|  | //===- MachineFunction.cpp ------------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Collect native machine code information for a function.  This allows | 
|  | // target-specific information about the generated code to be stored with each | 
|  | // function. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValueManager.h" | 
|  | #include "llvm/CodeGen/TargetFrameLowering.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/CodeGen/WasmEHFuncInfo.h" | 
|  | #include "llvm/CodeGen/WinEHFuncInfo.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/EHPersonalities.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ModuleSlotTracker.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/MC/SectionKind.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/DOTGraphTraits.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GraphWriter.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <string> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "LiveDebugValues/LiveDebugValues.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "codegen" | 
|  |  | 
|  | static cl::opt<unsigned> AlignAllFunctions( | 
|  | "align-all-functions", | 
|  | cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " | 
|  | "means align on 16B boundaries)."), | 
|  | cl::init(0), cl::Hidden); | 
|  |  | 
|  | static const char *getPropertyName(MachineFunctionProperties::Property Prop) { | 
|  | using P = MachineFunctionProperties::Property; | 
|  |  | 
|  | // clang-format off | 
|  | switch(Prop) { | 
|  | case P::FailedISel: return "FailedISel"; | 
|  | case P::IsSSA: return "IsSSA"; | 
|  | case P::Legalized: return "Legalized"; | 
|  | case P::NoPHIs: return "NoPHIs"; | 
|  | case P::NoVRegs: return "NoVRegs"; | 
|  | case P::RegBankSelected: return "RegBankSelected"; | 
|  | case P::Selected: return "Selected"; | 
|  | case P::TracksLiveness: return "TracksLiveness"; | 
|  | case P::TiedOpsRewritten: return "TiedOpsRewritten"; | 
|  | case P::FailsVerification: return "FailsVerification"; | 
|  | case P::TracksDebugUserValues: return "TracksDebugUserValues"; | 
|  | } | 
|  | // clang-format on | 
|  | llvm_unreachable("Invalid machine function property"); | 
|  | } | 
|  |  | 
|  | void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { | 
|  | if (!F.hasFnAttribute(Attribute::SafeStack)) | 
|  | return; | 
|  |  | 
|  | auto *Existing = | 
|  | dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); | 
|  |  | 
|  | if (!Existing || Existing->getNumOperands() != 2) | 
|  | return; | 
|  |  | 
|  | auto *MetadataName = "unsafe-stack-size"; | 
|  | if (auto &N = Existing->getOperand(0)) { | 
|  | if (N.equalsStr(MetadataName)) { | 
|  | if (auto &Op = Existing->getOperand(1)) { | 
|  | auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); | 
|  | FrameInfo.setUnsafeStackSize(Val); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void MachineFunction::Delegate::anchor() {} | 
|  |  | 
|  | void MachineFunctionProperties::print(raw_ostream &OS) const { | 
|  | const char *Separator = ""; | 
|  | for (BitVector::size_type I = 0; I < Properties.size(); ++I) { | 
|  | if (!Properties[I]) | 
|  | continue; | 
|  | OS << Separator << getPropertyName(static_cast<Property>(I)); | 
|  | Separator = ", "; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // MachineFunction implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Out-of-line virtual method. | 
|  | MachineFunctionInfo::~MachineFunctionInfo() = default; | 
|  |  | 
|  | void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { | 
|  | MBB->getParent()->deleteMachineBasicBlock(MBB); | 
|  | } | 
|  |  | 
|  | static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, | 
|  | const Function &F) { | 
|  | if (auto MA = F.getFnStackAlign()) | 
|  | return *MA; | 
|  | return STI->getFrameLowering()->getStackAlign(); | 
|  | } | 
|  |  | 
|  | MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, | 
|  | const TargetSubtargetInfo &STI, | 
|  | unsigned FunctionNum, MachineModuleInfo &mmi) | 
|  | : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { | 
|  | FunctionNumber = FunctionNum; | 
|  | init(); | 
|  | } | 
|  |  | 
|  | void MachineFunction::handleInsertion(MachineInstr &MI) { | 
|  | if (TheDelegate) | 
|  | TheDelegate->MF_HandleInsertion(MI); | 
|  | } | 
|  |  | 
|  | void MachineFunction::handleRemoval(MachineInstr &MI) { | 
|  | if (TheDelegate) | 
|  | TheDelegate->MF_HandleRemoval(MI); | 
|  | } | 
|  |  | 
|  | void MachineFunction::handleChangeDesc(MachineInstr &MI, | 
|  | const MCInstrDesc &TID) { | 
|  | if (TheDelegate) | 
|  | TheDelegate->MF_HandleChangeDesc(MI, TID); | 
|  | } | 
|  |  | 
|  | void MachineFunction::init() { | 
|  | // Assume the function starts in SSA form with correct liveness. | 
|  | Properties.set(MachineFunctionProperties::Property::IsSSA); | 
|  | Properties.set(MachineFunctionProperties::Property::TracksLiveness); | 
|  | if (STI->getRegisterInfo()) | 
|  | RegInfo = new (Allocator) MachineRegisterInfo(this); | 
|  | else | 
|  | RegInfo = nullptr; | 
|  |  | 
|  | MFInfo = nullptr; | 
|  |  | 
|  | // We can realign the stack if the target supports it and the user hasn't | 
|  | // explicitly asked us not to. | 
|  | bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && | 
|  | !F.hasFnAttribute("no-realign-stack"); | 
|  | FrameInfo = new (Allocator) MachineFrameInfo( | 
|  | getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, | 
|  | /*ForcedRealign=*/CanRealignSP && | 
|  | F.hasFnAttribute(Attribute::StackAlignment)); | 
|  |  | 
|  | setUnsafeStackSize(F, *FrameInfo); | 
|  |  | 
|  | if (F.hasFnAttribute(Attribute::StackAlignment)) | 
|  | FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); | 
|  |  | 
|  | ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); | 
|  | Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); | 
|  |  | 
|  | // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. | 
|  | // FIXME: Use Function::hasOptSize(). | 
|  | if (!F.hasFnAttribute(Attribute::OptimizeForSize)) | 
|  | Alignment = std::max(Alignment, | 
|  | STI->getTargetLowering()->getPrefFunctionAlignment()); | 
|  |  | 
|  | // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls | 
|  | // to load a type hash before the function label. Ensure functions are aligned | 
|  | // by a least 4 to avoid unaligned access, which is especially important for | 
|  | // -mno-unaligned-access. | 
|  | if (F.hasMetadata(LLVMContext::MD_func_sanitize) || | 
|  | F.getMetadata(LLVMContext::MD_kcfi_type)) | 
|  | Alignment = std::max(Alignment, Align(4)); | 
|  |  | 
|  | if (AlignAllFunctions) | 
|  | Alignment = Align(1ULL << AlignAllFunctions); | 
|  |  | 
|  | JumpTableInfo = nullptr; | 
|  |  | 
|  | if (isFuncletEHPersonality(classifyEHPersonality( | 
|  | F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { | 
|  | WinEHInfo = new (Allocator) WinEHFuncInfo(); | 
|  | } | 
|  |  | 
|  | if (isScopedEHPersonality(classifyEHPersonality( | 
|  | F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { | 
|  | WasmEHInfo = new (Allocator) WasmEHFuncInfo(); | 
|  | } | 
|  |  | 
|  | assert(Target.isCompatibleDataLayout(getDataLayout()) && | 
|  | "Can't create a MachineFunction using a Module with a " | 
