|  | //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the common interface used by the various execution engine | 
|  | // subclasses. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ExecutionEngine/GenericValue.h" | 
|  | #include "llvm/ExecutionEngine/JITEventListener.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Object/Archive.h" | 
|  | #include "llvm/Object/ObjectFile.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/DynamicLibrary.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Host.h" | 
|  | #include "llvm/Support/MutexGuard.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include <cmath> | 
|  | #include <cstring> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "jit" | 
|  |  | 
|  | STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); | 
|  | STATISTIC(NumGlobals  , "Number of global vars initialized"); | 
|  |  | 
|  | ExecutionEngine *(*ExecutionEngine::MCJITCtor)( | 
|  | std::unique_ptr<Module> M, std::string *ErrorStr, | 
|  | std::unique_ptr<RTDyldMemoryManager> MCJMM, | 
|  | std::unique_ptr<TargetMachine> TM) = nullptr; | 
|  | ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M, | 
|  | std::string *ErrorStr) =nullptr; | 
|  |  | 
|  | void JITEventListener::anchor() {} | 
|  |  | 
|  | ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M) | 
|  | : EEState(*this), | 
|  | LazyFunctionCreator(nullptr) { | 
|  | CompilingLazily         = false; | 
|  | GVCompilationDisabled   = false; | 
|  | SymbolSearchingDisabled = false; | 
|  |  | 
|  | // IR module verification is enabled by default in debug builds, and disabled | 
|  | // by default in release builds. | 
|  | #ifndef NDEBUG | 
|  | VerifyModules = true; | 
|  | #else | 
|  | VerifyModules = false; | 
|  | #endif | 
|  |  | 
|  | assert(M && "Module is null?"); | 
|  | Modules.push_back(std::move(M)); | 
|  | } | 
|  |  | 
|  | ExecutionEngine::~ExecutionEngine() { | 
|  | clearAllGlobalMappings(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief Helper class which uses a value handler to automatically deletes the | 
|  | /// memory block when the GlobalVariable is destroyed. | 
|  | class GVMemoryBlock : public CallbackVH { | 
|  | GVMemoryBlock(const GlobalVariable *GV) | 
|  | : CallbackVH(const_cast<GlobalVariable*>(GV)) {} | 
|  |  | 
|  | public: | 
|  | /// \brief Returns the address the GlobalVariable should be written into.  The | 
|  | /// GVMemoryBlock object prefixes that. | 
|  | static char *Create(const GlobalVariable *GV, const DataLayout& TD) { | 
|  | Type *ElTy = GV->getType()->getElementType(); | 
|  | size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); | 
|  | void *RawMemory = ::operator new( | 
|  | RoundUpToAlignment(sizeof(GVMemoryBlock), | 
|  | TD.getPreferredAlignment(GV)) | 
|  | + GVSize); | 
|  | new(RawMemory) GVMemoryBlock(GV); | 
|  | return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); | 
|  | } | 
|  |  | 
|  | void deleted() override { | 
|  | // We allocated with operator new and with some extra memory hanging off the | 
|  | // end, so don't just delete this.  I'm not sure if this is actually | 
|  | // required. | 
|  | this->~GVMemoryBlock(); | 
|  | ::operator delete(this); | 
|  | } | 
|  | }; | 
|  | }  // anonymous namespace | 
|  |  | 
|  | char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { | 
|  | return GVMemoryBlock::Create(GV, *getDataLayout()); | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { | 
|  | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); | 
|  | } | 
|  |  | 
|  | void | 
|  | ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) { | 
|  | llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) { | 
|  | llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); | 
|  | } | 
|  |  | 
|  | bool ExecutionEngine::removeModule(Module *M) { | 
|  | for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { | 
|  | Module *Found = I->get(); | 
|  | if (Found == M) { | 
|  | I->release(); | 
|  | Modules.erase(I); | 
|  | clearGlobalMappingsFromModule(M); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { | 
|  | for (unsigned i = 0, e = Modules.size(); i != e; ++i) { | 
|  | if (Function *F = Modules[i]->getFunction(FnName)) | 
|  | return F; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { | 
|  | GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); | 
|  | void *OldVal; | 
|  |  | 
|  | // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the | 
|  | // GlobalAddressMap. | 
|  | if (I == GlobalAddressMap.end()) | 
|  | OldVal = nullptr; | 
|  | else { | 
|  | OldVal = I->second; | 
|  | GlobalAddressMap.erase(I); | 
|  | } | 
|  |  | 
|  | GlobalAddressReverseMap.erase(OldVal); | 
|  | return OldVal; | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: Map \'" << GV->getName() | 
|  | << "\' to [" << Addr << "]\n";); | 
|  | void *&CurVal = EEState.getGlobalAddressMap()[GV]; | 
|  | assert((!CurVal || !Addr) && "GlobalMapping already established!"); | 
|  | CurVal = Addr; | 
|  |  | 
|  | // If we are using the reverse mapping, add it too. | 
|  | if (!EEState.getGlobalAddressReverseMap().empty()) { | 
|  | AssertingVH<const GlobalValue> &V = | 
|  | EEState.getGlobalAddressReverseMap()[Addr]; | 
|  | assert((!V || !GV) && "GlobalMapping already established!"); | 
|  | V = GV; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::clearAllGlobalMappings() { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | EEState.getGlobalAddressMap().clear(); | 
|  | EEState.getGlobalAddressReverseMap().clear(); | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) | 
|  | EEState.RemoveMapping(FI); | 
