blob: 760d3ff21888857bb93794ff8f3787541f9e8803 [file] [log] [blame]
//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the MRegisterInfo class. This
// file is responsible for the frame pointer elimination optimization on X86.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/Type.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/STLExtras.h"
#include <iostream>
using namespace llvm;
namespace {
cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
}
X86RegisterInfo::X86RegisterInfo()
: X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP) {}
void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, int FrameIdx,
const TargetRegisterClass *RC) const {
unsigned Opc;
if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32mr;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16mr;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8mr;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_mr;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_mr;
} else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
Opc = X86::FpST64m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSmr;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDmr;
} else if (RC == &X86::VR128RegClass) {
Opc = X86::MOVAPSmr;
} else {
assert(0 && "Unknown regclass");
abort();
}
addFrameReference(BuildMI(MBB, MI, Opc, 5), FrameIdx).addReg(SrcReg);
}
void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC) const{
unsigned Opc;
if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32rm;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16rm;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8rm;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rm;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rm;
} else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
Opc = X86::FpLD64m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSrm;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDrm;
} else if (RC == &X86::VR128RegClass) {
Opc = X86::MOVAPSrm;
} else {
assert(0 && "Unknown regclass");
abort();
}
addFrameReference(BuildMI(MBB, MI, Opc, 4, DestReg), FrameIdx);
}
void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *RC) const {
unsigned Opc;
if (RC == &X86::GR32RegClass) {
Opc = X86::MOV32rr;
} else if (RC == &X86::GR16RegClass) {
Opc = X86::MOV16rr;
} else if (RC == &X86::GR8RegClass) {
Opc = X86::MOV8rr;
} else if (RC == &X86::GR32_RegClass) {
Opc = X86::MOV32_rr;
} else if (RC == &X86::GR16_RegClass) {
Opc = X86::MOV16_rr;
} else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
Opc = X86::FpMOV;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::FsMOVAPSrr;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::FsMOVAPDrr;
} else if (RC == &X86::VR128RegClass) {
Opc = X86::MOVAPSrr;
} else {
assert(0 && "Unknown regclass");
abort();
}
BuildMI(MBB, MI, Opc, 1, DestReg).addReg(SrcReg);
}
static MachineInstr *MakeMInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 4), FrameIndex);
}
static MachineInstr *MakeMRInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addReg(MI->getOperand(1).getReg());
}
static MachineInstr *MakeMRIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 6), FrameIndex)
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImmedValue());
}
static MachineInstr *MakeMIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
if (MI->getOperand(1).isImmediate())
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addImm(MI->getOperand(1).getImmedValue());
else if (MI->getOperand(1).isGlobalAddress())
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addGlobalAddress(MI->getOperand(1).getGlobal(),
MI->getOperand(1).getOffset());
else if (MI->getOperand(1).isJumpTableIndex())
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addJumpTableIndex(MI->getOperand(1).getJumpTableIndex());
assert(0 && "Unknown operand for MakeMI!");
return 0;
}
static MachineInstr *MakeM0Inst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 5), FrameIndex).addImm(0);
}
static MachineInstr *MakeRMInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
const MachineOperand& op = MI->getOperand(0);
return addFrameReference(BuildMI(Opcode, 5, op.getReg(), op.getUseType()),
FrameIndex);
}
static MachineInstr *MakeRMIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
const MachineOperand& op = MI->getOperand(0);
return addFrameReference(BuildMI(Opcode, 6, op.getReg(), op.getUseType()),
FrameIndex).addImm(MI->getOperand(2).getImmedValue());
}
//===----------------------------------------------------------------------===//
// Efficient Lookup Table Support
//===----------------------------------------------------------------------===//
namespace {
/// TableEntry - Maps the 'from' opcode to a fused form of the 'to' opcode.
///
struct TableEntry {
unsigned from; // Original opcode.
unsigned to; // New opcode.
unsigned make; // Form of make required to produce the
// new instruction.