|  | "Target-incompatible DataLayout attached\n"); | 
|  |  | 
|  | PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); | 
|  | } | 
|  |  | 
|  | void MachineFunction::initTargetMachineFunctionInfo( | 
|  | const TargetSubtargetInfo &STI) { | 
|  | assert(!MFInfo && "MachineFunctionInfo already set"); | 
|  | MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); | 
|  | } | 
|  |  | 
|  | MachineFunction::~MachineFunction() { | 
|  | clear(); | 
|  | } | 
|  |  | 
|  | void MachineFunction::clear() { | 
|  | Properties.reset(); | 
|  | // Don't call destructors on MachineInstr and MachineOperand. All of their | 
|  | // memory comes from the BumpPtrAllocator which is about to be purged. | 
|  | // | 
|  | // Do call MachineBasicBlock destructors, it contains std::vectors. | 
|  | for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) | 
|  | I->Insts.clearAndLeakNodesUnsafely(); | 
|  | MBBNumbering.clear(); | 
|  |  | 
|  | InstructionRecycler.clear(Allocator); | 
|  | OperandRecycler.clear(Allocator); | 
|  | BasicBlockRecycler.clear(Allocator); | 
|  | CodeViewAnnotations.clear(); | 
|  | VariableDbgInfos.clear(); | 
|  | if (RegInfo) { | 
|  | RegInfo->~MachineRegisterInfo(); | 
|  | Allocator.Deallocate(RegInfo); | 
|  | } | 
|  | if (MFInfo) { | 
|  | MFInfo->~MachineFunctionInfo(); | 
|  | Allocator.Deallocate(MFInfo); | 
|  | } | 
|  |  | 
|  | FrameInfo->~MachineFrameInfo(); | 
|  | Allocator.Deallocate(FrameInfo); | 
|  |  | 
|  | ConstantPool->~MachineConstantPool(); | 
|  | Allocator.Deallocate(ConstantPool); | 
|  |  | 
|  | if (JumpTableInfo) { | 
|  | JumpTableInfo->~MachineJumpTableInfo(); | 
|  | Allocator.Deallocate(JumpTableInfo); | 
|  | } | 
|  |  | 
|  | if (WinEHInfo) { | 
|  | WinEHInfo->~WinEHFuncInfo(); | 
|  | Allocator.Deallocate(WinEHInfo); | 
|  | } | 
|  |  | 
|  | if (WasmEHInfo) { | 
|  | WasmEHInfo->~WasmEHFuncInfo(); | 
|  | Allocator.Deallocate(WasmEHInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | const DataLayout &MachineFunction::getDataLayout() const { | 
|  | return F.getParent()->getDataLayout(); | 
|  | } | 
|  |  | 
|  | /// Get the JumpTableInfo for this function. | 
|  | /// If it does not already exist, allocate one. | 
|  | MachineJumpTableInfo *MachineFunction:: | 
|  | getOrCreateJumpTableInfo(unsigned EntryKind) { | 
|  | if (JumpTableInfo) return JumpTableInfo; | 
|  |  | 
|  | JumpTableInfo = new (Allocator) | 
|  | MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); | 
|  | return JumpTableInfo; | 
|  | } | 
|  |  | 
|  | DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { | 
|  | return F.getDenormalMode(FPType); | 
|  | } | 
|  |  | 
|  | /// Should we be emitting segmented stack stuff for the function | 
|  | bool MachineFunction::shouldSplitStack() const { | 
|  | return getFunction().hasFnAttribute("split-stack"); | 
|  | } | 
|  |  | 
|  | [[nodiscard]] unsigned | 
|  | MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { | 
|  | FrameInstructions.push_back(Inst); | 
|  | return FrameInstructions.size() - 1; | 
|  | } | 
|  |  | 
|  | /// This discards all of the MachineBasicBlock numbers and recomputes them. | 
|  | /// This guarantees that the MBB numbers are sequential, dense, and match the | 
|  | /// ordering of the blocks within the function.  If a specific MachineBasicBlock | 
|  | /// is specified, only that block and those after it are renumbered. | 
|  | void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { | 
|  | if (empty()) { MBBNumbering.clear(); return; } | 
|  | MachineFunction::iterator MBBI, E = end(); | 
|  | if (MBB == nullptr) | 
|  | MBBI = begin(); | 
|  | else | 
|  | MBBI = MBB->getIterator(); | 
|  |  | 
|  | // Figure out the block number this should have. | 
|  | unsigned BlockNo = 0; | 
|  | if (MBBI != begin()) | 
|  | BlockNo = std::prev(MBBI)->getNumber() + 1; | 
|  |  | 
|  | for (; MBBI != E; ++MBBI, ++BlockNo) { | 
|  | if (MBBI->getNumber() != (int)BlockNo) { | 
|  | // Remove use of the old number. | 
|  | if (MBBI->getNumber() != -1) { | 
|  | assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && | 
|  | "MBB number mismatch!"); | 
|  | MBBNumbering[MBBI->getNumber()] = nullptr; | 
|  | } | 
|  |  | 
|  | // If BlockNo is already taken, set that block's number to -1. | 
|  | if (MBBNumbering[BlockNo]) | 
|  | MBBNumbering[BlockNo]->setNumber(-1); | 
|  |  | 
|  | MBBNumbering[BlockNo] = &*MBBI; | 
|  | MBBI->setNumber(BlockNo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, all the blocks are renumbered.  If we have compactified the block | 
|  | // numbering, shrink MBBNumbering now. | 
|  | assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); | 
|  | MBBNumbering.resize(BlockNo); | 
|  | } | 
|  |  | 
|  | /// This method iterates over the basic blocks and assigns their IsBeginSection | 
|  | /// and IsEndSection fields. This must be called after MBB layout is finalized | 
|  | /// and the SectionID's are assigned to MBBs. | 
|  | void MachineFunction::assignBeginEndSections() { | 
|  | front().setIsBeginSection(); | 
|  | auto CurrentSectionID = front().getSectionID(); | 
|  | for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { | 
|  | if (MBBI->getSectionID() == CurrentSectionID) | 
|  | continue; | 
|  | MBBI->setIsBeginSection(); | 
|  | std::prev(MBBI)->setIsEndSection(); | 
|  | CurrentSectionID = MBBI->getSectionID(); | 
|  | } | 
|  | back().setIsEndSection(); | 
|  | } | 
|  |  | 
|  | /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. | 
|  | MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, | 
|  | DebugLoc DL, | 
|  | bool NoImplicit) { | 
|  | return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) | 
|  | MachineInstr(*this, MCID, std::move(DL), NoImplicit); | 
|  | } | 
|  |  | 
|  | /// Create a new MachineInstr which is a copy of the 'Orig' instruction, | 
|  | /// identical in all ways except the instruction has no parent, prev, or next. | 
|  | MachineInstr * | 
|  | MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { | 
|  | return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) | 
|  | MachineInstr(*this, *Orig); | 
|  | } | 
|  |  | 
|  | MachineInstr &MachineFunction::cloneMachineInstrBundle( | 
|  | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, | 
|  | const MachineInstr &Orig) { | 
|  | MachineInstr *FirstClone = nullptr; | 
|  | MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); | 
|  | while (true) { | 
|  | MachineInstr *Cloned = CloneMachineInstr(&*I); | 
|  | MBB.insert(InsertBefore, Cloned); | 
|  | if (FirstClone == nullptr) { | 
|  | FirstClone = Cloned; | 
|  | } else { | 
|  | Cloned->bundleWithPred(); | 
|  | } | 
|  |  | 
|  | if (!I->isBundledWithSucc()) | 
|  | break; | 
|  | ++I; | 
|  | } | 
|  | // Copy over call site info to the cloned instruction if needed. If Orig is in | 
|  | // a bundle, copyCallSiteInfo takes care of finding the call instruction in | 
|  | // the bundle. | 
|  | if (Orig.shouldUpdateCallSiteInfo()) | 
|  | copyCallSiteInfo(&Orig, FirstClone); | 
|  | return *FirstClone; | 
|  | } | 
|  |  | 
|  | /// Delete the given MachineInstr. | 
|  | /// | 
|  | /// This function also serves as the MachineInstr destructor - the real | 