|  | for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); | 
|  | GI != GE; ++GI) | 
|  | EEState.RemoveMapping(GI); | 
|  | } | 
|  |  | 
|  | void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | ExecutionEngineState::GlobalAddressMapTy &Map = | 
|  | EEState.getGlobalAddressMap(); | 
|  |  | 
|  | // Deleting from the mapping? | 
|  | if (!Addr) | 
|  | return EEState.RemoveMapping(GV); | 
|  |  | 
|  | void *&CurVal = Map[GV]; | 
|  | void *OldVal = CurVal; | 
|  |  | 
|  | if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) | 
|  | EEState.getGlobalAddressReverseMap().erase(CurVal); | 
|  | CurVal = Addr; | 
|  |  | 
|  | // If we are using the reverse mapping, add it too. | 
|  | if (!EEState.getGlobalAddressReverseMap().empty()) { | 
|  | AssertingVH<const GlobalValue> &V = | 
|  | EEState.getGlobalAddressReverseMap()[Addr]; | 
|  | assert((!V || !GV) && "GlobalMapping already established!"); | 
|  | V = GV; | 
|  | } | 
|  | return OldVal; | 
|  | } | 
|  |  | 
|  | void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | ExecutionEngineState::GlobalAddressMapTy::iterator I = | 
|  | EEState.getGlobalAddressMap().find(GV); | 
|  | return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; | 
|  | } | 
|  |  | 
|  | const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { | 
|  | MutexGuard locked(lock); | 
|  |  | 
|  | // If we haven't computed the reverse mapping yet, do so first. | 
|  | if (EEState.getGlobalAddressReverseMap().empty()) { | 
|  | for (ExecutionEngineState::GlobalAddressMapTy::iterator | 
|  | I = EEState.getGlobalAddressMap().begin(), | 
|  | E = EEState.getGlobalAddressMap().end(); I != E; ++I) | 
|  | EEState.getGlobalAddressReverseMap().insert(std::make_pair( | 
|  | I->second, I->first)); | 
|  | } | 
|  |  | 
|  | std::map<void *, AssertingVH<const GlobalValue> >::iterator I = | 
|  | EEState.getGlobalAddressReverseMap().find(Addr); | 
|  | return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class ArgvArray { | 
|  | std::unique_ptr<char[]> Array; | 
|  | std::vector<std::unique_ptr<char[]>> Values; | 
|  | public: | 
|  | /// Turn a vector of strings into a nice argv style array of pointers to null | 
|  | /// terminated strings. | 
|  | void *reset(LLVMContext &C, ExecutionEngine *EE, | 
|  | const std::vector<std::string> &InputArgv); | 
|  | }; | 
|  | }  // anonymous namespace | 
|  | void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, | 
|  | const std::vector<std::string> &InputArgv) { | 
|  | Values.clear();  // Free the old contents. | 
|  | Values.reserve(InputArgv.size()); | 
|  | unsigned PtrSize = EE->getDataLayout()->getPointerSize(); | 
|  | Array = make_unique<char[]>((InputArgv.size()+1)*PtrSize); | 
|  |  | 
|  | DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); | 
|  | Type *SBytePtr = Type::getInt8PtrTy(C); | 
|  |  | 
|  | for (unsigned i = 0; i != InputArgv.size(); ++i) { | 
|  | unsigned Size = InputArgv[i].size()+1; | 
|  | auto Dest = make_unique<char[]>(Size); | 
|  | DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); | 
|  |  | 
|  | std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); | 
|  | Dest[Size-1] = 0; | 
|  |  | 
|  | // Endian safe: Array[i] = (PointerTy)Dest; | 
|  | EE->StoreValueToMemory(PTOGV(Dest.get()), | 
|  | (GenericValue*)(&Array[i*PtrSize]), SBytePtr); | 
|  | Values.push_back(std::move(Dest)); | 
|  | } | 
|  |  | 
|  | // Null terminate it | 
|  | EE->StoreValueToMemory(PTOGV(nullptr), | 
|  | (GenericValue*)(&Array[InputArgv.size()*PtrSize]), | 
|  | SBytePtr); | 
|  | return Array.get(); | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::runStaticConstructorsDestructors(Module &module, | 
|  | bool isDtors) { | 
|  | const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; | 
|  | GlobalVariable *GV = module.getNamedGlobal(Name); | 
|  |  | 
|  | // If this global has internal linkage, or if it has a use, then it must be | 
|  | // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If | 
|  | // this is the case, don't execute any of the global ctors, __main will do | 
|  | // it. | 
|  | if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; | 
|  |  | 
|  | // Should be an array of '{ i32, void ()* }' structs.  The first value is | 
|  | // the init priority, which we ignore. | 
|  | ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); | 
|  | if (!InitList) | 
|  | return; | 
|  | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { | 
|  | ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); | 
|  | if (!CS) continue; | 
|  |  | 
|  | Constant *FP = CS->getOperand(1); | 
|  | if (FP->isNullValue()) | 
|  | continue;  // Found a sentinal value, ignore. | 
|  |  | 
|  | // Strip off constant expression casts. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) | 
|  | if (CE->isCast()) | 
|  | FP = CE->getOperand(0); | 
|  |  | 
|  | // Execute the ctor/dtor function! | 
|  | if (Function *F = dyn_cast<Function>(FP)) | 
|  | runFunction(F, std::vector<GenericValue>()); | 
|  |  | 
|  | // FIXME: It is marginally lame that we just do nothing here if we see an | 
|  | // entry we don't recognize. It might not be unreasonable for the verifier | 
|  | // to not even allow this and just assert here. | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { | 
|  | // Execute global ctors/dtors for each module in the program. | 
|  | for (std::unique_ptr<Module> &M : Modules) | 
|  | runStaticConstructorsDestructors(*M, isDtors); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. | 
|  | static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { | 
|  | unsigned PtrSize = EE->getDataLayout()->getPointerSize(); | 
