| //==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // TODO: Most floating-point instructions (except for simple moves and the | 
 | // like) can raise exceptions -- should they have hasSideEffects=1 ? | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Select instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // C's ?: operator for floating-point operands. | 
 | let Predicates = [FeatureVector] in { | 
 |   def SelectVR32 : SelectWrapper<f32, VR32>; | 
 |   def SelectVR64 : SelectWrapper<f64, VR64>; | 
 | } | 
 | def SelectF32  : SelectWrapper<f32, FP32>; | 
 | def SelectF64  : SelectWrapper<f64, FP64>; | 
 | let Predicates = [FeatureNoVectorEnhancements1] in | 
 |   def SelectF128 : SelectWrapper<f128, FP128>; | 
 | let Predicates = [FeatureVectorEnhancements1] in | 
 |   def SelectVR128 : SelectWrapper<f128, VR128>; | 
 |  | 
 | defm CondStoreF32 : CondStores<FP32, simple_store, | 
 |                                simple_load, bdxaddr20only>; | 
 | defm CondStoreF64 : CondStores<FP64, simple_store, | 
 |                                simple_load, bdxaddr20only>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Move instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Load zero. | 
 | let isAsCheapAsAMove = 1, isMoveImm = 1 in { | 
 |   def LZER : InherentRRE<"lzer", 0xB374, FP32,  fpimm0>; | 
 |   def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  fpimm0>; | 
 |   def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>; | 
 | } | 
 |  | 
 | // Moves between two floating-point registers. | 
 | def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>; | 
 | def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>; | 
 | def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>; | 
 |  | 
 | // For z13 we prefer LDR over LER to avoid partial register dependencies. | 
 | let isCodeGenOnly = 1 in | 
 |   def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>; | 
 |  | 
 | // Moves between two floating-point registers that also set the condition | 
 | // codes. | 
 | let Uses = [FPC], mayRaiseFPException = 1, | 
 |     Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { | 
 |   defm LTEBR : LoadAndTestRRE<"ltebr", 0xB302, FP32>; | 
 |   defm LTDBR : LoadAndTestRRE<"ltdbr", 0xB312, FP64>; | 
 |   defm LTXBR : LoadAndTestRRE<"ltxbr", 0xB342, FP128>; | 
 | } | 
 | // Note that LTxBRCompare is not available if we have vector support, | 
 | // since load-and-test instructions will partially clobber the target | 
 | // (vector) register. | 
 | let Predicates = [FeatureNoVector] in { | 
 |   defm : CompareZeroFP<LTEBRCompare, FP32>; | 
 |   defm : CompareZeroFP<LTDBRCompare, FP64>; | 
 |   defm : CompareZeroFP<LTXBRCompare, FP128>; | 
 | } | 
 |  | 
 | // Use a normal load-and-test for compare against zero in case of | 
 | // vector support (via a pseudo to simplify instruction selection). | 
 | let Uses = [FPC], mayRaiseFPException = 1, | 
 |     Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in { | 
 |   def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>; | 
 |   def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>; | 
 |   def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>; | 
 | } | 
 | let Predicates = [FeatureVector] in { | 
 |   defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>; | 
 |   defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>; | 
 | } | 
 | let Predicates = [FeatureVector, FeatureNoVectorEnhancements1] in | 
 |   defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>; | 
 |  | 
 | // Moves between 64-bit integer and floating-point registers. | 
 | def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>; | 
 | def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>; | 
 |  | 
 | // fcopysign with an FP32 result. | 
 | let isCodeGenOnly = 1 in { | 
 |   def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>; | 
 |   def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>; | 
 | } | 
 |  | 
 | // The sign of an FP128 is in the high register. | 
 | let Predicates = [FeatureNoVectorEnhancements1] in | 
 |   def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))), | 
 |             (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; | 
 | let Predicates = [FeatureVectorEnhancements1] in | 
 |   def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))), | 
 |             (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>; | 
 |  | 
 | // fcopysign with an FP64 result. | 
 | let isCodeGenOnly = 1 in | 
 |   def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>; | 
 | def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>; | 
 |  | 
 | // The sign of an FP128 is in the high register. | 
 | let Predicates = [FeatureNoVectorEnhancements1] in | 
 |   def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))), | 