|  | /// ~MachineInstr() destructor must be empty. | 
|  | void MachineFunction::deleteMachineInstr(MachineInstr *MI) { | 
|  | // Verify that a call site info is at valid state. This assertion should | 
|  | // be triggered during the implementation of support for the | 
|  | // call site info of a new architecture. If the assertion is triggered, | 
|  | // back trace will tell where to insert a call to updateCallSiteInfo(). | 
|  | assert((!MI->isCandidateForCallSiteEntry() || !CallSitesInfo.contains(MI)) && | 
|  | "Call site info was not updated!"); | 
|  | // Strip it for parts. The operand array and the MI object itself are | 
|  | // independently recyclable. | 
|  | if (MI->Operands) | 
|  | deallocateOperandArray(MI->CapOperands, MI->Operands); | 
|  | // Don't call ~MachineInstr() which must be trivial anyway because | 
|  | // ~MachineFunction drops whole lists of MachineInstrs wihout calling their | 
|  | // destructors. | 
|  | InstructionRecycler.Deallocate(Allocator, MI); | 
|  | } | 
|  |  | 
|  | /// Allocate a new MachineBasicBlock. Use this instead of | 
|  | /// `new MachineBasicBlock'. | 
|  | MachineBasicBlock * | 
|  | MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, | 
|  | std::optional<UniqueBBID> BBID) { | 
|  | MachineBasicBlock *MBB = | 
|  | new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) | 
|  | MachineBasicBlock(*this, BB); | 
|  | // Set BBID for `-basic-block=sections=labels` and | 
|  | // `-basic-block-sections=list` to allow robust mapping of profiles to basic | 
|  | // blocks. | 
|  | if (Target.getBBSectionsType() == BasicBlockSection::Labels || | 
|  | Target.Options.BBAddrMap || | 
|  | Target.getBBSectionsType() == BasicBlockSection::List) | 
|  | MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | /// Delete the given MachineBasicBlock. | 
|  | void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { | 
|  | assert(MBB->getParent() == this && "MBB parent mismatch!"); | 
|  | // Clean up any references to MBB in jump tables before deleting it. | 
|  | if (JumpTableInfo) | 
|  | JumpTableInfo->RemoveMBBFromJumpTables(MBB); | 
|  | MBB->~MachineBasicBlock(); | 
|  | BasicBlockRecycler.Deallocate(Allocator, MBB); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MachineFunction::getMachineMemOperand( | 
|  | MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, | 
|  | Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, | 
|  | SyncScope::ID SSID, AtomicOrdering Ordering, | 
|  | AtomicOrdering FailureOrdering) { | 
|  | assert((!Size.hasValue() || | 
|  | Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && | 
|  | "Unexpected an unknown size to be represented using " | 
|  | "LocationSize::beforeOrAfter()"); | 
|  | return new (Allocator) | 
|  | MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, | 
|  | Ordering, FailureOrdering); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MachineFunction::getMachineMemOperand( | 
|  | MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, | 
|  | Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, | 
|  | SyncScope::ID SSID, AtomicOrdering Ordering, | 
|  | AtomicOrdering FailureOrdering) { | 
|  | return new (Allocator) | 
|  | MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, | 
|  | Ordering, FailureOrdering); | 
|  | } | 
|  |  | 
|  | MachineMemOperand * | 
|  | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, | 
|  | const MachinePointerInfo &PtrInfo, | 
|  | LocationSize Size) { | 
|  | assert((!Size.hasValue() || | 
|  | Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && | 
|  | "Unexpected an unknown size to be represented using " | 
|  | "LocationSize::beforeOrAfter()"); | 
|  | return new (Allocator) | 
|  | MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), | 
|  | AAMDNodes(), nullptr, MMO->getSyncScopeID(), | 
|  | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | 
|  | } | 
|  |  | 
|  | MachineMemOperand *MachineFunction::getMachineMemOperand( | 
|  | const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { | 
|  | return new (Allocator) | 
|  | MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), | 
|  | AAMDNodes(), nullptr, MMO->getSyncScopeID(), | 
|  | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | 
|  | } | 
|  |  | 
|  | MachineMemOperand * | 
|  | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, | 
|  | int64_t Offset, LLT Ty) { | 
|  | const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); | 
|  |  | 
|  | // If there is no pointer value, the offset isn't tracked so we need to adjust | 
|  | // the base alignment. | 
|  | Align Alignment = PtrInfo.V.isNull() | 
|  | ? commonAlignment(MMO->getBaseAlign(), Offset) | 
|  | : MMO->getBaseAlign(); | 
|  |  | 
|  | // Do not preserve ranges, since we don't necessarily know what the high bits | 
|  | // are anymore. | 
|  | return new (Allocator) MachineMemOperand( | 
|  | PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, | 
|  | MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), | 
|  | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | 
|  | } | 
|  |  | 
|  | MachineMemOperand * | 
|  | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, | 
|  | const AAMDNodes &AAInfo) { | 
|  | MachinePointerInfo MPI = MMO->getValue() ? | 
|  | MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : | 
|  | MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); | 
|  |  | 
|  | return new (Allocator) MachineMemOperand( | 
|  | MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, | 
|  | MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), | 
|  | MMO->getFailureOrdering()); | 
|  | } | 
|  |  | 
|  | MachineMemOperand * | 
|  | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, | 
|  | MachineMemOperand::Flags Flags) { | 
|  | return new (Allocator) MachineMemOperand( | 
|  | MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), | 
|  | MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), | 
|  | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); | 
|  | } | 
|  |  | 
|  | MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( | 
|  | ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, | 
|  | MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, | 
|  | uint32_t CFIType) { | 
|  | return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, | 
|  | PostInstrSymbol, HeapAllocMarker, | 
|  | PCSections, CFIType); | 
|  | } | 
|  |  | 
|  | const char *MachineFunction::createExternalSymbolName(StringRef Name) { | 
|  | char *Dest = Allocator.Allocate<char>(Name.size() + 1); | 
|  | llvm::copy(Name, Dest); | 
|  | Dest[Name.size()] = 0; | 
|  | return Dest; | 
|  | } | 
|  |  | 
|  | uint32_t *MachineFunction::allocateRegMask() { | 
|  | unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); | 
|  | unsigned Size = MachineOperand::getRegMaskSize(NumRegs); | 
|  | uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); | 
|  | memset(Mask, 0, Size * sizeof(Mask[0])); | 
|  | return Mask; | 
|  | } | 
|  |  | 
|  | ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { | 
|  | int* AllocMask = Allocator.Allocate<int>(Mask.size()); | 
|  | copy(Mask, AllocMask); | 