// less operators used by STL search.
bool operator<(const TableEntry &TE) const { return from < TE.from; }
friend bool operator<(const TableEntry &TE, unsigned V) {
return TE.from < V;
}
friend bool operator<(unsigned V, const TableEntry &TE) {
return V < TE.from;
}
};
}
/// TableIsSorted - Return true if the table is in 'from' opcode order.
///
static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
for (unsigned i = 1; i != NumEntries; ++i)
if (!(Table[i-1] < Table[i])) {
std::cerr << "Entries out of order " << Table[i-1].from
<< " " << Table[i].from << "\n";
return false;
}
return true;
}
/// TableLookup - Return the table entry matching the specified opcode.
/// Otherwise return NULL.
static const TableEntry *TableLookup(const TableEntry *Table, unsigned N,
unsigned Opcode) {
const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
if (I != Table+N && I->from == Opcode)
return I;
return NULL;
}
#define ARRAY_SIZE(TABLE) \
(sizeof(TABLE)/sizeof(TABLE[0]))
#ifdef NDEBUG
#define ASSERT_SORTED(TABLE)
#else
#define ASSERT_SORTED(TABLE) \
{ static bool TABLE##Checked = false; \
if (!TABLE##Checked) { \
assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \
"All lookup tables must be sorted for efficient access!"); \
TABLE##Checked = true; \
} \
}
#endif
MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr* MI,
unsigned i,
int FrameIndex) const {
// Check switch flag
if (NoFusing) return NULL;
// Selection of instruction makes
enum {
makeM0Inst,
makeMIInst,
makeMInst,
makeMRIInst,
makeMRInst,
makeRMIInst,
makeRMInst
};
// Table (and size) to search
const TableEntry *OpcodeTablePtr = NULL;
unsigned OpcodeTableSize = 0;
if (i == 0) { // If operand 0
static const TableEntry OpcodeTable[] = {
{ X86::ADC32ri, X86::ADC32mi, makeMIInst },
{ X86::ADC32ri8, X86::ADC32mi8, makeMIInst },
{ X86::ADC32rr, X86::ADC32mr, makeMRInst },
{ X86::ADD16ri, X86::ADD16mi, makeMIInst },
{ X86::ADD16ri8, X86::ADD16mi8, makeMIInst },
{ X86::ADD16rr, X86::ADD16mr, makeMRInst },
{ X86::ADD32ri, X86::ADD32mi, makeMIInst },
{ X86::ADD32ri8, X86::ADD32mi8, makeMIInst },
{ X86::ADD32rr, X86::ADD32mr, makeMRInst },
{ X86::ADD8ri, X86::ADD8mi, makeMIInst },
{ X86::ADD8rr, X86::ADD8mr, makeMRInst },
{ X86::AND16ri, X86::AND16mi, makeMIInst },
{ X86::AND16ri8, X86::AND16mi8, makeMIInst },
{ X86::AND16rr, X86::AND16mr, makeMRInst },
{ X86::AND32ri, X86::AND32mi, makeMIInst },
{ X86::AND32ri8, X86::AND32mi8, makeMIInst },
{ X86::AND32rr, X86::AND32mr, makeMRInst },
{ X86::AND8ri, X86::AND8mi, makeMIInst },
{ X86::AND8rr, X86::AND8mr, makeMRInst },
{ X86::DEC16r, X86::DEC16m, makeMInst },
