| //===- CRunnerUtils.cpp - Utils for MLIR execution ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements basic functions to manipulate structured MLIR types at |
| // runtime. Entities in this file are meant to be retargetable, including on |
| // targets without a C++ runtime, and must be kept C compatible. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/ExecutionEngine/CRunnerUtils.h" |
| #include "mlir/ExecutionEngine/Msan.h" |
| |
| #ifndef _WIN32 |
| #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || \ |
| defined(__DragonFly__) |
| #include <cstdlib> |
| #else |
| #include <alloca.h> |
| #endif |
| #include <sys/time.h> |
| #else |
| #include "malloc.h" |
| #endif // _WIN32 |
| |
| #include <algorithm> |
| #include <cinttypes> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <numeric> |
| #include <random> |
| #include <string.h> |
| |
| #ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS |
| |
| namespace { |
| template <typename V> |
| void stdSort(uint64_t n, V *p) { |
| std::sort(p, p + n); |
| } |
| |
| } // namespace |
| |
| // Small runtime support "lib" for vector.print lowering. |
| // By providing elementary printing methods only, this |
| // library can remain fully unaware of low-level implementation |
| // details of our vectors. Also useful for direct LLVM IR output. |
| extern "C" void printI64(int64_t i) { fprintf(stdout, "%" PRId64, i); } |
| extern "C" void printU64(uint64_t u) { fprintf(stdout, "%" PRIu64, u); } |
| extern "C" void printF32(float f) { |
| if (std::isnan(f) && std::signbit(f)) { |
| fprintf(stdout, "-nan"); |
| } else { |
| fprintf(stdout, "%g", f); |
| } |
| } |
| extern "C" void printF64(double d) { |
| if (std::isnan(d) && std::signbit(d)) { |
| fprintf(stdout, "-nan"); |
| } else { |
| fprintf(stdout, "%lg", d); |
| } |
| } |
| extern "C" void printString(char const *s) { fputs(s, stdout); } |
| extern "C" void printOpen() { fputs("( ", stdout); } |
| extern "C" void printClose() { fputs(" )", stdout); } |
| extern "C" void printComma() { fputs(", ", stdout); } |
| extern "C" void printNewline() { fputc('\n', stdout); } |
| |
| extern "C" void memrefCopy(int64_t elemSize, UnrankedMemRefType<char> *srcArg, |
| UnrankedMemRefType<char> *dstArg) { |
| DynamicMemRefType<char> src(*srcArg); |
| DynamicMemRefType<char> dst(*dstArg); |
| |
| int64_t rank = src.rank; |
| MLIR_MSAN_MEMORY_IS_INITIALIZED(src.sizes, rank * sizeof(int64_t)); |
| |
| // Handle empty shapes -> nothing to copy. |
| for (int rankp = 0; rankp < rank; ++rankp) |
| if (src.sizes[rankp] == 0) |
| return; |
| |
| char *srcPtr = src.data + src.offset * elemSize; |
| char *dstPtr = dst.data + dst.offset * elemSize; |
| |
| if (rank == 0) { |
| memcpy(dstPtr, srcPtr, elemSize); |
| return; |
| } |
| |
| int64_t *indices = static_cast<int64_t *>(alloca(sizeof(int64_t) * rank)); |
| int64_t *srcStrides = static_cast<int64_t *>(alloca(sizeof(int64_t) * rank)); |
| int64_t *dstStrides = static_cast<int64_t *>(alloca(sizeof(int64_t) * rank)); |
| |
| // Initialize index and scale strides. |
| for (int rankp = 0; rankp < rank; ++rankp) { |
| indices[rankp] = 0; |
| srcStrides[rankp] = src.strides[rankp] * elemSize; |
| dstStrides[rankp] = dst.strides[rankp] * elemSize; |
| } |
| |
| int64_t readIndex = 0, writeIndex = 0; |
| for (;;) { |
| // Copy over the element, byte by byte. |
| memcpy(dstPtr + writeIndex, srcPtr + readIndex, elemSize); |