|  | return {AllocMask, Mask.size()}; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void MachineFunction::dump() const { | 
|  | print(dbgs()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | StringRef MachineFunction::getName() const { | 
|  | return getFunction().getName(); | 
|  | } | 
|  |  | 
|  | void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { | 
|  | OS << "# Machine code for function " << getName() << ": "; | 
|  | getProperties().print(OS); | 
|  | OS << '\n'; | 
|  |  | 
|  | // Print Frame Information | 
|  | FrameInfo->print(*this, OS); | 
|  |  | 
|  | // Print JumpTable Information | 
|  | if (JumpTableInfo) | 
|  | JumpTableInfo->print(OS); | 
|  |  | 
|  | // Print Constant Pool | 
|  | ConstantPool->print(OS); | 
|  |  | 
|  | const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); | 
|  |  | 
|  | if (RegInfo && !RegInfo->livein_empty()) { | 
|  | OS << "Function Live Ins: "; | 
|  | for (MachineRegisterInfo::livein_iterator | 
|  | I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { | 
|  | OS << printReg(I->first, TRI); | 
|  | if (I->second) | 
|  | OS << " in " << printReg(I->second, TRI); | 
|  | if (std::next(I) != E) | 
|  | OS << ", "; | 
|  | } | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | ModuleSlotTracker MST(getFunction().getParent()); | 
|  | MST.incorporateFunction(getFunction()); | 
|  | for (const auto &BB : *this) { | 
|  | OS << '\n'; | 
|  | // If we print the whole function, print it at its most verbose level. | 
|  | BB.print(OS, MST, Indexes, /*IsStandalone=*/true); | 
|  | } | 
|  |  | 
|  | OS << "\n# End machine code for function " << getName() << ".\n\n"; | 
|  | } | 
|  |  | 
|  | /// True if this function needs frame moves for debug or exceptions. | 
|  | bool MachineFunction::needsFrameMoves() const { | 
|  | return getMMI().hasDebugInfo() || | 
|  | getTarget().Options.ForceDwarfFrameSection || | 
|  | F.needsUnwindTableEntry(); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | template<> | 
|  | struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { | 
|  | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} | 
|  |  | 
|  | static std::string getGraphName(const MachineFunction *F) { | 
|  | return ("CFG for '" + F->getName() + "' function").str(); | 
|  | } | 
|  |  | 
|  | std::string getNodeLabel(const MachineBasicBlock *Node, | 
|  | const MachineFunction *Graph) { | 
|  | std::string OutStr; | 
|  | { | 
|  | raw_string_ostream OSS(OutStr); | 
|  |  | 
|  | if (isSimple()) { | 
|  | OSS << printMBBReference(*Node); | 
|  | if (const BasicBlock *BB = Node->getBasicBlock()) | 
|  | OSS << ": " << BB->getName(); | 
|  | } else | 
|  | Node->print(OSS); | 
|  | } | 
|  |  | 
|  | if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); | 
|  |  | 
|  | // Process string output to make it nicer... | 
|  | for (unsigned i = 0; i != OutStr.length(); ++i) | 
|  | if (OutStr[i] == '\n') {                            // Left justify | 
|  | OutStr[i] = '\\'; | 
|  | OutStr.insert(OutStr.begin()+i+1, 'l'); | 
|  | } | 
|  | return OutStr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | void MachineFunction::viewCFG() const | 
|  | { | 
|  | #ifndef NDEBUG | 
|  | ViewGraph(this, "mf" + getName()); | 
|  | #else | 
|  | errs() << "MachineFunction::viewCFG is only available in debug builds on " | 
|  | << "systems with Graphviz or gv!\n"; | 
|  | #endif // NDEBUG | 
|  | } | 
|  |  | 
|  | void MachineFunction::viewCFGOnly() const | 
|  | { | 
|  | #ifndef NDEBUG | 
|  | ViewGraph(this, "mf" + getName(), true); | 
|  | #else | 
|  | errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " | 
|  | << "systems with Graphviz or gv!\n"; | 
|  | #endif // NDEBUG | 
|  | } | 
|  |  | 
|  | /// Add the specified physical register as a live-in value and | 
|  | /// create a corresponding virtual register for it. | 
|  | Register MachineFunction::addLiveIn(MCRegister PReg, | 
|  | const TargetRegisterClass *RC) { | 
|  | MachineRegisterInfo &MRI = getRegInfo(); | 
|  | Register VReg = MRI.getLiveInVirtReg(PReg); | 
|  | if (VReg) { | 
|  | const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); | 
|  | (void)VRegRC; | 
|  | // A physical register can be added several times. | 
|  | // Between two calls, the register class of the related virtual register | 
|  | // may have been constrained to match some operation constraints. | 
|  | // In that case, check that the current register class includes the | 
|  | // physical register and is a sub class of the specified RC. | 
|  | assert((VRegRC == RC || (VRegRC->contains(PReg) && | 
|  | RC->hasSubClassEq(VRegRC))) && | 
|  | "Register class mismatch!"); | 
|  | return VReg; | 
|  | } | 
|  | VReg = MRI.createVirtualRegister(RC); | 
|  | MRI.addLiveIn(PReg, VReg); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  | /// Return the MCSymbol for the specified non-empty jump table. | 
|  | /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a | 
|  | /// normal 'L' label is returned. | 
|  | MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, | 
|  | bool isLinkerPrivate) const { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | assert(JumpTableInfo && "No jump tables"); | 
|  | assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); | 
|  |  | 
|  | StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() | 
|  | : DL.getPrivateGlobalPrefix(); | 
|  | SmallString<60> Name; | 
|  | raw_svector_ostream(Name) | 
|  | << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; | 
|  | return Ctx.getOrCreateSymbol(Name); | 
|  | } | 
|  |  | 
|  | /// Return a function-local symbol to represent the PIC base. | 
|  | MCSymbol *MachineFunction::getPICBaseSymbol() const { | 
|  | const DataLayout &DL = getDataLayout(); | 
|  | return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + | 
|  | Twine(getFunctionNumber()) + "$pb"); | 
|  | } | 
|  |  | 
|  | /// \name Exception Handling | 
|  | /// \{ | 
|  |  | 
|  | LandingPadInfo & | 
|  | MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { | 
|  | unsigned N = LandingPads.size(); | 
|  | for (unsigned i = 0; i < N; ++i) { | 
|  | LandingPadInfo &LP = LandingPads[i]; | 
|  | if (LP.LandingPadBlock == LandingPad) | 
|  | return LP; | 
|  | } | 
|  |  | 
|  | LandingPads.push_back(LandingPadInfo(LandingPad)); | 
|  | return LandingPads[N]; | 
|  | } | 
|  |  | 
|  | void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, | 
|  | MCSymbol *BeginLabel, MCSymbol *EndLabel) { | 
|  | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | 
|  | LP.BeginLabels.push_back(BeginLabel); | 
|  | LP.EndLabels.push_back(EndLabel); | 
|  | } | 
|  |  | 
|  | MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { | 
|  | MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); | 
|  | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); | 
|  | LP.LandingPadLabel = LandingPadLabel; | 
|  |  | 
|  | const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); | 
|  | if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { | 
|  | // If there's no typeid list specified, then "cleanup" is implicit. | 
|  | // Otherwise, id 0 is reserved for the cleanup action. | 
|  | if (LPI->isCleanup() && LPI->getNumClauses() != 0) | 