 |             (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; | 
 | let Predicates = [FeatureVectorEnhancements1] in | 
 |   def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))), | 
 |             (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>; | 
 |  | 
 | // fcopysign with an FP128 result.  Use "upper" as the high half and leave | 
 | // the low half as-is. | 
 | class CopySign128<RegisterOperand cls, dag upper> | 
 |   : Pat<(fcopysign FP128:$src1, cls:$src2), | 
 |         (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>; | 
 |  | 
 | let Predicates = [FeatureNoVectorEnhancements1] in { | 
 |   def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64), | 
 |                                     FP32:$src2)>; | 
 |   def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), | 
 |                                     FP64:$src2)>; | 
 |   def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), | 
 |                                     (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; | 
 | } | 
 |  | 
 | // The length is given as one less for MVCImm. | 
 | defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCImm, 3>; | 
 | defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCImm, 7>; | 
 | defm LoadStoreF128 : MVCLoadStore<load, f128, MVCImm, 15>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Load instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in { | 
 |   defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>; | 
 |   defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>; | 
 |  | 
 |   // For z13 we prefer LDE over LE to avoid partial register dependencies. | 
 |   let isCodeGenOnly = 1 in | 
 |     def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>; | 
 |  | 
 |   // These instructions are split after register allocation, so we don't | 
 |   // want a custom inserter. | 
 |   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { | 
 |     def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src), | 
 |                      [(set FP128:$dst, (load bdxaddr20only128:$src))]>; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Store instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | let SimpleBDXStore = 1, mayStore = 1 in { | 
 |   defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>; | 
 |   defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>; | 
 |  | 
 |   // These instructions are split after register allocation, so we don't | 
 |   // want a custom inserter. | 
 |   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { | 
 |     def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst), | 
 |                      [(store FP128:$src, bdxaddr20only128:$dst)]>; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Conversion instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Convert floating-point values to narrower representations, rounding | 
 | // according to the current mode.  The destination of LEXBR and LDXBR | 
 | // is a 128-bit value, but only the first register of the pair is used. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def LEDBR : UnaryRRE<"ledbr", 0xB344, any_fpround, FP32, FP64>; | 
 |   def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>; | 
 |   def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>; | 
 |  | 
 |   def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32,  FP64>, | 
 |                Requires<[FeatureFPExtension]>; | 
 |   def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>, | 
 |                Requires<[FeatureFPExtension]>; | 
 |   def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>, | 
 |                Requires<[FeatureFPExtension]>; | 
 | } | 
 |  | 
 | let Predicates = [FeatureNoVectorEnhancements1] in { | 
 |   def : Pat<(f32 (any_fpround FP128:$src)), | 
 |             (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_h32)>; | 
 |   def : Pat<(f64 (any_fpround FP128:$src)), | 
 |             (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>; | 
 | } | 
 |  | 
 | // Extend register floating-point values to wider representations. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def LDEBR : UnaryRRE<"ldebr", 0xB304, any_fpextend, FP64, FP32>; | 
 |   def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>; | 
 |   def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>; | 
 | } | 
 | let Predicates = [FeatureNoVectorEnhancements1] in { | 
 |   def : Pat<(f128 (any_fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>; | 
 |   def : Pat<(f128 (any_fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>; | 
 | } | 
 |  | 
 | // Extend memory floating-point values to wider representations. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def LDEB : UnaryRXE<"ldeb", 0xED04, any_extloadf32, FP64, 4>; | 
 |   def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag, FP128, 4>; | 