|  | for (unsigned i = 0; i < PtrSize; ++i) | 
|  | if (*(i + (uint8_t*)Loc)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int ExecutionEngine::runFunctionAsMain(Function *Fn, | 
|  | const std::vector<std::string> &argv, | 
|  | const char * const * envp) { | 
|  | std::vector<GenericValue> GVArgs; | 
|  | GenericValue GVArgc; | 
|  | GVArgc.IntVal = APInt(32, argv.size()); | 
|  |  | 
|  | // Check main() type | 
|  | unsigned NumArgs = Fn->getFunctionType()->getNumParams(); | 
|  | FunctionType *FTy = Fn->getFunctionType(); | 
|  | Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); | 
|  |  | 
|  | // Check the argument types. | 
|  | if (NumArgs > 3) | 
|  | report_fatal_error("Invalid number of arguments of main() supplied"); | 
|  | if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) | 
|  | report_fatal_error("Invalid type for third argument of main() supplied"); | 
|  | if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) | 
|  | report_fatal_error("Invalid type for second argument of main() supplied"); | 
|  | if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) | 
|  | report_fatal_error("Invalid type for first argument of main() supplied"); | 
|  | if (!FTy->getReturnType()->isIntegerTy() && | 
|  | !FTy->getReturnType()->isVoidTy()) | 
|  | report_fatal_error("Invalid return type of main() supplied"); | 
|  |  | 
|  | ArgvArray CArgv; | 
|  | ArgvArray CEnv; | 
|  | if (NumArgs) { | 
|  | GVArgs.push_back(GVArgc); // Arg #0 = argc. | 
|  | if (NumArgs > 1) { | 
|  | // Arg #1 = argv. | 
|  | GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); | 
|  | assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && | 
|  | "argv[0] was null after CreateArgv"); | 
|  | if (NumArgs > 2) { | 
|  | std::vector<std::string> EnvVars; | 
|  | for (unsigned i = 0; envp[i]; ++i) | 
|  | EnvVars.push_back(envp[i]); | 
|  | // Arg #2 = envp. | 
|  | GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return runFunction(Fn, GVArgs).IntVal.getZExtValue(); | 
|  | } | 
|  |  | 
|  | EngineBuilder::EngineBuilder(std::unique_ptr<Module> M) | 
|  | : M(std::move(M)), MCJMM(nullptr) { | 
|  | InitEngine(); | 
|  | } | 
|  |  | 
|  | EngineBuilder::~EngineBuilder() {} | 
|  |  | 
|  | EngineBuilder &EngineBuilder::setMCJITMemoryManager( | 
|  | std::unique_ptr<RTDyldMemoryManager> mcjmm) { | 
|  | MCJMM = std::move(mcjmm); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void EngineBuilder::InitEngine() { | 
|  | WhichEngine = EngineKind::Either; | 
|  | ErrorStr = nullptr; | 
|  | OptLevel = CodeGenOpt::Default; | 
|  | MCJMM = nullptr; | 
|  | Options = TargetOptions(); | 
|  | RelocModel = Reloc::Default; | 
|  | CMModel = CodeModel::JITDefault; | 
|  |  | 
|  | // IR module verification is enabled by default in debug builds, and disabled | 
|  | // by default in release builds. | 
|  | #ifndef NDEBUG | 
|  | VerifyModules = true; | 
|  | #else | 
|  | VerifyModules = false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { | 
|  | std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. | 
|  |  | 
|  | // Make sure we can resolve symbols in the program as well. The zero arg | 
|  | // to the function tells DynamicLibrary to load the program, not a library. | 
|  | if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) | 
|  | return nullptr; | 
|  |  | 
|  | // If the user specified a memory manager but didn't specify which engine to | 
|  | // create, we assume they only want the JIT, and we fail if they only want | 
|  | // the interpreter. | 
|  | if (MCJMM) { | 
|  | if (WhichEngine & EngineKind::JIT) | 
|  | WhichEngine = EngineKind::JIT; | 
|  | else { | 
|  | if (ErrorStr) | 
|  | *ErrorStr = "Cannot create an interpreter with a memory manager."; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unless the interpreter was explicitly selected or the JIT is not linked, | 
|  | // try making a JIT. | 
|  | if ((WhichEngine & EngineKind::JIT) && TheTM) { | 
|  | Triple TT(M->getTargetTriple()); | 
|  | if (!TM->getTarget().hasJIT()) { | 
|  | errs() << "WARNING: This target JIT is not designed for the host" | 
|  | << " you are running.  If bad things happen, please choose" | 
|  | << " a different -march switch.\n"; | 
|  | } | 
|  |  | 
|  | ExecutionEngine *EE = nullptr; | 
|  | if (ExecutionEngine::MCJITCtor) | 
|  | EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MCJMM), | 
|  | std::move(TheTM)); | 
|  | if (EE) { | 
|  | EE->setVerifyModules(VerifyModules); | 
|  | return EE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can't make a JIT and we didn't request one specifically, try making | 
|  | // an interpreter instead. | 
|  | if (WhichEngine & EngineKind::Interpreter) { | 
|  | if (ExecutionEngine::InterpCtor) | 
|  | return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); | 
|  | if (ErrorStr) | 
|  | *ErrorStr = "Interpreter has not been linked in."; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { | 
|  | if (ErrorStr) | 
|  | *ErrorStr = "JIT has not been linked in."; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { | 
|  | if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) | 
|  | return getPointerToFunction(F); | 
|  |  | 
|  | MutexGuard locked(lock); | 
|  | if (void *P = EEState.getGlobalAddressMap()[GV]) | 
|  | return P; | 
|  |  | 
|  | // Global variable might have been added since interpreter started. | 
|  | if (GlobalVariable *GVar = | 
|  | const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) | 
|  | EmitGlobalVariable(GVar); | 
|  | else | 
|  | llvm_unreachable("Global hasn't had an address allocated yet!"); | 
|  |  | 
