|  | //===--- NewDeleteOverloadsCheck.cpp - clang-tidy--------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "NewDeleteOverloadsCheck.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/ASTMatchers/ASTMatchFinder.h" | 
|  |  | 
|  | using namespace clang::ast_matchers; | 
|  |  | 
|  | namespace clang::tidy::misc { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | AST_MATCHER(FunctionDecl, isPlacementOverload) { | 
|  | bool New = false; | 
|  | switch (Node.getOverloadedOperator()) { | 
|  | default: | 
|  | return false; | 
|  | case OO_New: | 
|  | case OO_Array_New: | 
|  | New = true; | 
|  | break; | 
|  | case OO_Delete: | 
|  | case OO_Array_Delete: | 
|  | New = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Variadic functions are always placement functions. | 
|  | if (Node.isVariadic()) | 
|  | return true; | 
|  |  | 
|  | // Placement new is easy: it always has more than one parameter (the first | 
|  | // parameter is always the size). If it's an overload of delete or delete[] | 
|  | // that has only one parameter, it's never a placement delete. | 
|  | if (New) | 
|  | return Node.getNumParams() > 1; | 
|  | if (Node.getNumParams() == 1) | 
|  | return false; | 
|  |  | 
|  | // Placement delete is a little more challenging. They always have more than | 
|  | // one parameter with the first parameter being a pointer. However, the | 
|  | // second parameter can be a size_t for sized deallocation, and that is never | 
|  | // a placement delete operator. | 
|  | if (Node.getNumParams() <= 1 || Node.getNumParams() > 2) | 
|  | return true; | 
|  |  | 
|  | const auto *FPT = Node.getType()->castAs<FunctionProtoType>(); | 
|  | ASTContext &Ctx = Node.getASTContext(); | 
|  | if (Ctx.getLangOpts().SizedDeallocation && | 
|  | Ctx.hasSameType(FPT->getParamType(1), Ctx.getSizeType())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | OverloadedOperatorKind getCorrespondingOverload(const FunctionDecl *FD) { | 
|  | switch (FD->getOverloadedOperator()) { | 
|  | default: | 
|  | break; | 
|  | case OO_New: | 
|  | return OO_Delete; | 
|  | case OO_Delete: | 
|  | return OO_New; | 
|  | case OO_Array_New: | 
|  | return OO_Array_Delete; | 
|  | case OO_Array_Delete: | 
|  | return OO_Array_New; | 
|  | } | 
|  | llvm_unreachable("Not an overloaded allocation operator"); | 
|  | } | 
|  |  | 
|  | const char *getOperatorName(OverloadedOperatorKind K) { | 
|  | switch (K) { | 
|  | default: | 
|  | break; | 
|  | case OO_New: | 
|  | return "operator new"; | 
|  | case OO_Delete: | 
|  | return "operator delete"; | 
|  | case OO_Array_New: | 
|  | return "operator new[]"; | 
|  | case OO_Array_Delete: | 
|  | return "operator delete[]"; | 
|  | } | 
|  | llvm_unreachable("Not an overloaded allocation operator"); | 
|  | } | 
|  |  | 
|  | bool areCorrespondingOverloads(const FunctionDecl *LHS, | 
|  | const FunctionDecl *RHS) { | 
|  | return RHS->getOverloadedOperator() == getCorrespondingOverload(LHS); | 
|  | } | 
|  |  | 
|  | bool hasCorrespondingOverloadInBaseClass(const CXXMethodDecl *MD, | 
|  | const CXXRecordDecl *RD = nullptr) { | 
|  | if (RD) { | 
|  | // Check the methods in the given class and accessible to derived classes. | 
|  | for (const auto *BMD : RD->methods()) | 
|  | if (BMD->isOverloadedOperator() && BMD->getAccess() != AS_private && | 
|  | areCorrespondingOverloads(MD, BMD)) | 
|  | return true; | 
|  | } else { | 
|  | // Get the parent class of the method; we do not need to care about checking | 
|  | // the methods in this class as the caller has already done that by looking | 
|  | // at the declaration contexts. | 
|  | RD = MD->getParent(); | 
|  | } | 
|  |  | 
|  | for (const auto &BS : RD->bases()) { | 
|  | // We can't say much about a dependent base class, but to avoid false | 