{ X86::DEC32r, X86::DEC32m, makeMInst },
{ X86::DEC8r, X86::DEC8m, makeMInst },
{ X86::DIV16r, X86::DIV16m, makeMInst },
{ X86::DIV32r, X86::DIV32m, makeMInst },
{ X86::DIV8r, X86::DIV8m, makeMInst },
{ X86::FsMOVAPDrr, X86::MOVSDmr, makeMRInst },
{ X86::FsMOVAPSrr, X86::MOVSSmr, makeMRInst },
{ X86::IDIV16r, X86::IDIV16m, makeMInst },
{ X86::IDIV32r, X86::IDIV32m, makeMInst },
{ X86::IDIV8r, X86::IDIV8m, makeMInst },
{ X86::IMUL16r, X86::IMUL16m, makeMInst },
{ X86::IMUL32r, X86::IMUL32m, makeMInst },
{ X86::IMUL8r, X86::IMUL8m, makeMInst },
{ X86::INC16r, X86::INC16m, makeMInst },
{ X86::INC32r, X86::INC32m, makeMInst },
{ X86::INC8r, X86::INC8m, makeMInst },
{ X86::MOV16r0, X86::MOV16mi, makeM0Inst },
{ X86::MOV16ri, X86::MOV16mi, makeMIInst },
{ X86::MOV16rr, X86::MOV16mr, makeMRInst },
{ X86::MOV32r0, X86::MOV32mi, makeM0Inst },
{ X86::MOV32ri, X86::MOV32mi, makeMIInst },
{ X86::MOV32rr, X86::MOV32mr, makeMRInst },
{ X86::MOV8r0, X86::MOV8mi, makeM0Inst },
{ X86::MOV8ri, X86::MOV8mi, makeMIInst },
{ X86::MOV8rr, X86::MOV8mr, makeMRInst },
{ X86::MOVAPDrr, X86::MOVAPDmr, makeMRInst },
{ X86::MOVAPSrr, X86::MOVAPSmr, makeMRInst },
{ X86::MOVPDI2DIrr, X86::MOVPDI2DImr, makeMRInst },
{ X86::MOVPS2SSrr, X86::MOVPS2SSmr, makeMRInst },
{ X86::MOVSDrr, X86::MOVSDmr, makeMRInst },
{ X86::MOVSSrr, X86::MOVSSmr, makeMRInst },
{ X86::MOVUPDrr, X86::MOVUPDmr, makeMRInst },
{ X86::MOVUPSrr, X86::MOVUPSmr, makeMRInst },
{ X86::MUL16r, X86::MUL16m, makeMInst },
{ X86::MUL32r, X86::MUL32m, makeMInst },
{ X86::MUL8r, X86::MUL8m, makeMInst },
{ X86::NEG16r, X86::NEG16m, makeMInst },
{ X86::NEG32r, X86::NEG32m, makeMInst },
{ X86::NEG8r, X86::NEG8m, makeMInst },
{ X86::NOT16r, X86::NOT16m, makeMInst },
{ X86::NOT32r, X86::NOT32m, makeMInst },
{ X86::NOT8r, X86::NOT8m, makeMInst },
{ X86::OR16ri, X86::OR16mi, makeMIInst },
{ X86::OR16ri8, X86::OR16mi8, makeMIInst },
{ X86::OR16rr, X86::OR16mr, makeMRInst },
{ X86::OR32ri, X86::OR32mi, makeMIInst },
{ X86::OR32ri8, X86::OR32mi8, makeMIInst },
{ X86::OR32rr, X86::OR32mr, makeMRInst },
{ X86::OR8ri, X86::OR8mi, makeMIInst },
{ X86::OR8rr, X86::OR8mr, makeMRInst },
{ X86::ROL16r1, X86::ROL16m1, makeMInst },
{ X86::ROL16rCL, X86::ROL16mCL, makeMInst },
{ X86::ROL16ri, X86::ROL16mi, makeMIInst },
{ X86::ROL32r1, X86::ROL32m1, makeMInst },
{ X86::ROL32rCL, X86::ROL32mCL, makeMInst },
{ X86::ROL32ri, X86::ROL32mi, makeMIInst },
{ X86::ROL8r1, X86::ROL8m1, makeMInst },
{ X86::ROL8rCL, X86::ROL8mCL, makeMInst },
{ X86::ROL8ri, X86::ROL8mi, makeMIInst },
{ X86::ROR16r1, X86::ROR16m1, makeMInst },
{ X86::ROR16rCL, X86::ROR16mCL, makeMInst },