|  | return EEState.getGlobalAddressMap()[GV]; | 
|  | } | 
|  |  | 
|  | /// \brief Converts a Constant* into a GenericValue, including handling of | 
|  | /// ConstantExpr values. | 
|  | GenericValue ExecutionEngine::getConstantValue(const Constant *C) { | 
|  | // If its undefined, return the garbage. | 
|  | if (isa<UndefValue>(C)) { | 
|  | GenericValue Result; | 
|  | switch (C->getType()->getTypeID()) { | 
|  | default: | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | case Type::X86_FP80TyID: | 
|  | case Type::FP128TyID: | 
|  | case Type::PPC_FP128TyID: | 
|  | // Although the value is undefined, we still have to construct an APInt | 
|  | // with the correct bit width. | 
|  | Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); | 
|  | break; | 
|  | case Type::StructTyID: { | 
|  | // if the whole struct is 'undef' just reserve memory for the value. | 
|  | if(StructType *STy = dyn_cast<StructType>(C->getType())) { | 
|  | unsigned int elemNum = STy->getNumElements(); | 
|  | Result.AggregateVal.resize(elemNum); | 
|  | for (unsigned int i = 0; i < elemNum; ++i) { | 
|  | Type *ElemTy = STy->getElementType(i); | 
|  | if (ElemTy->isIntegerTy()) | 
|  | Result.AggregateVal[i].IntVal = | 
|  | APInt(ElemTy->getPrimitiveSizeInBits(), 0); | 
|  | else if (ElemTy->isAggregateType()) { | 
|  | const Constant *ElemUndef = UndefValue::get(ElemTy); | 
|  | Result.AggregateVal[i] = getConstantValue(ElemUndef); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Type::VectorTyID: | 
|  | // if the whole vector is 'undef' just reserve memory for the value. | 
|  | const VectorType* VTy = dyn_cast<VectorType>(C->getType()); | 
|  | const Type *ElemTy = VTy->getElementType(); | 
|  | unsigned int elemNum = VTy->getNumElements(); | 
|  | Result.AggregateVal.resize(elemNum); | 
|  | if (ElemTy->isIntegerTy()) | 
|  | for (unsigned int i = 0; i < elemNum; ++i) | 
|  | Result.AggregateVal[i].IntVal = | 
|  | APInt(ElemTy->getPrimitiveSizeInBits(), 0); | 
|  | break; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Otherwise, if the value is a ConstantExpr... | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | Constant *Op0 = CE->getOperand(0); | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::GetElementPtr: { | 
|  | // Compute the index | 
|  | GenericValue Result = getConstantValue(Op0); | 
|  | APInt Offset(DL->getPointerSizeInBits(), 0); | 
|  | cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); | 
|  |  | 
|  | char* tmp = (char*) Result.PointerVal; | 
|  | Result = PTOGV(tmp + Offset.getSExtValue()); | 
|  | return Result; | 
|  | } | 
|  | case Instruction::Trunc: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
|  | GV.IntVal = GV.IntVal.trunc(BitWidth); | 
|  | return GV; | 
|  | } | 
|  | case Instruction::ZExt: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
|  | GV.IntVal = GV.IntVal.zext(BitWidth); | 
|  | return GV; | 
|  | } | 
|  | case Instruction::SExt: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
|  | GV.IntVal = GV.IntVal.sext(BitWidth); | 
|  | return GV; | 
|  | } | 
|  | case Instruction::FPTrunc: { | 
|  | // FIXME long double | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | GV.FloatVal = float(GV.DoubleVal); | 
|  | return GV; | 
|  | } | 
|  | case Instruction::FPExt:{ | 
|  | // FIXME long double | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | GV.DoubleVal = double(GV.FloatVal); | 
|  | return GV; | 
|  | } | 
|  | case Instruction::UIToFP: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | if (CE->getType()->isFloatTy()) | 
|  | GV.FloatVal = float(GV.IntVal.roundToDouble()); | 
|  | else if (CE->getType()->isDoubleTy()) | 
|  | GV.DoubleVal = GV.IntVal.roundToDouble(); | 
|  | else if (CE->getType()->isX86_FP80Ty()) { | 
|  | APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); | 
|  | (void)apf.convertFromAPInt(GV.IntVal, | 
|  | false, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | GV.IntVal = apf.bitcastToAPInt(); | 
|  | } | 
|  | return GV; | 
|  | } | 
|  | case Instruction::SIToFP: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | if (CE->getType()->isFloatTy()) | 
|  | GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); | 
|  | else if (CE->getType()->isDoubleTy()) | 
|  | GV.DoubleVal = GV.IntVal.signedRoundToDouble(); | 
|  | else if (CE->getType()->isX86_FP80Ty()) { | 
|  | APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); | 
|  | (void)apf.convertFromAPInt(GV.IntVal, | 
|  | true, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | GV.IntVal = apf.bitcastToAPInt(); | 
|  | } | 
|  | return GV; | 
|  | } | 
|  | case Instruction::FPToUI: // double->APInt conversion handles sign | 
|  | case Instruction::FPToSI: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); | 
|  | if (Op0->getType()->isFloatTy()) | 
|  | GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); | 
|  | else if (Op0->getType()->isDoubleTy()) | 
|  | GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); | 
|  | else if (Op0->getType()->isX86_FP80Ty()) { | 
|  | APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); | 
|  | uint64_t v; | 
|  | bool ignored; | 
|  | (void)apf.convertToInteger(&v, BitWidth, | 
|  | CE->getOpcode()==Instruction::FPToSI, | 
|  | APFloat::rmTowardZero, &ignored); | 
|  | GV.IntVal = v; // endian? | 
|  | } | 
|  | return GV; | 
|  | } | 
|  | case Instruction::PtrToInt: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); | 
|  | assert(PtrWidth <= 64 && "Bad pointer width"); | 
|  | GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); | 
|  | uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); | 
