|  | /* | 
|  | * Copyright (c) 2014 Advanced Micro Devices, Inc. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
|  | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <clc/clc.h> | 
|  |  | 
|  | #include "config.h" | 
|  | #include "math.h" | 
|  | #include "tables.h" | 
|  | #include "../clcmacro.h" | 
|  |  | 
|  | // compute pow using log and exp | 
|  | // x^y = exp(y * log(x)) | 
|  | // | 
|  | // we take care not to lose precision in the intermediate steps | 
|  | // | 
|  | // When computing log, calculate it in splits, | 
|  | // | 
|  | // r = f * (p_invead + p_inv_tail) | 
|  | // r = rh + rt | 
|  | // | 
|  | // calculate log polynomial using r, in end addition, do | 
|  | // poly = poly + ((rh-r) + rt) | 
|  | // | 
|  | // lth = -r | 
|  | // ltt = ((xexp * log2_t) - poly) + logT | 
|  | // lt = lth + ltt | 
|  | // | 
|  | // lh = (xexp * log2_h) + logH | 
|  | // l = lh + lt | 
|  | // | 
|  | // Calculate final log answer as gh and gt, | 
|  | // gh = l & higher-half bits | 
|  | // gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh)) | 
|  | // | 
|  | // yh = y & higher-half bits | 
|  | // yt = y - yh | 
|  | // | 
|  | // Before entering computation of exp, | 
|  | // vs = ((yt*gt + yt*gh) + yh*gt) | 
|  | // v = vs + yh*gh | 
|  | // vt = ((yh*gh - v) + vs) | 
|  | // | 
|  | // In calculation of exp, add vt to r that is used for poly | 
|  | // At the end of exp, do | 
|  | // ((((expT * poly) + expT) + expH*poly) + expH) | 
|  |  | 
|  | _CLC_DEF _CLC_OVERLOAD float __clc_pown(float x, int ny) | 
|  | { | 
|  | float y = (float)ny; | 
|  |  | 
|  | int ix = as_int(x); | 
|  | int ax = ix & EXSIGNBIT_SP32; | 
|  | int xpos = ix == ax; | 
|  |  | 
|  | int iy = as_int(y); | 
|  | int ay = iy & EXSIGNBIT_SP32; | 
|  | int ypos = iy == ay; | 
|  |  | 
|  | // Extra precise log calculation | 
|  | // First handle case that x is close to 1 | 
|  | float r = 1.0f - as_float(ax); | 
|  | int near1 = fabs(r) < 0x1.0p-4f; | 
|  | float r2 = r*r; | 
|  |  | 
|  | // Coefficients are just 1/3, 1/4, 1/5 and 1/6 | 
|  | float poly = mad(r, | 
|  | mad(r, | 
|  | mad(r, | 
|  | mad(r, 0x1.24924ap-3f, 0x1.555556p-3f), | 
|  | 0x1.99999ap-3f), | 
|  | 0x1.000000p-2f), | 
|  | 0x1.555556p-2f); | 
|  |  | 
|  | poly *= r2*r; | 
|  |  | 
|  | float lth_near1 = -r2 * 0.5f; | 
|  | float ltt_near1 = -poly; | 
|  | float lt_near1 = lth_near1 + ltt_near1; | 
|  | float lh_near1 = -r; | 
|  | float l_near1 = lh_near1 + lt_near1; | 
|  |  | 
|  | // Computations for x not near 1 | 
|  | int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; | 
|  | float mf = (float)m; | 
|  | int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f); | 
|  | float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253); | 
|  | int c = m == -127; | 
|  | int ixn = c ? ixs : ax; | 
|  | float mfn = c ? mfs : mf; | 
|  |  | 
|  | int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1); | 
|  |  | 
|  | // F - Y | 
|  | float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32)); | 
|  |  | 
|  | indx = indx >> 16; | 
|  | float2 tv = USE_TABLE(log_inv_tbl_ep, indx); | 
|  | float rh = f * tv.s0; | 
|  | float rt = f * tv.s1; | 
|  | r = rh + rt; | 
|  |  | 
