| ; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 5 |
| ; RUN: llc < %s -mtriple=nvptx64 -mcpu=sm_20 -verify-machineinstrs | FileCheck %s |
| ; RUN: %if ptxas %{ llc < %s -mtriple=nvptx64 -mcpu=sm_20 -verify-machineinstrs | %ptxas-verify %} |
| |
| target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" |
| |
| declare i16 @llvm.ctlz.i16(i16, i1) readnone |
| declare i32 @llvm.ctlz.i32(i32, i1) readnone |
| declare i64 @llvm.ctlz.i64(i64, i1) readnone |
| |
| ; There should be no difference between llvm.ctlz.i32(%a, true) and |
| ; llvm.ctlz.i32(%a, false), as ptx's clz(0) is defined to return 0. |
| |
| define i32 @myctlz(i32 %a) { |
| ; CHECK-LABEL: myctlz( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u32 %r1, [myctlz_param_0]; |
| ; CHECK-NEXT: clz.b32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %val = call i32 @llvm.ctlz.i32(i32 %a, i1 false) readnone |
| ret i32 %val |
| } |
| define i32 @myctlz_2(i32 %a) { |
| ; CHECK-LABEL: myctlz_2( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u32 %r1, [myctlz_2_param_0]; |
| ; CHECK-NEXT: clz.b32 %r2, %r1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r2; |
| ; CHECK-NEXT: ret; |
| %val = call i32 @llvm.ctlz.i32(i32 %a, i1 true) readnone |
| ret i32 %val |
| } |
| |
| ; PTX's clz.b64 returns a 32-bit value, but LLVM's intrinsic returns a 64-bit |
| ; value, so here we have to zero-extend it. |
| define i64 @myctlz64(i64 %a) { |
| ; CHECK-LABEL: myctlz64( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u64 %rd1, [myctlz64_param_0]; |
| ; CHECK-NEXT: clz.b64 %r1, %rd1; |
| ; CHECK-NEXT: cvt.u64.u32 %rd2, %r1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone |
| ret i64 %val |
| } |
| define i64 @myctlz64_2(i64 %a) { |
| ; CHECK-LABEL: myctlz64_2( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<3>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u64 %rd1, [myctlz64_2_param_0]; |
| ; CHECK-NEXT: clz.b64 %r1, %rd1; |
| ; CHECK-NEXT: cvt.u64.u32 %rd2, %r1; |
| ; CHECK-NEXT: st.param.b64 [func_retval0], %rd2; |
| ; CHECK-NEXT: ret; |
| %val = call i64 @llvm.ctlz.i64(i64 %a, i1 true) readnone |
| ret i64 %val |
| } |
| |
| ; Here we truncate the 64-bit value of LLVM's ctlz intrinsic to 32 bits, the |
| ; natural return width of ptx's clz.b64 instruction. No conversions should be |
| ; necessary in the PTX. |
| define i32 @myctlz64_as_32(i64 %a) { |
| ; CHECK-LABEL: myctlz64_as_32( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<2>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u64 %rd1, [myctlz64_as_32_param_0]; |
| ; CHECK-NEXT: clz.b64 %r1, %rd1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r1; |
| ; CHECK-NEXT: ret; |
| %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone |
| %trunc = trunc i64 %val to i32 |
| ret i32 %trunc |
| } |
| define i32 @myctlz64_as_32_2(i64 %a) { |
| ; CHECK-LABEL: myctlz64_as_32_2( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<2>; |
| ; CHECK-NEXT: .reg .b64 %rd<2>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u64 %rd1, [myctlz64_as_32_2_param_0]; |
| ; CHECK-NEXT: clz.b64 %r1, %rd1; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r1; |
| ; CHECK-NEXT: ret; |
| %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone |
| %trunc = trunc i64 %val to i32 |
| ret i32 %trunc |
| } |
| |
| ; ctlz.i16 is implemented by extending the input to i32, computing the result, |
| ; and then truncating the result back down to i16. But the NVPTX ABI |
| ; zero-extends i16 return values to i32, so the final truncation doesn't appear |
| ; in this function. |
| define i16 @myctlz_ret16(i16 %a) { |
| ; CHECK-LABEL: myctlz_ret16( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<4>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u16 %r1, [myctlz_ret16_param_0]; |
| ; CHECK-NEXT: clz.b32 %r2, %r1; |
| ; CHECK-NEXT: add.s32 %r3, %r2, -16; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r3; |
| ; CHECK-NEXT: ret; |
| %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone |
| ret i16 %val |
| } |
| define i16 @myctlz_ret16_2(i16 %a) { |
| ; CHECK-LABEL: myctlz_ret16_2( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<4>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u16 %r1, [myctlz_ret16_2_param_0]; |
| ; CHECK-NEXT: shl.b32 %r2, %r1, 16; |
| ; CHECK-NEXT: clz.b32 %r3, %r2; |
| ; CHECK-NEXT: st.param.b32 [func_retval0], %r3; |
| ; CHECK-NEXT: ret; |
| %val = call i16 @llvm.ctlz.i16(i16 %a, i1 true) readnone |
| ret i16 %val |
| } |
| |
| ; Here we store the result of ctlz.16 into an i16 pointer, so the trunc should |
| ; remain. |
| define void @myctlz_store16(i16 %a, ptr %b) { |
| ; CHECK-LABEL: myctlz_store16( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<4>; |
| ; CHECK-NEXT: .reg .b64 %rd<2>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u16 %r1, [myctlz_store16_param_0]; |
| ; CHECK-NEXT: clz.b32 %r2, %r1; |
| ; CHECK-NEXT: add.s32 %r3, %r2, -16; |
| ; CHECK-NEXT: ld.param.u64 %rd1, [myctlz_store16_param_1]; |
| ; CHECK-NEXT: st.u16 [%rd1], %r3; |
| ; CHECK-NEXT: ret; |
| %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone |
| store i16 %val, ptr %b |
| ret void |
| } |
| define void @myctlz_store16_2(i16 %a, ptr %b) { |
| ; CHECK-LABEL: myctlz_store16_2( |
| ; CHECK: { |
| ; CHECK-NEXT: .reg .b32 %r<4>; |
| ; CHECK-NEXT: .reg .b64 %rd<2>; |
| ; CHECK-EMPTY: |
| ; CHECK-NEXT: // %bb.0: |
| ; CHECK-NEXT: ld.param.u16 %r1, [myctlz_store16_2_param_0]; |
| ; CHECK-NEXT: clz.b32 %r2, %r1; |
| ; CHECK-NEXT: add.s32 %r3, %r2, -16; |
| ; CHECK-NEXT: ld.param.u64 %rd1, [myctlz_store16_2_param_1]; |
| ; CHECK-NEXT: st.u16 [%rd1], %r3; |
| ; CHECK-NEXT: ret; |
| %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone |
| store i16 %val, ptr %b |
| ret void |
| } |