|  | GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); | 
|  | return GV; | 
|  | } | 
|  | case Instruction::IntToPtr: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); | 
|  | GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); | 
|  | assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); | 
|  | GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); | 
|  | return GV; | 
|  | } | 
|  | case Instruction::BitCast: { | 
|  | GenericValue GV = getConstantValue(Op0); | 
|  | Type* DestTy = CE->getType(); | 
|  | switch (Op0->getType()->getTypeID()) { | 
|  | default: llvm_unreachable("Invalid bitcast operand"); | 
|  | case Type::IntegerTyID: | 
|  | assert(DestTy->isFloatingPointTy() && "invalid bitcast"); | 
|  | if (DestTy->isFloatTy()) | 
|  | GV.FloatVal = GV.IntVal.bitsToFloat(); | 
|  | else if (DestTy->isDoubleTy()) | 
|  | GV.DoubleVal = GV.IntVal.bitsToDouble(); | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); | 
|  | GV.IntVal = APInt::floatToBits(GV.FloatVal); | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); | 
|  | GV.IntVal = APInt::doubleToBits(GV.DoubleVal); | 
|  | break; | 
|  | case Type::PointerTyID: | 
|  | assert(DestTy->isPointerTy() && "Invalid bitcast"); | 
|  | break; // getConstantValue(Op0)  above already converted it | 
|  | } | 
|  | return GV; | 
|  | } | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: { | 
|  | GenericValue LHS = getConstantValue(Op0); | 
|  | GenericValue RHS = getConstantValue(CE->getOperand(1)); | 
|  | GenericValue GV; | 
|  | switch (CE->getOperand(0)->getType()->getTypeID()) { | 
|  | default: llvm_unreachable("Bad add type!"); | 
|  | case Type::IntegerTyID: | 
|  | switch (CE->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid integer opcode"); | 
|  | case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; | 
|  | case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; | 
|  | case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; | 
|  | case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; | 
|  | case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; | 
|  | case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; | 
|  | case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; | 
|  | case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; | 
|  | case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break; | 
|  | case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; | 
|  | } | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | switch (CE->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid float opcode"); | 
|  | case Instruction::FAdd: | 
|  | GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; | 
|  | case Instruction::FSub: | 
|  | GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; | 
|  | case Instruction::FMul: | 
|  | GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; | 
|  | case Instruction::FDiv: | 
|  | GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; | 
|  | case Instruction::FRem: | 
|  | GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; | 
|  | } | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | switch (CE->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid double opcode"); | 
|  | case Instruction::FAdd: | 
|  | GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; | 
|  | case Instruction::FSub: | 
|  | GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; | 
|  | case Instruction::FMul: | 
|  | GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; | 
|  | case Instruction::FDiv: | 
|  | GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; | 
|  | case Instruction::FRem: | 
|  | GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; | 
|  | } | 
|  | break; | 
|  | case Type::X86_FP80TyID: | 
|  | case Type::PPC_FP128TyID: | 
|  | case Type::FP128TyID: { | 
|  | const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); | 
|  | APFloat apfLHS = APFloat(Sem, LHS.IntVal); | 
|  | switch (CE->getOpcode()) { | 
|  | default: llvm_unreachable("Invalid long double opcode"); | 
|  | case Instruction::FAdd: | 
|  | apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); | 
|  | GV.IntVal = apfLHS.bitcastToAPInt(); | 
|  | break; | 
|  | case Instruction::FSub: | 
|  | apfLHS.subtract(APFloat(Sem, RHS.IntVal), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | GV.IntVal = apfLHS.bitcastToAPInt(); | 
|  | break; | 
|  | case Instruction::FMul: | 
|  | apfLHS.multiply(APFloat(Sem, RHS.IntVal), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | GV.IntVal = apfLHS.bitcastToAPInt(); | 
|  | break; | 
|  | case Instruction::FDiv: | 
|  | apfLHS.divide(APFloat(Sem, RHS.IntVal), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | GV.IntVal = apfLHS.bitcastToAPInt(); | 
|  | break; | 
|  | case Instruction::FRem: | 
|  | apfLHS.mod(APFloat(Sem, RHS.IntVal), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | GV.IntVal = apfLHS.bitcastToAPInt(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return GV; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | SmallString<256> Msg; | 
|  | raw_svector_ostream OS(Msg); | 
|  | OS << "ConstantExpr not handled: " << *CE; | 
|  | report_fatal_error(OS.str()); | 
|  | } | 
|  |  | 
|  | // Otherwise, we have a simple constant. | 
|  | GenericValue Result; | 
|  | switch (C->getType()->getTypeID()) { | 
|  | case Type::FloatTyID: | 
|  | Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); | 
|  | break; | 
|  | case Type::X86_FP80TyID: | 
|  | case Type::FP128TyID: | 
|  | case Type::PPC_FP128TyID: | 
|  | Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | Result.IntVal = cast<ConstantInt>(C)->getValue(); | 