 |   def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag, FP128, 8>; | 
 | } | 
 | let Predicates = [FeatureNoVectorEnhancements1] in { | 
 |   def : Pat<(f128 (any_extloadf32 bdxaddr12only:$src)), | 
 |             (LXEB bdxaddr12only:$src)>; | 
 |   def : Pat<(f128 (any_extloadf64 bdxaddr12only:$src)), | 
 |             (LXDB bdxaddr12only:$src)>; | 
 | } | 
 |  | 
 | // Convert a signed integer register value to a floating-point one. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def CEFBR : UnaryRRE<"cefbr", 0xB394, any_sint_to_fp, FP32,  GR32>; | 
 |   def CDFBR : UnaryRRE<"cdfbr", 0xB395, any_sint_to_fp, FP64,  GR32>; | 
 |   def CXFBR : UnaryRRE<"cxfbr", 0xB396, any_sint_to_fp, FP128, GR32>; | 
 |  | 
 |   def CEGBR : UnaryRRE<"cegbr", 0xB3A4, any_sint_to_fp, FP32,  GR64>; | 
 |   def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, any_sint_to_fp, FP64,  GR64>; | 
 |   def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, any_sint_to_fp, FP128, GR64>; | 
 | } | 
 |  | 
 | // The FP extension feature provides versions of the above that allow | 
 | // specifying rounding mode and inexact-exception suppression flags. | 
 | let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureFPExtension] in { | 
 |   def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32,  GR32>; | 
 |   def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64,  GR32>; | 
 |   def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>; | 
 |  | 
 |   def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32,  GR64>; | 
 |   def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64,  GR64>; | 
 |   def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>; | 
 | } | 
 |  | 
 | // Convert am unsigned integer register value to a floating-point one. | 
 | let Predicates = [FeatureFPExtension] in { | 
 |   let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |     def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32,  GR32>; | 
 |     def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64,  GR32>; | 
 |     def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>; | 
 |  | 
 |     def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32,  GR64>; | 
 |     def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64,  GR64>; | 
 |     def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>; | 
 |   } | 
 |  | 
 |   def : Pat<(f32  (any_uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>; | 
 |   def : Pat<(f64  (any_uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>; | 
 |   def : Pat<(f128 (any_uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>; | 
 |  | 
 |   def : Pat<(f32  (any_uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>; | 
 |   def : Pat<(f64  (any_uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>; | 
 |   def : Pat<(f128 (any_uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>; | 
 | } | 
 |  | 
 | // Convert a floating-point register value to a signed integer value, | 
 | // with the second operand (modifier M3) specifying the rounding mode. | 
 | let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { | 
 |   def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>; | 
 |   def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>; | 
 |   def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>; | 
 |  | 
 |   def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>; | 
 |   def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>; | 
 |   def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>; | 
 | } | 
 |  | 
 | // fp_to_sint always rounds towards zero, which is modifier value 5. | 
 | def : Pat<(i32 (any_fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>; | 
 | def : Pat<(i32 (any_fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>; | 
 | def : Pat<(i32 (any_fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>; | 
 |  | 
 | def : Pat<(i64 (any_fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>; | 
 | def : Pat<(i64 (any_fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>; | 
 | def : Pat<(i64 (any_fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>; | 
 |  | 
 | // The FP extension feature provides versions of the above that allow | 
 | // also specifying the inexact-exception suppression flag. | 
 | let Uses = [FPC], mayRaiseFPException = 1, | 
 |     Predicates = [FeatureFPExtension], Defs = [CC] in { | 
 |   def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>; | 
 |   def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>; | 
 |   def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>; | 
 |  | 
 |   def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>; | 
 |   def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>; | 
 |   def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>; | 