|  | LP.TypeIds.push_back(0); | 
|  |  | 
|  | // FIXME: New EH - Add the clauses in reverse order. This isn't 100% | 
|  | //        correct, but we need to do it this way because of how the DWARF EH | 
|  | //        emitter processes the clauses. | 
|  | for (unsigned I = LPI->getNumClauses(); I != 0; --I) { | 
|  | Value *Val = LPI->getClause(I - 1); | 
|  | if (LPI->isCatch(I - 1)) { | 
|  | LP.TypeIds.push_back( | 
|  | getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); | 
|  | } else { | 
|  | // Add filters in a list. | 
|  | auto *CVal = cast<Constant>(Val); | 
|  | SmallVector<unsigned, 4> FilterList; | 
|  | for (const Use &U : CVal->operands()) | 
|  | FilterList.push_back( | 
|  | getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); | 
|  |  | 
|  | LP.TypeIds.push_back(getFilterIDFor(FilterList)); | 
|  | } | 
|  | } | 
|  |  | 
|  | } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { | 
|  | for (unsigned I = CPI->arg_size(); I != 0; --I) { | 
|  | auto *TypeInfo = | 
|  | dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); | 
|  | LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); | 
|  | } | 
|  |  | 
|  | return LandingPadLabel; | 
|  | } | 
|  |  | 
|  | void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, | 
|  | ArrayRef<unsigned> Sites) { | 
|  | LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); | 
|  | } | 
|  |  | 
|  | unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { | 
|  | for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) | 
|  | if (TypeInfos[i] == TI) return i + 1; | 
|  |  | 
|  | TypeInfos.push_back(TI); | 
|  | return TypeInfos.size(); | 
|  | } | 
|  |  | 
|  | int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { | 
|  | // If the new filter coincides with the tail of an existing filter, then | 
|  | // re-use the existing filter.  Folding filters more than this requires | 
|  | // re-ordering filters and/or their elements - probably not worth it. | 
|  | for (unsigned i : FilterEnds) { | 
|  | unsigned j = TyIds.size(); | 
|  |  | 
|  | while (i && j) | 
|  | if (FilterIds[--i] != TyIds[--j]) | 
|  | goto try_next; | 
|  |  | 
|  | if (!j) | 
|  | // The new filter coincides with range [i, end) of the existing filter. | 
|  | return -(1 + i); | 
|  |  | 
|  | try_next:; | 
|  | } | 
|  |  | 
|  | // Add the new filter. | 
|  | int FilterID = -(1 + FilterIds.size()); | 
|  | FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); | 
|  | llvm::append_range(FilterIds, TyIds); | 
|  | FilterEnds.push_back(FilterIds.size()); | 
|  | FilterIds.push_back(0); // terminator | 
|  | return FilterID; | 
|  | } | 
|  |  | 
|  | MachineFunction::CallSiteInfoMap::iterator | 
|  | MachineFunction::getCallSiteInfo(const MachineInstr *MI) { | 
|  | assert(MI->isCandidateForCallSiteEntry() && | 
|  | "Call site info refers only to call (MI) candidates"); | 
|  |  | 
|  | if (!Target.Options.EmitCallSiteInfo && !Target.Options.EmitCallGraphSection) | 
|  | return CallSitesInfo.end(); | 
|  | return CallSitesInfo.find(MI); | 
|  | } | 
|  |  | 
|  | /// Return the call machine instruction or find a call within bundle. | 
|  | static const MachineInstr *getCallInstr(const MachineInstr *MI) { | 
|  | if (!MI->isBundle()) | 
|  | return MI; | 
|  |  | 
|  | for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), | 
|  | getBundleEnd(MI->getIterator()))) | 
|  | if (BMI.isCandidateForCallSiteEntry()) | 
|  | return &BMI; | 
|  |  | 
|  | llvm_unreachable("Unexpected bundle without a call site candidate"); | 
|  | } | 
|  |  | 
|  | void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { | 
|  | assert(MI->shouldUpdateCallSiteInfo() && | 
|  | "Call site info refers only to call (MI) candidates or " | 
|  | "candidates inside bundles"); | 
|  |  | 
|  | const MachineInstr *CallMI = getCallInstr(MI); | 
|  | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); | 
|  | if (CSIt == CallSitesInfo.end()) | 
|  | return; | 
|  | CallSitesInfo.erase(CSIt); | 
|  | } | 
|  |  | 
|  | void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, | 
|  | const MachineInstr *New) { | 
|  | assert(Old->shouldUpdateCallSiteInfo() && | 
|  | "Call site info refers only to call (MI) candidates or " | 
|  | "candidates inside bundles"); | 
|  |  | 
|  | if (!New->isCandidateForCallSiteEntry()) | 
|  | return eraseCallSiteInfo(Old); | 
|  |  | 
|  | const MachineInstr *OldCallMI = getCallInstr(Old); | 
|  | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); | 
|  | if (CSIt == CallSitesInfo.end()) | 
|  | return; | 
|  |  | 
|  | CallSiteInfo CSInfo = CSIt->second; | 
|  | CallSitesInfo[New] = CSInfo; | 
|  | } | 
|  |  | 
|  | void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, | 
|  | const MachineInstr *New) { | 
|  | assert(Old->shouldUpdateCallSiteInfo() && | 
|  | "Call site info refers only to call (MI) candidates or " | 
|  | "candidates inside bundles"); | 
|  |  | 
|  | if (!New->isCandidateForCallSiteEntry()) | 
|  | return eraseCallSiteInfo(Old); | 
|  |  | 
|  | const MachineInstr *OldCallMI = getCallInstr(Old); | 
|  | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); | 
|  | if (CSIt == CallSitesInfo.end()) | 
|  | return; | 
|  |  | 
|  | CallSiteInfo CSInfo = std::move(CSIt->second); | 
|  | CallSitesInfo.erase(CSIt); | 
|  | CallSitesInfo[New] = CSInfo; | 
|  | } | 
|  |  | 
|  | void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { | 
|  | DebugInstrNumberingCount = Num; | 
|  | } | 
|  |  | 
|  | void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, | 
|  | DebugInstrOperandPair B, | 
|  | unsigned Subreg) { | 
|  | // Catch any accidental self-loops. | 
|  | assert(A.first != B.first); | 
|  | // Don't allow any substitutions _from_ the memory operand number. | 
|  | assert(A.second != DebugOperandMemNumber); | 
|  |  | 
|  | DebugValueSubstitutions.push_back({A, B, Subreg}); | 
|  | } | 
|  |  | 
|  | void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, | 
|  | MachineInstr &New, | 
|  | unsigned MaxOperand) { | 
|  | // If the Old instruction wasn't tracked at all, there is no work to do. | 
|  | unsigned OldInstrNum = Old.peekDebugInstrNum(); | 
|  | if (!OldInstrNum) | 
|  | return; | 
|  |  | 
|  | // Iterate over all operands looking for defs to create substitutions for. | 
|  | // Avoid creating new instr numbers unless we create a new substitution. | 
|  | // While this has no functional effect, it risks confusing someone reading | 
|  | // MIR output. | 
|  | // Examine all the operands, or the first N specified by the caller. | 
|  | MaxOperand = std::min(MaxOperand, Old.getNumOperands()); | 
|  | for (unsigned int I = 0; I < MaxOperand; ++I) { | 
|  | const auto &OldMO = Old.getOperand(I); | 
|  | auto &NewMO = New.getOperand(I); | 
|  | (void)NewMO; | 
|  |  | 
|  | if (!OldMO.isReg() || !OldMO.isDef()) | 
|  | continue; | 
|  | assert(NewMO.isDef()); | 
|  |  | 
|  | unsigned NewInstrNum = New.getDebugInstrNum(); | 
|  | makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), | 
|  | std::make_pair(NewInstrNum, I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto MachineFunction::salvageCopySSA( | 
|  | MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) | 