|  | break; | 
|  | case Type::PointerTyID: | 
|  | if (isa<ConstantPointerNull>(C)) | 
|  | Result.PointerVal = nullptr; | 
|  | else if (const Function *F = dyn_cast<Function>(C)) | 
|  | Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); | 
|  | else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) | 
|  | Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); | 
|  | else | 
|  | llvm_unreachable("Unknown constant pointer type!"); | 
|  | break; | 
|  | case Type::VectorTyID: { | 
|  | unsigned elemNum; | 
|  | Type* ElemTy; | 
|  | const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); | 
|  | const ConstantVector *CV = dyn_cast<ConstantVector>(C); | 
|  | const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); | 
|  |  | 
|  | if (CDV) { | 
|  | elemNum = CDV->getNumElements(); | 
|  | ElemTy = CDV->getElementType(); | 
|  | } else if (CV || CAZ) { | 
|  | VectorType* VTy = dyn_cast<VectorType>(C->getType()); | 
|  | elemNum = VTy->getNumElements(); | 
|  | ElemTy = VTy->getElementType(); | 
|  | } else { | 
|  | llvm_unreachable("Unknown constant vector type!"); | 
|  | } | 
|  |  | 
|  | Result.AggregateVal.resize(elemNum); | 
|  | // Check if vector holds floats. | 
|  | if(ElemTy->isFloatTy()) { | 
|  | if (CAZ) { | 
|  | GenericValue floatZero; | 
|  | floatZero.FloatVal = 0.f; | 
|  | std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | 
|  | floatZero); | 
|  | break; | 
|  | } | 
|  | if(CV) { | 
|  | for (unsigned i = 0; i < elemNum; ++i) | 
|  | if (!isa<UndefValue>(CV->getOperand(i))) | 
|  | Result.AggregateVal[i].FloatVal = cast<ConstantFP>( | 
|  | CV->getOperand(i))->getValueAPF().convertToFloat(); | 
|  | break; | 
|  | } | 
|  | if(CDV) | 
|  | for (unsigned i = 0; i < elemNum; ++i) | 
|  | Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); | 
|  |  | 
|  | break; | 
|  | } | 
|  | // Check if vector holds doubles. | 
|  | if (ElemTy->isDoubleTy()) { | 
|  | if (CAZ) { | 
|  | GenericValue doubleZero; | 
|  | doubleZero.DoubleVal = 0.0; | 
|  | std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | 
|  | doubleZero); | 
|  | break; | 
|  | } | 
|  | if(CV) { | 
|  | for (unsigned i = 0; i < elemNum; ++i) | 
|  | if (!isa<UndefValue>(CV->getOperand(i))) | 
|  | Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( | 
|  | CV->getOperand(i))->getValueAPF().convertToDouble(); | 
|  | break; | 
|  | } | 
|  | if(CDV) | 
|  | for (unsigned i = 0; i < elemNum; ++i) | 
|  | Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); | 
|  |  | 
|  | break; | 
|  | } | 
|  | // Check if vector holds integers. | 
|  | if (ElemTy->isIntegerTy()) { | 
|  | if (CAZ) { | 
|  | GenericValue intZero; | 
|  | intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); | 
|  | std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), | 
|  | intZero); | 
|  | break; | 
|  | } | 
|  | if(CV) { | 
|  | for (unsigned i = 0; i < elemNum; ++i) | 
|  | if (!isa<UndefValue>(CV->getOperand(i))) | 
|  | Result.AggregateVal[i].IntVal = cast<ConstantInt>( | 
|  | CV->getOperand(i))->getValue(); | 
|  | else { | 
|  | Result.AggregateVal[i].IntVal = | 
|  | APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | if(CDV) | 
|  | for (unsigned i = 0; i < elemNum; ++i) | 
|  | Result.AggregateVal[i].IntVal = APInt( | 
|  | CDV->getElementType()->getPrimitiveSizeInBits(), | 
|  | CDV->getElementAsInteger(i)); | 
|  |  | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unknown constant pointer type!"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | SmallString<256> Msg; | 
|  | raw_svector_ostream OS(Msg); | 
|  | OS << "ERROR: Constant unimplemented for type: " << *C->getType(); | 
|  | report_fatal_error(OS.str()); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | 
|  | /// with the integer held in IntVal. | 
|  | static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, | 
|  | unsigned StoreBytes) { | 
|  | assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); | 
|  | const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); | 
|  |  | 
|  | if (sys::IsLittleEndianHost) { | 
|  | // Little-endian host - the source is ordered from LSB to MSB.  Order the | 
|  | // destination from LSB to MSB: Do a straight copy. | 
|  | memcpy(Dst, Src, StoreBytes); | 
|  | } else { | 
|  | // Big-endian host - the source is an array of 64 bit words ordered from | 
|  | // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination | 
|  | // from MSB to LSB: Reverse the word order, but not the bytes in a word. | 
|  | while (StoreBytes > sizeof(uint64_t)) { | 
|  | StoreBytes -= sizeof(uint64_t); | 
|  | // May not be aligned so use memcpy. | 
|  | memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); | 
|  | Src += sizeof(uint64_t); | 
|  | } | 
|  |  | 
|  | memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, | 
|  | GenericValue *Ptr, Type *Ty) { | 
|  | const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); | 
|  |  | 
|  | switch (Ty->getTypeID()) { | 
|  | default: | 
|  | dbgs() << "Cannot store value of type " << *Ty << "!\n"; | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | *((float*)Ptr) = Val.FloatVal; | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | *((double*)Ptr) = Val.DoubleVal; | 
|  | break; | 
|  | case Type::X86_FP80TyID: | 
|  | memcpy(Ptr, Val.IntVal.getRawData(), 10); | 
|  | break; | 
|  | case Type::PointerTyID: | 
|  | // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. | 
|  | if (StoreBytes != sizeof(PointerTy)) | 
|  | memset(&(Ptr->PointerVal), 0, StoreBytes); | 
|  |  | 
|  | *((PointerTy*)Ptr) = Val.PointerVal; | 
|  | break; | 