 | } | 
 |  | 
 | // Convert a floating-point register value to an unsigned integer value. | 
 | let Predicates = [FeatureFPExtension] in { | 
 |   let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { | 
 |     def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>; | 
 |     def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>; | 
 |     def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>; | 
 |  | 
 |     def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>; | 
 |     def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>; | 
 |     def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>; | 
 |   } | 
 |  | 
 |   def : Pat<(i32 (any_fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>; | 
 |   def : Pat<(i32 (any_fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>; | 
 |   def : Pat<(i32 (any_fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>; | 
 |  | 
 |   def : Pat<(i64 (any_fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>; | 
 |   def : Pat<(i64 (any_fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>; | 
 |   def : Pat<(i64 (any_fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>; | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Unary arithmetic | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // We prefer generic instructions during isel, because they do not | 
 | // clobber CC and therefore give the scheduler more freedom. In cases | 
 | // the CC is actually useful, the SystemZElimCompare pass will try to | 
 | // convert generic instructions into opcodes that also set CC. Note | 
 | // that lcdf / lpdf / lndf only affect the sign bit, and can therefore | 
 | // be used with fp32 as well. This could be done for fp128, in which | 
 | // case the operands would have to be tied. | 
 |  | 
 | // Negation (Load Complement). | 
 | let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { | 
 |   def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32,  FP32>; | 
 |   def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64,  FP64>; | 
 |   def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>; | 
 | } | 
 | // Generic form, which does not set CC. | 
 | def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64,  FP64>; | 
 | let isCodeGenOnly = 1 in | 
 |   def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32,  FP32>; | 
 |  | 
 | // Absolute value (Load Positive). | 
 | let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { | 
 |   def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32,  FP32>; | 
 |   def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64,  FP64>; | 
 |   def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>; | 
 | } | 
 | // Generic form, which does not set CC. | 
 | def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64,  FP64>; | 
 | let isCodeGenOnly = 1 in | 
 |   def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32,  FP32>; | 
 |  | 
 | // Negative absolute value (Load Negative). | 
 | let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { | 
 |   def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32,  FP32>; | 
 |   def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64,  FP64>; | 
 |   def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>; | 
 | } | 
 | // Generic form, which does not set CC. | 
 | def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64,  FP64>; | 
 | let isCodeGenOnly = 1 in | 
 |   def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32,  FP32>; | 
 |  | 
 | // Square root. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def SQEBR : UnaryRRE<"sqebr", 0xB314, any_fsqrt, FP32,  FP32>; | 
 |   def SQDBR : UnaryRRE<"sqdbr", 0xB315, any_fsqrt, FP64,  FP64>; | 
 |   def SQXBR : UnaryRRE<"sqxbr", 0xB316, any_fsqrt, FP128, FP128>; | 
 |  | 
 |   def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<any_fsqrt>, FP32, 4>; | 
 |   def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<any_fsqrt>, FP64, 8>; | 
 | } | 
 |  | 
 | // Round to an integer, with the second operand (modifier M3) specifying | 
 | // the rounding mode.  These forms always check for inexact conditions. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32,  FP32>; | 
 |   def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64,  FP64>; | 
 |   def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>; | 
 | } | 
 |  | 
 | // frint rounds according to the current mode (modifier 0) and detects | 
 | // inexact conditions. | 
 | def : Pat<(any_frint FP32:$src),  (FIEBR 0, FP32:$src)>; | 
 | def : Pat<(any_frint FP64:$src),  (FIDBR 0, FP64:$src)>; | 
 | def : Pat<(any_frint FP128:$src), (FIXBR 0, FP128:$src)>; | 
 |  | 
 | let Predicates = [FeatureFPExtension] in { | 
 |   // Extended forms of the FIxBR instructions.  M4 can be set to 4 | 
 |   // to suppress detection of inexact conditions. | 