| // Advance index and read position. |
| for (int64_t axis = rank - 1; axis >= 0; --axis) { |
| // Advance at current axis. |
| auto newIndex = ++indices[axis]; |
| readIndex += srcStrides[axis]; |
| writeIndex += dstStrides[axis]; |
| // If this is a valid index, we have our next index, so continue copying. |
| if (src.sizes[axis] != newIndex) |
| break; |
| // We reached the end of this axis. If this is axis 0, we are done. |
| if (axis == 0) |
| return; |
| // Else, reset to 0 and undo the advancement of the linear index that |
| // this axis had. Then continue with the axis one outer. |
| indices[axis] = 0; |
| readIndex -= src.sizes[axis] * srcStrides[axis]; |
| writeIndex -= dst.sizes[axis] * dstStrides[axis]; |
| } |
| } |
| } |
| |
| /// Prints GFLOPS rating. |
| extern "C" void printFlops(double flops) { |
| fprintf(stderr, "%lf GFLOPS\n", flops / 1.0E9); |
| } |
| |
| /// Returns the number of seconds since Epoch 1970-01-01 00:00:00 +0000 (UTC). |
| extern "C" double rtclock() { |
| #ifndef _WIN32 |
| struct timeval tp; |
| int stat = gettimeofday(&tp, nullptr); |
| if (stat != 0) |
| fprintf(stderr, "Error returning time from gettimeofday: %d\n", stat); |
| return (tp.tv_sec + tp.tv_usec * 1.0e-6); |
| #else |
| fprintf(stderr, "Timing utility not implemented on Windows\n"); |
| return 0.0; |
| #endif // _WIN32 |
| } |
| |
| extern "C" void *mlirAlloc(uint64_t size) { return malloc(size); } |
| |
| extern "C" void *mlirAlignedAlloc(uint64_t alignment, uint64_t size) { |
| #ifdef _WIN32 |
| return _aligned_malloc(size, alignment); |
| #elif defined(__APPLE__) |
| // aligned_alloc was added in MacOS 10.15. Fall back to posix_memalign to also |
| // support older versions. |
| void *result = nullptr; |
| (void)::posix_memalign(&result, alignment, size); |
| return result; |
| #else |
| return aligned_alloc(alignment, size); |
| #endif |
| } |
| |
| extern "C" void mlirFree(void *ptr) { free(ptr); } |
| |
| extern "C" void mlirAlignedFree(void *ptr) { |
| #ifdef _WIN32 |
| _aligned_free(ptr); |
| #else |
| free(ptr); |
| #endif |
| } |
| |
| extern "C" void *rtsrand(uint64_t s) { |
| // Standard mersenne_twister_engine seeded with s. |
| return new std::mt19937(s); |
| } |
| |
| extern "C" uint64_t rtrand(void *g, uint64_t m) { |
| std::mt19937 *generator = static_cast<std::mt19937 *>(g); |
| std::uniform_int_distribution<uint64_t> distrib(0, m); |
| return distrib(*generator); |
| } |
| |
| extern "C" void rtdrand(void *g) { |
| std::mt19937 *generator = static_cast<std::mt19937 *>(g); |
| delete generator; |
| } |
| |
| extern "C" void _mlir_ciface_shuffle(StridedMemRefType<uint64_t, 1> *mref, |
| void *g) { |
| assert(mref); |
| assert(mref->strides[0] == 1); // consecutive |
| std::mt19937 *generator = static_cast<std::mt19937 *>(g); |
| uint64_t s = mref->sizes[0]; |
| uint64_t *data = mref->data + mref->offset; |
| std::iota(data, data + s, 0); |
| std::shuffle(data, data + s, *generator); |
| } |
| |
| #define IMPL_STDSORT(VNAME, V) \ |
| extern "C" void _mlir_ciface_stdSort##VNAME(uint64_t n, \ |
| StridedMemRefType<V, 1> *vref) { \ |
| assert(vref); \ |
| assert(vref->strides[0] == 1); \ |
| V *values = vref->data + vref->offset; \ |
| stdSort(n, values); \ |
| } |
| IMPL_STDSORT(I64, int64_t) |
| IMPL_STDSORT(F64, double) |
| IMPL_STDSORT(F32, float) |
| #undef IMPL_STDSORT |
| |
| #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS |