| //===-- Memory.cpp --------------------------------------------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "lldb/Target/Memory.h" | 
 | #include "lldb/Target/Process.h" | 
 | #include "lldb/Utility/DataBufferHeap.h" | 
 | #include "lldb/Utility/LLDBLog.h" | 
 | #include "lldb/Utility/Log.h" | 
 | #include "lldb/Utility/RangeMap.h" | 
 | #include "lldb/Utility/State.h" | 
 |  | 
 | #include <cinttypes> | 
 | #include <memory> | 
 |  | 
 | using namespace lldb; | 
 | using namespace lldb_private; | 
 |  | 
 | // MemoryCache constructor | 
 | MemoryCache::MemoryCache(Process &process) | 
 |     : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), | 
 |       m_process(process), | 
 |       m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} | 
 |  | 
 | // Destructor | 
 | MemoryCache::~MemoryCache() = default; | 
 |  | 
 | void MemoryCache::Clear(bool clear_invalid_ranges) { | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |   m_L1_cache.clear(); | 
 |   m_L2_cache.clear(); | 
 |   if (clear_invalid_ranges) | 
 |     m_invalid_ranges.Clear(); | 
 |   m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); | 
 | } | 
 |  | 
 | void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, | 
 |                                  size_t src_len) { | 
 |   AddL1CacheData( | 
 |       addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); | 
 | } | 
 |  | 
 | void MemoryCache::AddL1CacheData(lldb::addr_t addr, | 
 |                                  const DataBufferSP &data_buffer_sp) { | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |   m_L1_cache[addr] = data_buffer_sp; | 
 | } | 
 |  | 
 | void MemoryCache::Flush(addr_t addr, size_t size) { | 
 |   if (size == 0) | 
 |     return; | 
 |  | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |  | 
 |   // Erase any blocks from the L1 cache that intersect with the flush range | 
 |   if (!m_L1_cache.empty()) { | 
 |     AddrRange flush_range(addr, size); | 
 |     BlockMap::iterator pos = m_L1_cache.upper_bound(addr); | 
 |     if (pos != m_L1_cache.begin()) { | 
 |       --pos; | 
 |     } | 
 |     while (pos != m_L1_cache.end()) { | 
 |       AddrRange chunk_range(pos->first, pos->second->GetByteSize()); | 
 |       if (!chunk_range.DoesIntersect(flush_range)) | 
 |         break; | 
 |       pos = m_L1_cache.erase(pos); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!m_L2_cache.empty()) { | 
 |     const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; | 
 |     const addr_t end_addr = (addr + size - 1); | 
 |     const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); | 
 |     const addr_t last_cache_line_addr = | 
 |         end_addr - (end_addr % cache_line_byte_size); | 
 |     // Watch for overflow where size will cause us to go off the end of the | 
 |     // 64 bit address space | 
 |     uint32_t num_cache_lines; | 
 |     if (last_cache_line_addr >= first_cache_line_addr) | 
 |       num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / | 
 |                          cache_line_byte_size) + | 
 |                         1; | 
 |     else | 
 |       num_cache_lines = | 
 |           (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; | 
 |  | 
 |     uint32_t cache_idx = 0; | 
 |     for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; | 
 |          curr_addr += cache_line_byte_size, ++cache_idx) { | 
 |       BlockMap::iterator pos = m_L2_cache.find(curr_addr); | 
 |       if (pos != m_L2_cache.end()) | 
 |         m_L2_cache.erase(pos); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, | 
 |                                   lldb::addr_t byte_size) { | 
 |   if (byte_size > 0) { | 
 |     std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |     InvalidRanges::Entry range(base_addr, byte_size); | 
 |     m_invalid_ranges.Append(range); | 
 |     m_invalid_ranges.Sort(); | 
 |   } | 
 | } | 
 |  | 
 | bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, | 
 |                                      lldb::addr_t byte_size) { | 
 |   if (byte_size > 0) { | 
 |     std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |     const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); | 
 |     if (idx != UINT32_MAX) { | 
 |       const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); | 
 |       if (entry->GetRangeBase() == base_addr && | 
 |           entry->GetByteSize() == byte_size) | 