|  | -> DebugInstrOperandPair { | 
|  | const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Check whether this copy-like instruction has already been salvaged into | 
|  | // an operand pair. | 
|  | Register Dest; | 
|  | if (auto CopyDstSrc = TII.isCopyInstr(MI)) { | 
|  | Dest = CopyDstSrc->Destination->getReg(); | 
|  | } else { | 
|  | assert(MI.isSubregToReg()); | 
|  | Dest = MI.getOperand(0).getReg(); | 
|  | } | 
|  |  | 
|  | auto CacheIt = DbgPHICache.find(Dest); | 
|  | if (CacheIt != DbgPHICache.end()) | 
|  | return CacheIt->second; | 
|  |  | 
|  | // Calculate the instruction number to use, or install a DBG_PHI. | 
|  | auto OperandPair = salvageCopySSAImpl(MI); | 
|  | DbgPHICache.insert({Dest, OperandPair}); | 
|  | return OperandPair; | 
|  | } | 
|  |  | 
|  | auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) | 
|  | -> DebugInstrOperandPair { | 
|  | MachineRegisterInfo &MRI = getRegInfo(); | 
|  | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); | 
|  | const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); | 
|  |  | 
|  | // Chase the value read by a copy-like instruction back to the instruction | 
|  | // that ultimately _defines_ that value. This may pass: | 
|  | //  * Through multiple intermediate copies, including subregister moves / | 
|  | //    copies, | 
|  | //  * Copies from physical registers that must then be traced back to the | 
|  | //    defining instruction, | 
|  | //  * Or, physical registers may be live-in to (only) the entry block, which | 
|  | //    requires a DBG_PHI to be created. | 
|  | // We can pursue this problem in that order: trace back through copies, | 
|  | // optionally through a physical register, to a defining instruction. We | 
|  | // should never move from physreg to vreg. As we're still in SSA form, no need | 
|  | // to worry about partial definitions of registers. | 
|  |  | 
|  | // Helper lambda to interpret a copy-like instruction. Takes instruction, | 
|  | // returns the register read and any subregister identifying which part is | 
|  | // read. | 
|  | auto GetRegAndSubreg = | 
|  | [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { | 
|  | Register NewReg, OldReg; | 
|  | unsigned SubReg; | 
|  | if (Cpy.isCopy()) { | 
|  | OldReg = Cpy.getOperand(0).getReg(); | 
|  | NewReg = Cpy.getOperand(1).getReg(); | 
|  | SubReg = Cpy.getOperand(1).getSubReg(); | 
|  | } else if (Cpy.isSubregToReg()) { | 
|  | OldReg = Cpy.getOperand(0).getReg(); | 
|  | NewReg = Cpy.getOperand(2).getReg(); | 
|  | SubReg = Cpy.getOperand(3).getImm(); | 
|  | } else { | 
|  | auto CopyDetails = *TII.isCopyInstr(Cpy); | 
|  | const MachineOperand &Src = *CopyDetails.Source; | 
|  | const MachineOperand &Dest = *CopyDetails.Destination; | 
|  | OldReg = Dest.getReg(); | 
|  | NewReg = Src.getReg(); | 
|  | SubReg = Src.getSubReg(); | 
|  | } | 
|  |  | 
|  | return {NewReg, SubReg}; | 
|  | }; | 
|  |  | 
|  | // First seek either the defining instruction, or a copy from a physreg. | 
|  | // During search, the current state is the current copy instruction, and which | 
|  | // register we've read. Accumulate qualifying subregisters into SubregsSeen; | 
|  | // deal with those later. | 
|  | auto State = GetRegAndSubreg(MI); | 
|  | auto CurInst = MI.getIterator(); | 
|  | SmallVector<unsigned, 4> SubregsSeen; | 
|  | while (true) { | 
|  | // If we've found a copy from a physreg, first portion of search is over. | 
|  | if (!State.first.isVirtual()) | 
|  | break; | 
|  |  | 
|  | // Record any subregister qualifier. | 
|  | if (State.second) | 
|  | SubregsSeen.push_back(State.second); | 
|  |  | 
|  | assert(MRI.hasOneDef(State.first)); | 
|  | MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); | 
|  | CurInst = Inst.getIterator(); | 
|  |  | 
|  | // Any non-copy instruction is the defining instruction we're seeking. | 
|  | if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) | 
|  | break; | 
|  | State = GetRegAndSubreg(Inst); | 
|  | }; | 
|  |  | 
|  | // Helper lambda to apply additional subregister substitutions to a known | 
|  | // instruction/operand pair. Adds new (fake) substitutions so that we can | 
|  | // record the subregister. FIXME: this isn't very space efficient if multiple | 
|  | // values are tracked back through the same copies; cache something later. | 
|  | auto ApplySubregisters = | 
|  | [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { | 
|  | for (unsigned Subreg : reverse(SubregsSeen)) { | 
|  | // Fetch a new instruction number, not attached to an actual instruction. | 
|  | unsigned NewInstrNumber = getNewDebugInstrNum(); | 
|  | // Add a substitution from the "new" number to the known one, with a | 
|  | // qualifying subreg. | 
|  | makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); | 
|  | // Return the new number; to find the underlying value, consumers need to | 
|  | // deal with the qualifying subreg. | 
|  | P = {NewInstrNumber, 0}; | 
|  | } | 
|  | return P; | 
|  | }; | 
|  |  | 
|  | // If we managed to find the defining instruction after COPYs, return an | 
|  | // instruction / operand pair after adding subregister qualifiers. | 
|  | if (State.first.isVirtual()) { | 
|  | // Virtual register def -- we can just look up where this happens. | 
|  | MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); | 
|  | for (auto &MO : Inst->all_defs()) { | 
|  | if (MO.getReg() != State.first) | 
|  | continue; | 
|  | return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Vreg def with no corresponding operand?"); | 
|  | } | 
|  |  | 
|  | // Our search ended in a copy from a physreg: walk back up the function | 
|  | // looking for whatever defines the physreg. | 
|  | assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); | 
|  | State = GetRegAndSubreg(*CurInst); | 
|  | Register RegToSeek = State.first; | 
|  |  | 
|  | auto RMII = CurInst->getReverseIterator(); | 
|  | auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); | 
|  | for (auto &ToExamine : PrevInstrs) { | 
|  | for (auto &MO : ToExamine.all_defs()) { | 
|  | // Test for operand that defines something aliasing RegToSeek. | 
|  | if (!TRI.regsOverlap(RegToSeek, MO.getReg())) | 
|  | continue; | 
|  |  | 
|  | return ApplySubregisters( | 
|  | {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock &InsertBB = *CurInst->getParent(); | 
|  |  | 
|  | // We reached the start of the block before finding a defining instruction. | 
|  | // There are numerous scenarios where this can happen: | 
|  | // * Constant physical registers, | 
|  | // * Several intrinsics that allow LLVM-IR to read arbitary registers, | 
|  | // * Arguments in the entry block, | 
|  | // * Exception handling landing pads. | 
|  | // Validating all of them is too difficult, so just insert a DBG_PHI reading | 
|  | // the variable value at this position, rather than checking it makes sense. | 
|  |  | 
|  | // Create DBG_PHI for specified physreg. | 
|  | auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), | 
|  | TII.get(TargetOpcode::DBG_PHI)); | 
|  | Builder.addReg(State.first); | 
|  | unsigned NewNum = getNewDebugInstrNum(); | 
|  | Builder.addImm(NewNum); | 
|  | return ApplySubregisters({NewNum, 0u}); | 