|  | case Type::VectorTyID: | 
|  | for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { | 
|  | if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) | 
|  | *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; | 
|  | if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) | 
|  | *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; | 
|  | if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { | 
|  | unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; | 
|  | StoreIntToMemory(Val.AggregateVal[i].IntVal, | 
|  | (uint8_t*)Ptr + numOfBytes*i, numOfBytes); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) | 
|  | // Host and target are different endian - reverse the stored bytes. | 
|  | std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); | 
|  | } | 
|  |  | 
|  | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | 
|  | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | 
|  | static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { | 
|  | assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); | 
|  | uint8_t *Dst = reinterpret_cast<uint8_t *>( | 
|  | const_cast<uint64_t *>(IntVal.getRawData())); | 
|  |  | 
|  | if (sys::IsLittleEndianHost) | 
|  | // Little-endian host - the destination must be ordered from LSB to MSB. | 
|  | // The source is ordered from LSB to MSB: Do a straight copy. | 
|  | memcpy(Dst, Src, LoadBytes); | 
|  | else { | 
|  | // Big-endian - the destination is an array of 64 bit words ordered from | 
|  | // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is | 
|  | // ordered from MSB to LSB: Reverse the word order, but not the bytes in | 
|  | // a word. | 
|  | while (LoadBytes > sizeof(uint64_t)) { | 
|  | LoadBytes -= sizeof(uint64_t); | 
|  | // May not be aligned so use memcpy. | 
|  | memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); | 
|  | Dst += sizeof(uint64_t); | 
|  | } | 
|  |  | 
|  | memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// FIXME: document | 
|  | /// | 
|  | void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, | 
|  | GenericValue *Ptr, | 
|  | Type *Ty) { | 
|  | const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); | 
|  |  | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::IntegerTyID: | 
|  | // An APInt with all words initially zero. | 
|  | Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); | 
|  | LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | Result.FloatVal = *((float*)Ptr); | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Result.DoubleVal = *((double*)Ptr); | 
|  | break; | 
|  | case Type::PointerTyID: | 
|  | Result.PointerVal = *((PointerTy*)Ptr); | 
|  | break; | 
|  | case Type::X86_FP80TyID: { | 
|  | // This is endian dependent, but it will only work on x86 anyway. | 
|  | // FIXME: Will not trap if loading a signaling NaN. | 
|  | uint64_t y[2]; | 
|  | memcpy(y, Ptr, 10); | 
|  | Result.IntVal = APInt(80, y); | 
|  | break; | 
|  | } | 
|  | case Type::VectorTyID: { | 
|  | const VectorType *VT = cast<VectorType>(Ty); | 
|  | const Type *ElemT = VT->getElementType(); | 
|  | const unsigned numElems = VT->getNumElements(); | 
|  | if (ElemT->isFloatTy()) { | 
|  | Result.AggregateVal.resize(numElems); | 
|  | for (unsigned i = 0; i < numElems; ++i) | 
|  | Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); | 
|  | } | 
|  | if (ElemT->isDoubleTy()) { | 
|  | Result.AggregateVal.resize(numElems); | 
|  | for (unsigned i = 0; i < numElems; ++i) | 
|  | Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); | 
|  | } | 
|  | if (ElemT->isIntegerTy()) { | 
|  | GenericValue intZero; | 
|  | const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); | 
|  | intZero.IntVal = APInt(elemBitWidth, 0); | 
|  | Result.AggregateVal.resize(numElems, intZero); | 
|  | for (unsigned i = 0; i < numElems; ++i) | 
|  | LoadIntFromMemory(Result.AggregateVal[i].IntVal, | 
|  | (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | SmallString<256> Msg; | 
|  | raw_svector_ostream OS(Msg); | 
|  | OS << "Cannot load value of type " << *Ty << "!"; | 
|  | report_fatal_error(OS.str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { | 
|  | DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); | 
|  | DEBUG(Init->dump()); | 
|  | if (isa<UndefValue>(Init)) | 
|  | return; | 
|  |  | 
|  | if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { | 
|  | unsigned ElementSize = | 
|  | getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); | 
|  | for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | 
|  | InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<ConstantAggregateZero>(Init)) { | 
|  | memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { | 
|  | unsigned ElementSize = | 
|  | getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); | 
|  | for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) | 
|  | InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { | 
|  | const StructLayout *SL = | 
|  | getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); | 
|  | for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) | 
|  | InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ConstantDataSequential *CDS = | 
|  | dyn_cast<ConstantDataSequential>(Init)) { | 
|  | // CDS is already laid out in host memory order. | 
|  | StringRef Data = CDS->getRawDataValues(); | 
|  | memcpy(Addr, Data.data(), Data.size()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Init->getType()->isFirstClassType()) { | 
|  | GenericValue Val = getConstantValue(Init); | 
|  | StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); | 
|  | llvm_unreachable("Unknown constant type to initialize memory with!"); | 
|  | } | 
|  |  | 
|  | /// EmitGlobals - Emit all of the global variables to memory, storing their | 
|  | /// addresses into GlobalAddress.  This must make sure to copy the contents of | 
|  | /// their initializers into the memory. | 
|  | void ExecutionEngine::emitGlobals() { | 
|  | // Loop over all of the global variables in the program, allocating the memory | 
|  | // to hold them.  If there is more than one module, do a prepass over globals | 
|  | // to figure out how the different modules should link together. | 
|  | std::map<std::pair<std::string, Type*>, | 
|  | const GlobalValue*> LinkedGlobalsMap; | 
|  |  | 
|  | if (Modules.size() != 1) { | 
|  | for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | 
|  | Module &M = *Modules[m]; | 
|  | for (const auto &GV : M.globals()) { | 
|  | if (GV.hasLocalLinkage() || GV.isDeclaration() || | 
|  | GV.hasAppendingLinkage() || !GV.hasName()) | 
|  | continue;// Ignore external globals and globals with internal linkage. | 
|  |  | 
|  | const GlobalValue *&GVEntry = | 
|  | LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; | 
|  |  | 
|  | // If this is the first time we've seen this global, it is the canonical | 
|  | // version. | 
|  | if (!GVEntry) { | 
|  | GVEntry = &GV; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the existing global is strong, never replace it. | 
|  | if (GVEntry->hasExternalLinkage()) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, we know it's linkonce/weak, replace it if this is a strong | 
|  | // symbol.  FIXME is this right for common? | 
|  | if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) | 
|  | GVEntry = &GV; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<const GlobalValue*> NonCanonicalGlobals; | 
|  | for (unsigned m = 0, e = Modules.size(); m != e; ++m) { | 
|  | Module &M = *Modules[m]; | 
|  | for (const auto &GV : M.globals()) { | 
|  | // In the multi-module case, see what this global maps to. | 
|  | if (!LinkedGlobalsMap.empty()) { | 
|  | if (const GlobalValue *GVEntry = | 
|  | LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { | 
|  | // If something else is the canonical global, ignore this one. | 
|  | if (GVEntry != &GV) { | 
|  | NonCanonicalGlobals.push_back(&GV); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!GV.isDeclaration()) { | 
|  | addGlobalMapping(&GV, getMemoryForGV(&GV)); | 
|  | } else { | 
|  | // External variable reference. Try to use the dynamic loader to | 
|  | // get a pointer to it. | 
|  | if (void *SymAddr = | 
|  | sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) | 
|  | addGlobalMapping(&GV, SymAddr); | 
|  | else { | 
|  | report_fatal_error("Could not resolve external global address: " | 
|  | +GV.getName()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are multiple modules, map the non-canonical globals to their | 
|  | // canonical location. | 
|  | if (!NonCanonicalGlobals.empty()) { | 
|  | for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { | 
|  | const GlobalValue *GV = NonCanonicalGlobals[i]; | 
|  | const GlobalValue *CGV = | 
|  | LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; | 
|  | void *Ptr = getPointerToGlobalIfAvailable(CGV); | 
|  | assert(Ptr && "Canonical global wasn't codegen'd!"); | 
|  | addGlobalMapping(GV, Ptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that all of the globals are set up in memory, loop through them all | 
|  | // and initialize their contents. | 
|  | for (const auto &GV : M.globals()) { | 
|  | if (!GV.isDeclaration()) { | 
|  | if (!LinkedGlobalsMap.empty()) { | 
|  | if (const GlobalValue *GVEntry = | 
|  | LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) | 
|  | if (GVEntry != &GV)  // Not the canonical variable. | 
|  | continue; | 
|  | } | 
|  | EmitGlobalVariable(&GV); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // EmitGlobalVariable - This method emits the specified global variable to the | 
|  | // address specified in GlobalAddresses, or allocates new memory if it's not | 
|  | // already in the map. | 
|  | void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { | 
|  | void *GA = getPointerToGlobalIfAvailable(GV); | 
|  |  | 
|  | if (!GA) { | 
|  | // If it's not already specified, allocate memory for the global. | 
|  | GA = getMemoryForGV(GV); | 
|  |  | 
|  | // If we failed to allocate memory for this global, return. | 
|  | if (!GA) return; | 
|  |  | 
|  | addGlobalMapping(GV, GA); | 
|  | } | 
|  |  | 
|  | // Don't initialize if it's thread local, let the client do it. | 
|  | if (!GV->isThreadLocal()) | 
|  | InitializeMemory(GV->getInitializer(), GA); | 
|  |  | 
|  | Type *ElTy = GV->getType()->getElementType(); | 
|  | size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); | 
|  | NumInitBytes += (unsigned)GVSize; | 
|  | ++NumGlobals; | 
|  | } | 
|  |  | 
|  | ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) | 
|  | : EE(EE), GlobalAddressMap(this) { | 
|  | } | 
|  |  | 
|  | sys::Mutex * | 
|  | ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { | 
|  | return &EES->EE.lock; | 
|  | } | 
|  |  | 
|  | void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, | 
|  | const GlobalValue *Old) { | 
|  | void *OldVal = EES->GlobalAddressMap.lookup(Old); | 
|  | EES->GlobalAddressReverseMap.erase(OldVal); | 
|  | } | 
|  |  | 
|  | void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, | 
|  | const GlobalValue *, | 
|  | const GlobalValue *) { | 
|  | llvm_unreachable("The ExecutionEngine doesn't know how to handle a" | 
|  | " RAUW on a value it has a global mapping for."); | 
|  | } |