 |   let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |     def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32,  FP32>; | 
 |     def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64,  FP64>; | 
 |     def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>; | 
 |   } | 
 |  | 
 |   // fnearbyint is like frint but does not detect inexact conditions. | 
 |   def : Pat<(any_fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>; | 
 |   def : Pat<(any_fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>; | 
 |   def : Pat<(any_fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>; | 
 |  | 
 |   // floor is no longer allowed to raise an inexact condition, | 
 |   // so restrict it to the cases where the condition can be suppressed. | 
 |   // Mode 7 is round towards -inf. | 
 |   def : Pat<(any_ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>; | 
 |   def : Pat<(any_ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>; | 
 |   def : Pat<(any_ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>; | 
 |  | 
 |   // Same idea for ceil, where mode 6 is round towards +inf. | 
 |   def : Pat<(any_fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>; | 
 |   def : Pat<(any_fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>; | 
 |   def : Pat<(any_fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>; | 
 |  | 
 |   // Same idea for trunc, where mode 5 is round towards zero. | 
 |   def : Pat<(any_ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>; | 
 |   def : Pat<(any_ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>; | 
 |   def : Pat<(any_ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>; | 
 |  | 
 |   // Same idea for round, where mode 1 is round towards nearest with | 
 |   // ties away from zero. | 
 |   def : Pat<(any_fround FP32:$src),  (FIEBRA 1, FP32:$src,  4)>; | 
 |   def : Pat<(any_fround FP64:$src),  (FIDBRA 1, FP64:$src,  4)>; | 
 |   def : Pat<(any_fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Binary arithmetic | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Addition. | 
 | let Uses = [FPC], mayRaiseFPException = 1, | 
 |     Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { | 
 |   let isCommutable = 1 in { | 
 |     def AEBR : BinaryRRE<"aebr", 0xB30A, any_fadd, FP32,  FP32>; | 
 |     def ADBR : BinaryRRE<"adbr", 0xB31A, any_fadd, FP64,  FP64>; | 
 |     def AXBR : BinaryRRE<"axbr", 0xB34A, any_fadd, FP128, FP128>; | 
 |   } | 
 |   defm AEB : BinaryRXEAndPseudo<"aeb", 0xED0A, any_fadd, FP32, load, 4>; | 
 |   defm ADB : BinaryRXEAndPseudo<"adb", 0xED1A, any_fadd, FP64, load, 8>; | 
 | } | 
 |  | 
 | // Subtraction. | 
 | let Uses = [FPC], mayRaiseFPException = 1, | 
 |     Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { | 
 |   def SEBR : BinaryRRE<"sebr", 0xB30B, any_fsub, FP32,  FP32>; | 
 |   def SDBR : BinaryRRE<"sdbr", 0xB31B, any_fsub, FP64,  FP64>; | 
 |   def SXBR : BinaryRRE<"sxbr", 0xB34B, any_fsub, FP128, FP128>; | 
 |  | 
 |   defm SEB : BinaryRXEAndPseudo<"seb",  0xED0B, any_fsub, FP32, load, 4>; | 
 |   defm SDB : BinaryRXEAndPseudo<"sdb",  0xED1B, any_fsub, FP64, load, 8>; | 
 | } | 
 |  | 
 | // Multiplication. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   let isCommutable = 1 in { | 
 |     def MEEBR : BinaryRRE<"meebr", 0xB317, any_fmul, FP32,  FP32>; | 
 |     def MDBR  : BinaryRRE<"mdbr",  0xB31C, any_fmul, FP64,  FP64>; | 
 |     def MXBR  : BinaryRRE<"mxbr",  0xB34C, any_fmul, FP128, FP128>; | 
 |   } | 
 |   defm MEEB : BinaryRXEAndPseudo<"meeb", 0xED17, any_fmul, FP32, load, 4>; | 
 |   defm MDB  : BinaryRXEAndPseudo<"mdb",  0xED1C, any_fmul, FP64, load, 8>; | 
 | } | 
 |  | 
 | // f64 multiplication of two FP32 registers. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in | 
 |   def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>; | 
 | def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)), | 
 |                     (f64 (any_fpextend FP32:$src2))), | 
 |           (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)), | 
 |                                 FP32:$src1, subreg_h32), FP32:$src2)>; | 
 |  | 
 | // f64 multiplication of an FP32 register and an f32 memory. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in | 
 |   def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>; | 
 | def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)), | 
 |                     (f64 (any_extloadf32 bdxaddr12only:$addr))), | 
 |           (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32), | 
 |                 bdxaddr12only:$addr)>; | 
 |  | 
 | // f128 multiplication of two FP64 registers. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in | 
 |   def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>; | 
 | let Predicates = [FeatureNoVectorEnhancements1] in | 