|  | // positives assume it can have a corresponding overload. | 
|  | if (BS.getType()->isDependentType()) | 
|  | return true; | 
|  | if (const auto *BaseRD = BS.getType()->getAsCXXRecordDecl()) | 
|  | if (hasCorrespondingOverloadInBaseClass(MD, BaseRD)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | } // anonymous namespace | 
|  |  | 
|  | void NewDeleteOverloadsCheck::registerMatchers(MatchFinder *Finder) { | 
|  | // Match all operator new and operator delete overloads (including the array | 
|  | // forms). Do not match implicit operators, placement operators, or | 
|  | // deleted/private operators. | 
|  | // | 
|  | // Technically, trivially-defined operator delete seems like a reasonable | 
|  | // thing to also skip. e.g., void operator delete(void *) {} | 
|  | // However, I think it's more reasonable to warn in this case as the user | 
|  | // should really be writing that as a deleted function. | 
|  | Finder->addMatcher( | 
|  | functionDecl(unless(anyOf(isImplicit(), isPlacementOverload(), | 
|  | isDeleted(), cxxMethodDecl(isPrivate()))), | 
|  | anyOf(hasOverloadedOperatorName("new"), | 
|  | hasOverloadedOperatorName("new[]"), | 
|  | hasOverloadedOperatorName("delete"), | 
|  | hasOverloadedOperatorName("delete[]"))) | 
|  | .bind("func"), | 
|  | this); | 
|  | } | 
|  |  | 
|  | void NewDeleteOverloadsCheck::check(const MatchFinder::MatchResult &Result) { | 
|  | // Add any matches we locate to the list of things to be checked at the | 
|  | // end of the translation unit. | 
|  | const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func"); | 
|  | const CXXRecordDecl *RD = nullptr; | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) | 
|  | RD = MD->getParent(); | 
|  | Overloads[RD].push_back(FD); | 
|  | } | 
|  |  | 
|  | void NewDeleteOverloadsCheck::onEndOfTranslationUnit() { | 
|  | // Walk over the list of declarations we've found to see if there is a | 
|  | // corresponding overload at the same declaration context or within a base | 
|  | // class. If there is not, add the element to the list of declarations to | 
|  | // diagnose. | 
|  | SmallVector<const FunctionDecl *, 4> Diagnose; | 
|  | for (const auto &RP : Overloads) { | 
|  | // We don't care about the CXXRecordDecl key in the map; we use it as a way | 
|  | // to shard the overloads by declaration context to reduce the algorithmic | 
|  | // complexity when searching for corresponding free store functions. | 
|  | for (const auto *Overload : RP.second) { | 
|  | const auto *Match = | 
|  | std::find_if(RP.second.begin(), RP.second.end(), | 
|  | [&Overload](const FunctionDecl *FD) { | 
|  | if (FD == Overload) | 
|  | return false; | 
|  | // If the declaration contexts don't match, we don't | 
|  | // need to check any further. | 
|  | if (FD->getDeclContext() != Overload->getDeclContext()) | 
|  | return false; | 
|  |  | 
|  | // Since the declaration contexts match, see whether | 
|  | // the current element is the corresponding operator. | 
|  | if (!areCorrespondingOverloads(Overload, FD)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | }); | 
|  |  | 
|  | if (Match == RP.second.end()) { | 
|  | // Check to see if there is a corresponding overload in a base class | 
|  | // context. If there isn't, or if the overload is not a class member | 
|  | // function, then we should diagnose. | 
|  | const auto *MD = dyn_cast<CXXMethodDecl>(Overload); | 
|  | if (!MD || !hasCorrespondingOverloadInBaseClass(MD)) | 
|  | Diagnose.push_back(Overload); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto *FD : Diagnose) | 
|  | diag(FD->getLocation(), "declaration of %0 has no matching declaration " | 
|  | "of '%1' at the same scope") | 
|  | << FD << getOperatorName(getCorrespondingOverload(FD)); | 
|  | } | 
|  |  | 
|  | } // namespace clang::tidy::misc |