry], [%iv.next, %loop] " | 
|  | "  %iv.next = add nsw i32 %iv, 1 " | 
|  | "  %cmp = icmp slt i32 %iv, %len " | 
|  | "  br i1 %cmp, label %loop, label %exit " | 
|  | "exit:" | 
|  | "  ret void " | 
|  | "}", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | Instruction *IV = getInstructionByName(F, "iv"); | 
|  | Type *Ty = IV->getType(); | 
|  | const SCEV *Zero = SE.getZero(Ty); | 
|  | const SCEV *MinusOne = SE.getMinusOne(Ty); | 
|  | // {0,+,1}<nuw><nsw> | 
|  | const SCEV *AddRec_0_1 = SE.getSCEV(IV); | 
|  | // {0,+,-1}<nw> | 
|  | const SCEV *AddRec_0_N1 = SE.getNegativeSCEV(AddRec_0_1); | 
|  |  | 
|  | // {0,+,1}<nuw><nsw> > 0  ->  {0,+,-1}<nw> < 0 | 
|  | EXPECT_TRUE(isImpliedCond(SE, ICmpInst::ICMP_SLT, AddRec_0_N1, Zero, | 
|  | ICmpInst::ICMP_SGT, AddRec_0_1, Zero)); | 
|  | // {0,+,-1}<nw> < -1  ->  {0,+,1}<nuw><nsw> > 0 | 
|  | EXPECT_TRUE(isImpliedCond(SE, ICmpInst::ICMP_SGT, AddRec_0_1, Zero, | 
|  | ICmpInst::ICMP_SLT, AddRec_0_N1, MinusOne)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, MatchURem) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " | 
|  | " " | 
|  | "define void @test(i32 %a, i32 %b, i16 %c, i64 %d) {" | 
|  | "entry: " | 
|  | "  %rem1 = urem i32 %a, 2" | 
|  | "  %rem2 = urem i32 %a, 5" | 
|  | "  %rem3 = urem i32 %a, %b" | 
|  | "  %c.ext = zext i16 %c to i32" | 
|  | "  %rem4 = urem i32 %c.ext, 2" | 
|  | "  %ext = zext i32 %rem4 to i64" | 
|  | "  %rem5 = urem i64 %d, 17179869184" | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | assert(M && "Could not parse module?"); | 
|  | assert(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "test", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | for (auto *N : {"rem1", "rem2", "rem3", "rem5"}) { | 
|  | auto *URemI = getInstructionByName(F, N); | 
|  | auto *S = SE.getSCEV(URemI); | 
|  | const SCEV *LHS, *RHS; | 
|  | EXPECT_TRUE(matchURem(SE, S, LHS, RHS)); | 
|  | EXPECT_EQ(LHS, SE.getSCEV(URemI->getOperand(0))); | 
|  | EXPECT_EQ(RHS, SE.getSCEV(URemI->getOperand(1))); | 
|  | EXPECT_EQ(LHS->getType(), S->getType()); | 
|  | EXPECT_EQ(RHS->getType(), S->getType()); | 
|  | } | 
|  |  | 
|  | // Check the case where the urem operand is zero-extended. Make sure the | 
|  | // match results are extended to the size of the input expression. | 
|  | auto *Ext = getInstructionByName(F, "ext"); | 
|  | auto *URem1 = getInstructionByName(F, "rem4"); | 
|  | auto *S = SE.getSCEV(Ext); | 
|  | const SCEV *LHS, *RHS; | 
|  | EXPECT_TRUE(matchURem(SE, S, LHS, RHS)); | 
|  | EXPECT_NE(LHS, SE.getSCEV(URem1->getOperand(0))); | 
|  | // RHS and URem1->getOperand(1) have different widths, so compare the | 
|  | // integer values. | 
|  | EXPECT_EQ(cast<SCEVConstant>(RHS)->getValue()->getZExtValue(), | 
|  | cast<SCEVConstant>(SE.getSCEV(URem1->getOperand(1))) | 
|  | ->getValue() | 
|  | ->getZExtValue()); | 
|  | EXPECT_EQ(LHS->getType(), S->getType()); | 
|  | EXPECT_EQ(RHS->getType(), S->getType()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, SCEVUDivFloorCeiling) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString("define void @foo() { " | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | // Check that SCEV's udiv and uceil handling produce the correct results | 
|  | // for all 8 bit options. Div-by-zero is deliberately excluded. | 
|  | for (unsigned N = 0; N < 256; N++) | 
|  | for (unsigned D = 1; D < 256; D++) { | 
|  | APInt NInt(8, N); | 
|  | APInt DInt(8, D); | 
|  | using namespace llvm::APIntOps; | 
|  | APInt FloorInt = RoundingUDiv(NInt, DInt, APInt::Rounding::DOWN); | 
|  | APInt CeilingInt = RoundingUDiv(NInt, DInt, APInt::Rounding::UP); | 
|  | const SCEV *NS = SE.getConstant(NInt); | 
|  | const SCEV *DS = SE.getConstant(DInt); | 
|  | auto *FloorS = cast<SCEVConstant>(SE.getUDivExpr(NS, DS)); | 
|  | auto *CeilingS = cast<SCEVConstant>(SE.getUDivCeilSCEV(NS, DS)); | 
|  | ASSERT_TRUE(FloorS->getAPInt() == FloorInt); | 
|  | ASSERT_TRUE(CeilingS->getAPInt() == CeilingInt); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, CheckGetPowerOfTwo) { | 
|  | Module M("CheckGetPowerOfTwo", Context); | 
|  | FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false); | 
|  | Function *F = Function::Create(FTy, Function::ExternalLinkage, "foo", M); | 