|  | poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r); | 
|  | poly += (rh - r) + rt; | 
|  |  | 
|  | const float LOG2_HEAD = 0x1.62e000p-1f;  // 0.693115234 | 
|  | const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833 | 
|  | tv = USE_TABLE(loge_tbl, indx); | 
|  | float lth = -r; | 
|  | float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1; | 
|  | float lt = lth + ltt; | 
|  | float lh = mad(mfn, LOG2_HEAD, tv.s0); | 
|  | float l = lh + lt; | 
|  |  | 
|  | // Select near 1 or not | 
|  | lth = near1 ? lth_near1 : lth; | 
|  | ltt = near1 ? ltt_near1 : ltt; | 
|  | lt = near1 ? lt_near1 : lt; | 
|  | lh = near1 ? lh_near1 : lh; | 
|  | l = near1 ? l_near1 : l; | 
|  |  | 
|  | float gh = as_float(as_int(l) & 0xfffff000); | 
|  | float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh); | 
|  |  | 
|  | float yh = as_float(iy & 0xfffff000); | 
|  |  | 
|  | float yt = (float)(ny - (int)yh); | 
|  |  | 
|  | float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt)); | 
|  | float ylogx = mad(yh, gh, ylogx_s); | 
|  | float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s; | 
|  |  | 
|  | // Extra precise exp of ylogx | 
|  | const float R_64_BY_LOG2 = 0x1.715476p+6f; // 64/log2 : 92.332482616893657 | 
|  | int n = convert_int(ylogx * R_64_BY_LOG2); | 
|  | float nf = (float) n; | 
|  |  | 
|  | int j = n & 0x3f; | 
|  | m = n >> 6; | 
|  | int m2 = m << EXPSHIFTBITS_SP32; | 
|  |  | 
|  | const float R_LOG2_BY_64_LD = 0x1.620000p-7f;  // log2/64 lead: 0.0108032227 | 
|  | const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; // log2/64 tail: 0.0000272020388 | 
|  | r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t; | 
|  |  | 
|  | // Truncated Taylor series for e^r | 
|  | poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r); | 
|  |  | 
|  | tv = USE_TABLE(exp_tbl_ep, j); | 
|  |  | 
|  | float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0; | 
|  | float sexpylogx = expylogx * as_float(0x1 << (m + 149)); | 
|  | float texpylogx = as_float(as_int(expylogx) + m2); | 
|  | expylogx = m < -125 ? sexpylogx : texpylogx; | 
|  |  | 
|  | // Result is +-Inf if (ylogx + ylogx_t) > 128*log2 | 
|  | expylogx = ((ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f)) ? as_float(PINFBITPATT_SP32) : expylogx; | 
|  |  | 
|  | // Result is 0 if ylogx < -149*log2 | 
|  | expylogx = ylogx <  -0x1.9d1da0p+6f ? 0.0f : expylogx; | 
|  |  | 
|  | // Classify y: | 
|  | //   inty = 0 means not an integer. | 
|  | //   inty = 1 means odd integer. | 
|  | //   inty = 2 means even integer. | 
|  |  | 
|  | int inty = 2 - (ny & 1); | 
|  |  | 
|  | float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32)); | 
|  | expylogx = ((inty == 1) & !xpos) ? signval : expylogx; | 
|  | int ret = as_int(expylogx); | 
|  |  | 
|  | // Corner case handling | 
|  | int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32; | 
|  | ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret; | 
|  | ret = ((ax == 0) & !ypos & (inty == 2)) ? PINFBITPATT_SP32 : ret; | 
|  | ret = ((ax == 0) & ypos & (inty == 2)) ? 0 : ret; | 
|  | int xzero = !xpos ? 0x80000000 : 0L; | 
|  | ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret; | 