 |         return m_invalid_ranges.RemoveEntryAtIndex(idx); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | lldb::DataBufferSP MemoryCache::GetL2CacheLine(lldb::addr_t line_base_addr, | 
 |                                                Status &error) { | 
 |   // This function assumes that the address given is aligned correctly. | 
 |   assert((line_base_addr % m_L2_cache_line_byte_size) == 0); | 
 |  | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |   auto pos = m_L2_cache.find(line_base_addr); | 
 |   if (pos != m_L2_cache.end()) | 
 |     return pos->second; | 
 |  | 
 |   auto data_buffer_heap_sp = | 
 |       std::make_shared<DataBufferHeap>(m_L2_cache_line_byte_size, 0); | 
 |   size_t process_bytes_read = m_process.ReadMemoryFromInferior( | 
 |       line_base_addr, data_buffer_heap_sp->GetBytes(), | 
 |       data_buffer_heap_sp->GetByteSize(), error); | 
 |  | 
 |   // If we failed a read, not much we can do. | 
 |   if (process_bytes_read == 0) | 
 |     return lldb::DataBufferSP(); | 
 |  | 
 |   // If we didn't get a complete read, we can still cache what we did get. | 
 |   if (process_bytes_read < m_L2_cache_line_byte_size) | 
 |     data_buffer_heap_sp->SetByteSize(process_bytes_read); | 
 |  | 
 |   m_L2_cache[line_base_addr] = data_buffer_heap_sp; | 
 |   return data_buffer_heap_sp; | 
 | } | 
 |  | 
 | size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, | 
 |                          Status &error) { | 
 |   if (!dst || dst_len == 0) | 
 |     return 0; | 
 |  | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |   // FIXME: We should do a more thorough check to make sure that we're not | 
 |   // overlapping with any invalid ranges (e.g. Read 0x100 - 0x200 but there's an | 
 |   // invalid range 0x180 - 0x280). `FindEntryThatContains` has an implementation | 
 |   // that takes a range, but it only checks to see if the argument is contained | 
 |   // by an existing invalid range. It cannot check if the argument contains | 
 |   // invalid ranges and cannot check for overlaps. | 
 |   if (m_invalid_ranges.FindEntryThatContains(addr)) { | 
 |     error = Status::FromErrorStringWithFormat( | 
 |         "memory read failed for 0x%" PRIx64, addr); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Check the L1 cache for a range that contains the entire memory read. | 
 |   // L1 cache contains chunks of memory that are not required to be the size of | 
 |   // an L2 cache line. We avoid trying to do partial reads from the L1 cache to | 
 |   // simplify the implementation. | 
 |   if (!m_L1_cache.empty()) { | 
 |     AddrRange read_range(addr, dst_len); | 
 |     BlockMap::iterator pos = m_L1_cache.upper_bound(addr); | 
 |     if (pos != m_L1_cache.begin()) { | 
 |       --pos; | 
 |     } | 
 |     AddrRange chunk_range(pos->first, pos->second->GetByteSize()); | 
 |     if (chunk_range.Contains(read_range)) { | 
 |       memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()), | 
 |              dst_len); | 
 |       return dst_len; | 
 |     } | 
 |   } | 
 |  | 
 |   // If the size of the read is greater than the size of an L2 cache line, we'll | 
 |   // just read from the inferior. If that read is successful, we'll cache what | 
 |   // we read in the L1 cache for future use. | 
 |   if (dst_len > m_L2_cache_line_byte_size) { | 
 |     size_t bytes_read = | 
 |         m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); | 
 |     if (bytes_read > 0) | 
 |       AddL1CacheData(addr, dst, bytes_read); | 
 |     return bytes_read; | 
 |   } | 
 |  | 
 |   // If the size of the read fits inside one L2 cache line, we'll try reading | 
 |   // from the L2 cache. Note that if the range of memory we're reading sits | 
 |   // between two contiguous cache lines, we'll touch two cache lines instead of | 
 |   // just one. | 
 |  | 
 |   // We're going to have all of our loads and reads be cache line aligned. | 
 |   addr_t cache_line_offset = addr % m_L2_cache_line_byte_size; | 
 |   addr_t cache_line_base_addr = addr - cache_line_offset; | 
 |   DataBufferSP first_cache_line = GetL2CacheLine(cache_line_base_addr, error); | 
 |   // If we get nothing, then the read to the inferior likely failed. Nothing to | 
 |   // do here. | 
 |   if (!first_cache_line) | 
 |     return 0; | 
 |  | 
 |   // If the cache line was not filled out completely and the offset is greater | 
 |   // than what we have available, we can't do anything further here. | 
 |   if (cache_line_offset >= first_cache_line->GetByteSize()) | 
 |     return 0; | 
 |  | 
 |   uint8_t *dst_buf = (uint8_t *)dst; | 
 |   size_t bytes_left = dst_len; | 
 |   size_t read_size = first_cache_line->GetByteSize() - cache_line_offset; | 
 |   if (read_size > bytes_left) | 
 |     read_size = bytes_left; | 
 |  | 
 |   memcpy(dst_buf + dst_len - bytes_left, | 
 |          first_cache_line->GetBytes() + cache_line_offset, read_size); | 
 |   bytes_left -= read_size; | 
 |  | 
 |   // If the cache line was not filled out completely and we still have data to | 
 |   // read, we can't do anything further. | 
 |   if (first_cache_line->GetByteSize() < m_L2_cache_line_byte_size && | 
 |       bytes_left > 0) | 
 |     return dst_len - bytes_left; | 
 |  | 
 |   // We'll hit this scenario if our read straddles two cache lines. | 
 |   if (bytes_left > 0) { | 
 |     cache_line_base_addr += m_L2_cache_line_byte_size; | 
 |  | 
 |     // FIXME: Until we are able to more thoroughly check for invalid ranges, we | 
 |     // will have to check the second line to see if it is in an invalid range as | 
 |     // well. See the check near the beginning of the function for more details. | 
 |     if (m_invalid_ranges.FindEntryThatContains(cache_line_base_addr)) { | 
 |       error = Status::FromErrorStringWithFormat( | 
 |           "memory read failed for 0x%" PRIx64, cache_line_base_addr); | 
 |       return dst_len - bytes_left; | 
 |     } | 
 |  | 
 |     DataBufferSP second_cache_line = | 
 |         GetL2CacheLine(cache_line_base_addr, error); | 
 |     if (!second_cache_line) | 
 |       return dst_len - bytes_left; | 
 |  | 
 |     read_size = bytes_left; | 
 |     if (read_size > second_cache_line->GetByteSize()) | 
 |       read_size = second_cache_line->GetByteSize(); | 
 |  | 
 |     memcpy(dst_buf + dst_len - bytes_left, second_cache_line->GetBytes(), | 
 |            read_size); | 
 |     bytes_left -= read_size; | 
 |  | 
 |     return dst_len - bytes_left; | 
 |   } | 
 |  | 
 |   return dst_len; | 
 | } | 
 |  | 
 | AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, | 
 |                                uint32_t permissions, uint32_t chunk_size) | 
 |     : m_range(addr, byte_size), m_permissions(permissions), | 
 |       m_chunk_size(chunk_size) | 
 | { | 
 |   // The entire address range is free to start with. | 
 |   m_free_blocks.Append(m_range); | 
 |   assert(byte_size > chunk_size); | 
 | } | 
 |  | 
 | AllocatedBlock::~AllocatedBlock() = default; | 
 |  | 
 | lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { | 
 |   // We must return something valid for zero bytes. | 
 |   if (size == 0) | 
 |     size = 1; | 
 |   Log *log = GetLog(LLDBLog::Process); | 
 |  | 
 |   const size_t free_count = m_free_blocks.GetSize(); | 
 |   for (size_t i=0; i<free_count; ++i) | 
 |   { | 
 |     auto &free_block = m_free_blocks.GetEntryRef(i); | 
 |     const lldb::addr_t range_size = free_block.GetByteSize(); | 
 |     if (range_size >= size) | 
 |     { | 
 |       // We found a free block that is big enough for our data. Figure out how | 
 |       // many chunks we will need and calculate the resulting block size we | 
 |       // will reserve. | 
 |       addr_t addr = free_block.GetRangeBase(); | 
 |       size_t num_chunks = CalculateChunksNeededForSize(size); | 
 |       lldb::addr_t block_size = num_chunks * m_chunk_size; | 
 |       lldb::addr_t bytes_left = range_size - block_size; | 
 |       if (bytes_left == 0) | 
 |       { | 
 |         // The newly allocated block will take all of the bytes in this | 
 |         // available block, so we can just add it to the allocated ranges and | 
 |         // remove the range from the free ranges. | 
 |         m_reserved_blocks.Insert(free_block, false); | 
 |         m_free_blocks.RemoveEntryAtIndex(i); | 
 |       } | 
 |       else | 
 |       { | 
 |         // Make the new allocated range and add it to the allocated ranges. | 
 |         Range<lldb::addr_t, uint32_t> reserved_block(free_block); | 
 |         reserved_block.SetByteSize(block_size); | 
 |         // Insert the reserved range and don't combine it with other blocks in | 
 |         // the reserved blocks list. | 
 |         m_reserved_blocks.Insert(reserved_block, false); | 
 |         // Adjust the free range in place since we won't change the sorted | 
 |         // ordering of the m_free_blocks list. | 
 |         free_block.SetRangeBase(reserved_block.GetRangeEnd()); | 
 |         free_block.SetByteSize(bytes_left); | 
 |       } | 
 |       LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr); | 
 |       return addr; | 
 |     } | 
 |   } | 
 |  | 
 |   LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, | 
 |             LLDB_INVALID_ADDRESS); | 
 |   return LLDB_INVALID_ADDRESS; | 
 | } | 
 |  | 
 | bool AllocatedBlock::FreeBlock(addr_t addr) { | 
 |   bool success = false; | 
 |   auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); | 
 |   if (entry_idx != UINT32_MAX) | 
 |   { | 
 |     m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true); | 
 |     m_reserved_blocks.RemoveEntryAtIndex(entry_idx); | 
 |     success = true; | 
 |   } | 
 |   Log *log = GetLog(LLDBLog::Process); | 
 |   LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success); | 
 |   return success; | 
 | } | 
 |  | 
 | AllocatedMemoryCache::AllocatedMemoryCache(Process &process) | 
 |     : m_process(process), m_mutex(), m_memory_map() {} | 
 |  | 
 | AllocatedMemoryCache::~AllocatedMemoryCache() = default; | 
 |  | 
 | void AllocatedMemoryCache::Clear(bool deallocate_memory) { | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |   if (m_process.IsAlive() && deallocate_memory) { | 
 |     PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); | 
 |     for (pos = m_memory_map.begin(); pos != end; ++pos) | 
 |       m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); | 
 |   } | 
 |   m_memory_map.clear(); | 
 | } | 
 |  | 
 | AllocatedMemoryCache::AllocatedBlockSP | 
 | AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, | 
 |                                    uint32_t chunk_size, Status &error) { | 
 |   AllocatedBlockSP block_sp; | 
 |   const size_t page_size = 4096; | 
 |   const size_t num_pages = (byte_size + page_size - 1) / page_size; | 
 |   const size_t page_byte_size = num_pages * page_size; | 
 |  | 
 |   addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); | 
 |  | 
 |   Log *log = GetLog(LLDBLog::Process); | 
 |   if (log) { | 
 |     LLDB_LOGF(log, | 
 |               "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 | 
 |               ", permissions = %s) => 0x%16.16" PRIx64, | 
 |               (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), | 
 |               (uint64_t)addr); | 
 |   } | 
 |  | 
 |   if (addr != LLDB_INVALID_ADDRESS) { | 
 |     block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size, | 
 |                                                 permissions, chunk_size); | 
 |     m_memory_map.insert(std::make_pair(permissions, block_sp)); | 
 |   } | 
 |   return block_sp; | 
 | } | 
 |  | 
 | lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, | 
 |                                                   uint32_t permissions, | 
 |                                                   Status &error) { | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |  | 
 |   addr_t addr = LLDB_INVALID_ADDRESS; | 
 |   std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> | 
 |       range = m_memory_map.equal_range(permissions); | 
 |  | 
 |   for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; | 
 |        ++pos) { | 
 |     addr = (*pos).second->ReserveBlock(byte_size); | 
 |     if (addr != LLDB_INVALID_ADDRESS) | 
 |       break; | 
 |   } | 
 |  | 
 |   if (addr == LLDB_INVALID_ADDRESS) { | 
 |     AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); | 
 |  | 
 |     if (block_sp) | 
 |       addr = block_sp->ReserveBlock(byte_size); | 
 |   } | 
 |   Log *log = GetLog(LLDBLog::Process); | 
 |   LLDB_LOGF(log, | 
 |             "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 | 
 |             ", permissions = %s) => 0x%16.16" PRIx64, | 
 |             (uint32_t)byte_size, GetPermissionsAsCString(permissions), | 
 |             (uint64_t)addr); | 
 |   return addr; | 
 | } | 
 |  | 
 | bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { | 
 |   std::lock_guard<std::recursive_mutex> guard(m_mutex); | 
 |  | 
 |   PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); | 
 |   bool success = false; | 
 |   for (pos = m_memory_map.begin(); pos != end; ++pos) { | 
 |     if (pos->second->Contains(addr)) { | 
 |       success = pos->second->FreeBlock(addr); | 
 |       break; | 
 |     } | 
 |   } | 
 |   Log *log = GetLog(LLDBLog::Process); | 
 |   LLDB_LOGF(log, | 
 |             "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 | 
 |             ") => %i", | 
 |             (uint64_t)addr, success); | 
 |   return success; | 
 | } |