|  | BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); | 
|  | IRBuilder<> Builder(Entry); | 
|  | Builder.CreateRetVoid(); | 
|  | ScalarEvolution SE = buildSE(*F); | 
|  |  | 
|  | for (unsigned short i = 0; i < 64; ++i) | 
|  | EXPECT_TRUE( | 
|  | dyn_cast<SCEVConstant>(SE.getPowerOfTwo(Type::getInt64Ty(Context), i)) | 
|  | ->getValue() | 
|  | ->equalsInt(1ULL << i)); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, ApplyLoopGuards) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "declare void @llvm.assume(i1)\n" | 
|  | "define void @test(i32 %num) {\n" | 
|  | "entry:\n" | 
|  | "  %u = urem i32 %num, 4\n" | 
|  | "  %cmp = icmp eq i32 %u, 0\n" | 
|  | "  tail call void @llvm.assume(i1 %cmp)\n" | 
|  | "  %cmp.1 = icmp ugt i32 %num, 0\n" | 
|  | "  tail call void @llvm.assume(i1 %cmp.1)\n" | 
|  | "  br label %for.body\n" | 
|  | "for.body:\n" | 
|  | "  %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ]\n" | 
|  | "  %inc = add nuw nsw i32 %i.010, 1\n" | 
|  | "  %cmp2 = icmp ult i32 %inc, %num\n" | 
|  | "  br i1 %cmp2, label %for.body, label %exit\n" | 
|  | "exit:\n" | 
|  | "  ret void\n" | 
|  | "}\n", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "test", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | const SCEV *TCScev = SE.getSCEV(getArgByName(F, "num")); | 
|  | const SCEV *ApplyLoopGuardsTC = SE.applyLoopGuards(TCScev, *LI.begin()); | 
|  | // Assert that the new TC is (4 * ((4 umax %num) /u 4)) | 
|  | APInt Four(32, 4); | 
|  | const SCEV *Constant4 = SE.getConstant(Four); | 
|  | const SCEV *Max = SE.getUMaxExpr(TCScev, Constant4); | 
|  | const SCEV *Mul = SE.getMulExpr(SE.getUDivExpr(Max, Constant4), Constant4); | 
|  | ASSERT_TRUE(Mul == ApplyLoopGuardsTC); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, ForgetValueWithOverflowInst) { | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString( | 
|  | "declare { i32, i1 } @llvm.smul.with.overflow.i32(i32, i32) " | 
|  | "define void @foo(i32 %i) { " | 
|  | "entry: " | 
|  | "  br label %loop.body " | 
|  | "loop.body: " | 
|  | "  %iv = phi i32 [ %iv.next, %loop.body ], [ 0, %entry ] " | 
|  | "  %iv.next = add nsw i32 %iv, 1 " | 
|  | "  %call = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %iv, i32 -2) " | 
|  | "  %extractvalue = extractvalue {i32, i1} %call, 0 " | 
|  | "  %cmp = icmp eq i32 %iv.next, 16 " | 
|  | "  br i1 %cmp, label %exit, label %loop.body " | 
|  | "exit: " | 
|  | "  ret void " | 
|  | "} ", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | auto *ExtractValue = getInstructionByName(F, "extractvalue"); | 
|  | auto *IV = getInstructionByName(F, "iv"); | 
|  |  | 
|  | auto *ExtractValueScev = SE.getSCEV(ExtractValue); | 
|  | EXPECT_NE(ExtractValueScev, nullptr); | 
|  |  | 
|  | SE.forgetValue(IV); | 
|  | auto *ExtractValueScevForgotten = SE.getExistingSCEV(ExtractValue); | 
|  | EXPECT_EQ(ExtractValueScevForgotten, nullptr); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST_F(ScalarEvolutionsTest, ComplexityComparatorIsStrictWeakOrdering) { | 
|  | // Regression test for a case where caching of equivalent values caused the | 
|  | // comparator to get inconsistent. | 
|  | LLVMContext C; | 
|  | SMDiagnostic Err; | 
|  | std::unique_ptr<Module> M = parseAssemblyString(R"( | 
|  | define i32 @foo(i32 %arg0) { | 
|  | %1 = add i32 %arg0, 1 | 
|  | %2 = add i32 %arg0, 1 | 
|  | %3 = xor i32 %2, %1 | 
|  | %4 = add i32 %3, %2 | 
|  | %5 = add i32 %arg0, 1 | 
|  | %6 = xor i32 %5, %arg0 | 
|  | %7 = add i32 %arg0, %6 | 
|  | %8 = add i32 %5, %7 | 
|  | %9 = xor i32 %8, %7 | 
|  | %10 = add i32 %9, %8 | 
|  | %11 = xor i32 %10, %9 | 
|  | %12 = add i32 %11, %10 | 
|  | %13 = xor i32 %12, %11 | 
|  | %14 = add i32 %12, %13 | 
|  | %15 = add i32 %14, %4 | 
|  | ret i32 %15 | 
|  | })", | 
|  | Err, C); | 
|  |  | 
|  | ASSERT_TRUE(M && "Could not parse module?"); | 
|  | ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!"); | 
|  |  | 
|  | runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) { | 
|  | // When _LIBCPP_HARDENING_MODE == _LIBCPP_HARDENING_MODE_DEBUG, this will | 
|  | // crash if the comparator has the specific caching bug. | 
|  | SE.getSCEV(F.getEntryBlock().getTerminator()->getOperand(0)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | }  // end namespace llvm |