|  | ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret; | 
|  | ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty != 1)) ? 0 : ret; | 
|  | ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret; | 
|  | ret = ((ix == NINFBITPATT_SP32) & ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret; | 
|  | ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret; | 
|  | ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret; | 
|  | ret = ax > PINFBITPATT_SP32 ? ix : ret; | 
|  | ret = ny == 0 ? 0x3f800000 : ret; | 
|  |  | 
|  | return as_float(ret); | 
|  | } | 
|  | _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_pown, float, int) | 
|  |  | 
|  | #ifdef cl_khr_fp64 | 
|  | _CLC_DEF _CLC_OVERLOAD double __clc_pown(double x, int ny) | 
|  | { | 
|  | const double real_log2_tail = 5.76999904754328540596e-08; | 
|  | const double real_log2_lead = 6.93147122859954833984e-01; | 
|  |  | 
|  | double y = (double) ny; | 
|  |  | 
|  | long ux = as_long(x); | 
|  | long ax = ux & (~SIGNBIT_DP64); | 
|  | int xpos = ax == ux; | 
|  |  | 
|  | long uy = as_long(y); | 
|  | long ay = uy & (~SIGNBIT_DP64); | 
|  | int ypos = ay == uy; | 
|  |  | 
|  | // Extended precision log | 
|  | double v, vt; | 
|  | { | 
|  | int exp = (int)(ax >> 52) - 1023; | 
|  | int mask_exp_1023 = exp == -1023; | 
|  | double xexp = (double) exp; | 
|  | long mantissa = ax & 0x000FFFFFFFFFFFFFL; | 
|  |  | 
|  | long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0); | 
|  | exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045; | 
|  | double xexp1 = (double) exp; | 
|  | long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL; | 
|  |  | 
|  | xexp = mask_exp_1023 ? xexp1 : xexp; | 
|  | mantissa = mask_exp_1023 ? mantissa1 : mantissa; | 
|  |  | 
|  | long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1); | 
|  | int index = rax >> 44; | 
|  |  | 
|  | double F = as_double(rax | 0x3FE0000000000000L); | 
|  | double Y = as_double(mantissa | 0x3FE0000000000000L); | 
|  | double f = F - Y; | 
|  | double2 tv = USE_TABLE(log_f_inv_tbl, index); | 
|  | double log_h = tv.s0; | 
|  | double log_t = tv.s1; | 
|  | double f_inv = (log_h + log_t) * f; | 
|  | double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L); | 
|  | double r2 = fma(-F, r1, f) * (log_h + log_t); | 
|  | double r = r1 + r2; | 
|  |  | 
|  | double poly = fma(r, | 
|  | fma(r, | 
|  | fma(r, | 
|  | fma(r, 1.0/7.0, 1.0/6.0), | 
|  | 1.0/5.0), | 
|  | 1.0/4.0), | 
|  | 1.0/3.0); | 
|  | poly = poly * r * r * r; | 
|  |  | 
|  | double hr1r1 = 0.5*r1*r1; | 
|  | double poly0h = r1 + hr1r1; | 
|  | double poly0t = r1 - poly0h + hr1r1; | 
|  | poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t; | 
|  |  | 
|  | tv = USE_TABLE(powlog_tbl, index); | 
|  | log_h = tv.s0; | 
|  | log_t = tv.s1; | 
|  |  | 
|  | double resT_t = fma(xexp, real_log2_tail, + log_t) - poly; | 
|  | double resT = resT_t - poly0h; | 
|  | double resH = fma(xexp, real_log2_lead, log_h); | 
|  | double resT_h = poly0h; | 
|  |  | 
|  | double H = resT + resH; | 
|  | double H_h = as_double(as_long(H) & 0xfffffffff8000000L); | 
|  | double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h); | 
|  | H = H_h; | 
|  |  | 