 |   def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)), | 
 |                       (f128 (any_fpextend FP64:$src2))), | 
 |             (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)), | 
 |                                   FP64:$src1, subreg_h64), FP64:$src2)>; | 
 |  | 
 | // f128 multiplication of an FP64 register and an f64 memory. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in | 
 |   def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>; | 
 | let Predicates = [FeatureNoVectorEnhancements1] in | 
 |   def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)), | 
 |                       (f128 (any_extloadf64 bdxaddr12only:$addr))), | 
 |             (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64), | 
 |                   bdxaddr12only:$addr)>; | 
 |  | 
 | // Fused multiply-add. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def MAEBR : TernaryRRD<"maebr", 0xB30E, z_any_fma, FP32, FP32>; | 
 |   def MADBR : TernaryRRD<"madbr", 0xB31E, z_any_fma, FP64, FP64>; | 
 |  | 
 |   defm MAEB : TernaryRXFAndPseudo<"maeb", 0xED0E, z_any_fma, FP32, FP32, load, 4>; | 
 |   defm MADB : TernaryRXFAndPseudo<"madb", 0xED1E, z_any_fma, FP64, FP64, load, 8>; | 
 | } | 
 |  | 
 | // Fused multiply-subtract. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def MSEBR : TernaryRRD<"msebr", 0xB30F, z_any_fms, FP32, FP32>; | 
 |   def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_any_fms, FP64, FP64>; | 
 |  | 
 |   defm MSEB : TernaryRXFAndPseudo<"mseb", 0xED0F, z_any_fms, FP32, FP32, load, 4>; | 
 |   defm MSDB : TernaryRXFAndPseudo<"msdb", 0xED1F, z_any_fms, FP64, FP64, load, 8>; | 
 | } | 
 |  | 
 | // Division. | 
 | let Uses = [FPC], mayRaiseFPException = 1 in { | 
 |   def DEBR : BinaryRRE<"debr", 0xB30D, any_fdiv, FP32,  FP32>; | 
 |   def DDBR : BinaryRRE<"ddbr", 0xB31D, any_fdiv, FP64,  FP64>; | 
 |   def DXBR : BinaryRRE<"dxbr", 0xB34D, any_fdiv, FP128, FP128>; | 
 |  | 
 |   defm DEB : BinaryRXEAndPseudo<"deb", 0xED0D, any_fdiv, FP32, load, 4>; | 
 |   defm DDB : BinaryRXEAndPseudo<"ddb", 0xED1D, any_fdiv, FP64, load, 8>; | 
 | } | 
 |  | 
 | // Divide to integer. | 
 | let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { | 
 |   def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>; | 
 |   def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Comparisons | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC], CCValues = 0xF in { | 
 |   def CEBR : CompareRRE<"cebr", 0xB309, z_any_fcmp, FP32,  FP32>; | 
 |   def CDBR : CompareRRE<"cdbr", 0xB319, z_any_fcmp, FP64,  FP64>; | 
 |   def CXBR : CompareRRE<"cxbr", 0xB349, z_any_fcmp, FP128, FP128>; | 
 |  | 
 |   def CEB : CompareRXE<"ceb", 0xED09, z_any_fcmp, FP32, load, 4>; | 
 |   def CDB : CompareRXE<"cdb", 0xED19, z_any_fcmp, FP64, load, 8>; | 
 |  | 
 |   def KEBR : CompareRRE<"kebr", 0xB308, z_strict_fcmps, FP32,  FP32>; | 
 |   def KDBR : CompareRRE<"kdbr", 0xB318, z_strict_fcmps, FP64,  FP64>; | 
 |   def KXBR : CompareRRE<"kxbr", 0xB348, z_strict_fcmps, FP128, FP128>; | 
 |  | 
 |   def KEB : CompareRXE<"keb", 0xED08, z_strict_fcmps, FP32, load, 4>; | 
 |   def KDB : CompareRXE<"kdb", 0xED18, z_strict_fcmps, FP64, load, 8>; | 
 | } | 
 |  | 
 | // Test Data Class. | 
 | let Defs = [CC], CCValues = 0xC in { | 
 |   def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>; | 
 |   def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>; | 
 |   def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Floating-point control register instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | let hasSideEffects = 1 in { | 
 |   let mayLoad = 1, mayStore = 1 in { | 
 |     // TODO: EFPC and SFPC do not touch memory at all | 
 |     let Uses = [FPC] in { | 
 |       def EFPC  : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>; | 
 |       def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>; | 
 |     } | 
 |  | 
 |     let Defs = [FPC] in { | 
 |       def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>; | 
 |       def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>; | 
 |     } | 
 |   } | 
 |  | 
 |   let Defs = [FPC], mayRaiseFPException = 1 in { | 
 |     def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>; | 
 |     def LFAS  : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>; | 
 |   } | 
 |  | 
 |   let Uses = [FPC], Defs = [FPC] in { | 
 |     def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>, | 
 |                 Requires<[FeatureFPExtension]>; | 
 |     def SRNM  : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>; | 
 |     def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Peepholes | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>; | 
 | def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>; | 
 | def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>; |