|  | } | 
|  |  | 
|  | void MachineFunction::finalizeDebugInstrRefs() { | 
|  | auto *TII = getSubtarget().getInstrInfo(); | 
|  |  | 
|  | auto MakeUndefDbgValue = [&](MachineInstr &MI) { | 
|  | const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); | 
|  | MI.setDesc(RefII); | 
|  | MI.setDebugValueUndef(); | 
|  | }; | 
|  |  | 
|  | DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; | 
|  | for (auto &MBB : *this) { | 
|  | for (auto &MI : MBB) { | 
|  | if (!MI.isDebugRef()) | 
|  | continue; | 
|  |  | 
|  | bool IsValidRef = true; | 
|  |  | 
|  | for (MachineOperand &MO : MI.debug_operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  |  | 
|  | // Some vregs can be deleted as redundant in the meantime. Mark those | 
|  | // as DBG_VALUE $noreg. Additionally, some normal instructions are | 
|  | // quickly deleted, leaving dangling references to vregs with no def. | 
|  | if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { | 
|  | IsValidRef = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(Reg.isVirtual()); | 
|  | MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); | 
|  |  | 
|  | // If we've found a copy-like instruction, follow it back to the | 
|  | // instruction that defines the source value, see salvageCopySSA docs | 
|  | // for why this is important. | 
|  | if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { | 
|  | auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); | 
|  | MO.ChangeToDbgInstrRef(Result.first, Result.second); | 
|  | } else { | 
|  | // Otherwise, identify the operand number that the VReg refers to. | 
|  | unsigned OperandIdx = 0; | 
|  | for (const auto &DefMO : DefMI.operands()) { | 
|  | if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) | 
|  | break; | 
|  | ++OperandIdx; | 
|  | } | 
|  | assert(OperandIdx < DefMI.getNumOperands()); | 
|  |  | 
|  | // Morph this instr ref to point at the given instruction and operand. | 
|  | unsigned ID = DefMI.getDebugInstrNum(); | 
|  | MO.ChangeToDbgInstrRef(ID, OperandIdx); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!IsValidRef) | 
|  | MakeUndefDbgValue(MI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MachineFunction::shouldUseDebugInstrRef() const { | 
|  | // Disable instr-ref at -O0: it's very slow (in compile time). We can still | 
|  | // have optimized code inlined into this unoptimized code, however with | 
|  | // fewer and less aggressive optimizations happening, coverage and accuracy | 
|  | // should not suffer. | 
|  | if (getTarget().getOptLevel() == CodeGenOptLevel::None) | 
|  | return false; | 
|  |  | 
|  | // Don't use instr-ref if this function is marked optnone. | 
|  | if (F.hasFnAttribute(Attribute::OptimizeNone)) | 
|  | return false; | 
|  |  | 
|  | if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineFunction::useDebugInstrRef() const { | 
|  | return UseDebugInstrRef; | 
|  | } | 
|  |  | 
|  | void MachineFunction::setUseDebugInstrRef(bool Use) { | 
|  | UseDebugInstrRef = Use; | 
|  | } | 
|  |  | 
|  | // Use one million as a high / reserved number. | 
|  | const unsigned MachineFunction::DebugOperandMemNumber = 1000000; | 
|  |  | 
|  | /// \} | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  MachineJumpTableInfo implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Return the size of each entry in the jump table. | 
|  | unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { | 
|  | // The size of a jump table entry is 4 bytes unless the entry is just the | 
|  | // address of a block, in which case it is the pointer size. | 
|  | switch (getEntryKind()) { | 
|  | case MachineJumpTableInfo::EK_BlockAddress: | 
|  | return TD.getPointerSize(); | 
|  | case MachineJumpTableInfo::EK_GPRel64BlockAddress: | 
|  | case MachineJumpTableInfo::EK_LabelDifference64: | 
|  | return 8; | 
|  | case MachineJumpTableInfo::EK_GPRel32BlockAddress: | 
|  | case MachineJumpTableInfo::EK_LabelDifference32: | 
|  | case MachineJumpTableInfo::EK_Custom32: | 
|  | return 4; | 
|  | case MachineJumpTableInfo::EK_Inline: | 
|  | return 0; | 
|  | } | 
|  | llvm_unreachable("Unknown jump table encoding!"); | 
|  | } | 
|  |  | 
|  | /// Return the alignment of each entry in the jump table. | 
|  | unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { | 
|  | // The alignment of a jump table entry is the alignment of int32 unless the | 
|  | // entry is just the address of a block, in which case it is the pointer | 
|  | // alignment. | 
|  | switch (getEntryKind()) { | 
|  | case MachineJumpTableInfo::EK_BlockAddress: | 
|  | return TD.getPointerABIAlignment(0).value(); | 
|  | case MachineJumpTableInfo::EK_GPRel64BlockAddress: | 
|  | case MachineJumpTableInfo::EK_LabelDifference64: | 
|  | return TD.getABIIntegerTypeAlignment(64).value(); | 
|  | case MachineJumpTableInfo::EK_GPRel32BlockAddress: | 
|  | case MachineJumpTableInfo::EK_LabelDifference32: | 
|  | case MachineJumpTableInfo::EK_Custom32: | 
|  | return TD.getABIIntegerTypeAlignment(32).value(); | 
|  | case MachineJumpTableInfo::EK_Inline: | 
|  | return 1; | 
|  | } | 
|  | llvm_unreachable("Unknown jump table encoding!"); | 
|  | } | 
|  |  | 
|  | /// Create a new jump table entry in the jump table info. | 
|  | unsigned MachineJumpTableInfo::createJumpTableIndex( | 
|  | const std::vector<MachineBasicBlock*> &DestBBs) { | 
|  | assert(!DestBBs.empty() && "Cannot create an empty jump table!"); | 
|  | JumpTables.push_back(MachineJumpTableEntry(DestBBs)); | 
|  | return JumpTables.size()-1; | 
|  | } | 
|  |  | 
|  | /// If Old is the target of any jump tables, update the jump tables to branch | 
|  | /// to New instead. | 
|  | bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, | 
|  | MachineBasicBlock *New) { | 
|  | assert(Old != New && "Not making a change?"); | 
|  | bool MadeChange = false; | 
|  | for (size_t i = 0, e = JumpTables.size(); i != e; ++i) | 
|  | ReplaceMBBInJumpTable(i, Old, New); | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// If MBB is present in any jump tables, remove it. | 
|  | bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { | 
|  | bool MadeChange = false; | 
|  | for (MachineJumpTableEntry &JTE : JumpTables) { | 
|  | auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); | 
|  | MadeChange |= (removeBeginItr != JTE.MBBs.end()); | 
|  | JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// If Old is a target of the jump tables, update the jump table to branch to | 
|  | /// New instead. | 
|  | bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, | 
|  | MachineBasicBlock *Old, | 
|  | MachineBasicBlock *New) { | 
|  | assert(Old != New && "Not making a change?"); | 
|  | bool MadeChange = false; | 
|  | MachineJumpTableEntry &JTE = JumpTables[Idx]; | 
|  | for (MachineBasicBlock *&MBB : JTE.MBBs) | 
|  | if (MBB == Old) { | 
|  | MBB = New; | 
|  | MadeChange = true; | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | void MachineJumpTableInfo::print(raw_ostream &OS) const { | 
|  | if (JumpTables.empty()) return; | 
|  |  | 
|  | OS << "Jump Tables:\n"; | 
|  |  | 
|  | for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { | 
|  | OS << printJumpTableEntryReference(i) << ':'; | 