|  | double y_head = as_double(uy & 0xfffffffff8000000L); | 
|  | double y_tail = y - y_head; | 
|  |  | 
|  | int mask_2_24 = ay > 0x4170000000000000; // 2^24 | 
|  | int nyh = convert_int(y_head); | 
|  | int nyt = ny - nyh; | 
|  | double y_tail1 = (double)nyt; | 
|  | y_tail = mask_2_24 ? y_tail1 : y_tail; | 
|  |  | 
|  | double temp = fma(y_tail, H, fma(y_head, T, y_tail*T)); | 
|  | v = fma(y_head, H, temp); | 
|  | vt = fma(y_head, H, -v) + temp; | 
|  | } | 
|  |  | 
|  | // Now calculate exp of (v,vt) | 
|  |  | 
|  | double expv; | 
|  | { | 
|  | const double max_exp_arg = 709.782712893384; | 
|  | const double min_exp_arg = -745.1332191019411; | 
|  | const double sixtyfour_by_lnof2 = 92.33248261689366; | 
|  | const double lnof2_by_64_head = 0.010830424260348081; | 
|  | const double lnof2_by_64_tail = -4.359010638708991e-10; | 
|  |  | 
|  | double temp = v * sixtyfour_by_lnof2; | 
|  | int n = (int)temp; | 
|  | double dn = (double)n; | 
|  | int j = n & 0x0000003f; | 
|  | int m = n >> 6; | 
|  |  | 
|  | double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j); | 
|  | double f1 = tv.s0; | 
|  | double f2 = tv.s1; | 
|  | double f = f1 + f2; | 
|  |  | 
|  | double r1 = fma(dn, -lnof2_by_64_head, v); | 
|  | double r2 = dn * lnof2_by_64_tail; | 
|  | double r = (r1 + r2) + vt; | 
|  |  | 
|  | double q = fma(r, | 
|  | fma(r, | 
|  | fma(r, | 
|  | fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03), | 
|  | 4.16666666662260795726e-02), | 
|  | 1.66666666665260878863e-01), | 
|  | 5.00000000000000008883e-01); | 
|  | q = fma(r*r, q, r); | 
|  |  | 
|  | expv = fma(f, q, f2) + f1; | 
|  | expv = ldexp(expv, m); | 
|  |  | 
|  | expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv; | 
|  | expv = v < min_exp_arg ? 0.0 : expv; | 
|  | } | 
|  |  | 
|  | // See whether y is an integer. | 
|  | // inty = 0 means not an integer. | 
|  | // inty = 1 means odd integer. | 
|  | // inty = 2 means even integer. | 
|  |  | 
|  | int inty = 2 - (ny & 1); | 
|  |  | 
|  | expv *= ((inty == 1) & !xpos) ? -1.0 : 1.0; | 
|  |  | 
|  | long ret = as_long(expv); | 
|  |  | 
|  | // Now all the edge cases | 
|  | long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64; | 
|  | ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret; | 
|  | ret = ((ax == 0L) & !ypos & (inty == 2)) ? PINFBITPATT_DP64 : ret; | 
|  | ret = ((ax == 0L) & ypos & (inty == 2)) ? 0L : ret; | 
|  | long xzero = !xpos ? 0x8000000000000000L : 0L; | 
|  | ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret; | 
|  | ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret; | 
|  | ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty != 1)) ? 0L : ret; | 
|  | ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret; | 
|  | ret = ((ux == NINFBITPATT_DP64) & ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret; | 
|  | ret = ((ux == PINFBITPATT_DP64) & !ypos) ? 0L : ret; | 
|  | ret = ((ux == PINFBITPATT_DP64) & ypos) ? PINFBITPATT_DP64 : ret; | 
|  | ret = ax > PINFBITPATT_DP64 ? ux : ret; | 
|  | ret = ny == 0 ? 0x3ff0000000000000L : ret; | 
|  |  | 
|  | return as_double(ret); | 
|  | } | 
|  | _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_pown, double, int) | 
|  | #endif |