|  | for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) | 
|  | OS << ' ' << printMBBReference(*MBB); | 
|  | if (i != e) | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | OS << '\n'; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } | 
|  | #endif | 
|  |  | 
|  | Printable llvm::printJumpTableEntryReference(unsigned Idx) { | 
|  | return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  MachineConstantPool implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void MachineConstantPoolValue::anchor() {} | 
|  |  | 
|  | unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { | 
|  | return DL.getTypeAllocSize(Ty); | 
|  | } | 
|  |  | 
|  | unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { | 
|  | if (isMachineConstantPoolEntry()) | 
|  | return Val.MachineCPVal->getSizeInBytes(DL); | 
|  | return DL.getTypeAllocSize(Val.ConstVal->getType()); | 
|  | } | 
|  |  | 
|  | bool MachineConstantPoolEntry::needsRelocation() const { | 
|  | if (isMachineConstantPoolEntry()) | 
|  | return true; | 
|  | return Val.ConstVal->needsDynamicRelocation(); | 
|  | } | 
|  |  | 
|  | SectionKind | 
|  | MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { | 
|  | if (needsRelocation()) | 
|  | return SectionKind::getReadOnlyWithRel(); | 
|  | switch (getSizeInBytes(*DL)) { | 
|  | case 4: | 
|  | return SectionKind::getMergeableConst4(); | 
|  | case 8: | 
|  | return SectionKind::getMergeableConst8(); | 
|  | case 16: | 
|  | return SectionKind::getMergeableConst16(); | 
|  | case 32: | 
|  | return SectionKind::getMergeableConst32(); | 
|  | default: | 
|  | return SectionKind::getReadOnly(); | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineConstantPool::~MachineConstantPool() { | 
|  | // A constant may be a member of both Constants and MachineCPVsSharingEntries, | 
|  | // so keep track of which we've deleted to avoid double deletions. | 
|  | DenseSet<MachineConstantPoolValue*> Deleted; | 
|  | for (const MachineConstantPoolEntry &C : Constants) | 
|  | if (C.isMachineConstantPoolEntry()) { | 
|  | Deleted.insert(C.Val.MachineCPVal); | 
|  | delete C.Val.MachineCPVal; | 
|  | } | 
|  | for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { | 
|  | if (Deleted.count(CPV) == 0) | 
|  | delete CPV; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Test whether the given two constants can be allocated the same constant pool | 
|  | /// entry referenced by \param A. | 
|  | static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, | 
|  | const DataLayout &DL) { | 
|  | // Handle the trivial case quickly. | 
|  | if (A == B) return true; | 
|  |  | 
|  | // If they have the same type but weren't the same constant, quickly | 
|  | // reject them. | 
|  | if (A->getType() == B->getType()) return false; | 
|  |  | 
|  | // We can't handle structs or arrays. | 
|  | if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || | 
|  | isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) | 
|  | return false; | 
|  |  | 
|  | // For now, only support constants with the same size. | 
|  | uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); | 
|  | if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) | 
|  | return false; | 
|  |  | 
|  | bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); | 
|  |  | 
|  | Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); | 
|  |  | 
|  | // Try constant folding a bitcast of both instructions to an integer.  If we | 
|  | // get two identical ConstantInt's, then we are good to share them.  We use | 
|  | // the constant folding APIs to do this so that we get the benefit of | 
|  | // DataLayout. | 
|  | if (isa<PointerType>(A->getType())) | 
|  | A = ConstantFoldCastOperand(Instruction::PtrToInt, | 
|  | const_cast<Constant *>(A), IntTy, DL); | 
|  | else if (A->getType() != IntTy) | 
|  | A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), | 
|  | IntTy, DL); | 
|  | if (isa<PointerType>(B->getType())) | 
|  | B = ConstantFoldCastOperand(Instruction::PtrToInt, | 
|  | const_cast<Constant *>(B), IntTy, DL); | 
|  | else if (B->getType() != IntTy) | 
|  | B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), | 
|  | IntTy, DL); | 
|  |  | 
|  | if (A != B) | 
|  | return false; | 
|  |  | 
|  | // Constants only safely match if A doesn't contain undef/poison. | 
|  | // As we'll be reusing A, it doesn't matter if B contain undef/poison. | 
|  | // TODO: Handle cases where A and B have the same undef/poison elements. | 
|  | // TODO: Merge A and B with mismatching undef/poison elements. | 
|  | return !ContainsUndefOrPoisonA; | 
|  | } | 
|  |  | 
|  | /// Create a new entry in the constant pool or return an existing one. | 
|  | /// User must specify the log2 of the minimum required alignment for the object. | 
|  | unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, | 
|  | Align Alignment) { | 
|  | if (Alignment > PoolAlignment) PoolAlignment = Alignment; | 
|  |  | 
|  | // Check to see if we already have this constant. | 
|  | // | 
|  | // FIXME, this could be made much more efficient for large constant pools. | 
|  | for (unsigned i = 0, e = Constants.size(); i != e; ++i) | 
|  | if (!Constants[i].isMachineConstantPoolEntry() && | 
|  | CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { | 
|  | if (Constants[i].getAlign() < Alignment) | 
|  | Constants[i].Alignment = Alignment; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | Constants.push_back(MachineConstantPoolEntry(C, Alignment)); | 
|  | return Constants.size()-1; | 
|  | } | 
|  |  | 
|  | unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, | 
|  | Align Alignment) { | 
|  | if (Alignment > PoolAlignment) PoolAlignment = Alignment; | 
|  |  | 
|  | // Check to see if we already have this constant. | 
|  | // | 
|  | // FIXME, this could be made much more efficient for large constant pools. | 
|  | int Idx = V->getExistingMachineCPValue(this, Alignment); | 
|  | if (Idx != -1) { | 
|  | MachineCPVsSharingEntries.insert(V); | 
|  | return (unsigned)Idx; | 
|  | } | 
|  |  | 
|  | Constants.push_back(MachineConstantPoolEntry(V, Alignment)); | 
|  | return Constants.size()-1; | 
|  | } | 
|  |  | 
|  | void MachineConstantPool::print(raw_ostream &OS) const { | 
|  | if (Constants.empty()) return; | 
|  |  | 
|  | OS << "Constant Pool:\n"; | 
|  | for (unsigned i = 0, e = Constants.size(); i != e; ++i) { | 
|  | OS << "  cp#" << i << ": "; | 
|  | if (Constants[i].isMachineConstantPoolEntry()) | 
|  | Constants[i].Val.MachineCPVal->print(OS); | 
|  | else | 
|  | Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); | 
|  | OS << ", align=" << Constants[i].getAlign().value(); | 
|  | OS << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Template specialization for MachineFunction implementation of | 
|  | // ProfileSummaryInfo::getEntryCount(). | 
|  | //===----------------------------------------------------------------------===// | 
|  | template <> | 
|  | std::optional<Function::ProfileCount> | 
|  | ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( | 
|  | const llvm::MachineFunction *F) const { | 
|  | return F->getFunction().getEntryCount(); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } | 
|  | #endif |