{ X86::ROR16ri, X86::ROR16mi, makeMIInst },
{ X86::ROR32r1, X86::ROR32m1, makeMInst },
{ X86::ROR32rCL, X86::ROR32mCL, makeMInst },
{ X86::ROR32ri, X86::ROR32mi, makeMIInst },
{ X86::ROR8r1, X86::ROR8m1, makeMInst },
{ X86::ROR8rCL, X86::ROR8mCL, makeMInst },
{ X86::ROR8ri, X86::ROR8mi, makeMIInst },
{ X86::SAR16r1, X86::SAR16m1, makeMInst },
{ X86::SAR16rCL, X86::SAR16mCL, makeMInst },
{ X86::SAR16ri, X86::SAR16mi, makeMIInst },
{ X86::SAR32r1, X86::SAR32m1, makeMInst },
{ X86::SAR32rCL, X86::SAR32mCL, makeMInst },
{ X86::SAR32ri, X86::SAR32mi, makeMIInst },
{ X86::SAR8r1, X86::SAR8m1, makeMInst },
{ X86::SAR8rCL, X86::SAR8mCL, makeMInst },
{ X86::SAR8ri, X86::SAR8mi, makeMIInst },
{ X86::SBB32ri, X86::SBB32mi, makeMIInst },
{ X86::SBB32ri8, X86::SBB32mi8, makeMIInst },
{ X86::SBB32rr, X86::SBB32mr, makeMRInst },
{ X86::SETAEr, X86::SETAEm, makeMInst },
{ X86::SETAr, X86::SETAm, makeMInst },
{ X86::SETBEr, X86::SETBEm, makeMInst },
{ X86::SETBr, X86::SETBm, makeMInst },
{ X86::SETEr, X86::SETEm, makeMInst },
{ X86::SETGEr, X86::SETGEm, makeMInst },
{ X86::SETGr, X86::SETGm, makeMInst },
{ X86::SETLEr, X86::SETLEm, makeMInst },
{ X86::SETLr, X86::SETLm, makeMInst },
{ X86::SETNEr, X86::SETNEm, makeMInst },
{ X86::SETNPr, X86::SETNPm, makeMInst },
{ X86::SETNSr, X86::SETNSm, makeMInst },
{ X86::SETPr, X86::SETPm, makeMInst },
{ X86::SETSr, X86::SETSm, makeMInst },
{ X86::SHL16r1, X86::SHL16m1, makeMInst },
{ X86::SHL16rCL, X86::SHL16mCL, makeMInst },
{ X86::SHL16ri, X86::SHL16mi, makeMIInst },
{ X86::SHL32r1, X86::SHL32m1, makeMInst },
{ X86::SHL32rCL, X86::SHL32mCL, makeMInst },
{ X86::SHL32ri, X86::SHL32mi, makeMIInst },
{ X86::SHL8r1, X86::SHL8m1, makeMInst },
{ X86::SHL8rCL, X86::SHL8mCL, makeMInst },
{ X86::SHL8ri, X86::SHL8mi, makeMIInst },
{ X86::SHLD16rrCL, X86::SHLD16mrCL, makeMRInst },
{ X86::SHLD16rri8, X86::SHLD16mri8, makeMRIInst },
{ X86::SHLD32rrCL, X86::SHLD32mrCL, makeMRInst },
{ X86::SHLD32rri8, X86::SHLD32mri8, makeMRIInst },
{ X86::SHR16r1, X86::SHR16m1, makeMInst },
{ X86::SHR16rCL, X86::SHR16mCL, makeMInst },
{ X86::SHR16ri, X86::SHR16mi, makeMIInst },
{ X86::SHR32r1, X86::SHR32m1, makeMInst },
{ X86::SHR32rCL, X86::SHR32mCL, makeMInst },
{ X86::SHR32ri, X86::SHR32mi, makeMIInst },
{ X86::SHR8r1, X86::SHR8m1, makeMInst },
{ X86::SHR8rCL, X86::SHR8mCL, makeMInst },
{ X86::SHR8ri, X86::SHR8mi, makeMIInst },
{ X86::SHRD16rrCL, X86::SHRD16mrCL, makeMRInst },
{ X86::SHRD16rri8, X86::SHRD16mri8, makeMRIInst },
{ X86::SHRD32rrCL, X86::SHRD32mrCL, makeMRInst },
{ X86::SHRD32rri8, X86::SHRD32mri8, makeMRIInst },
{ X86::SUB16ri, X86::SUB16mi, makeMIInst },
{ X86::SUB16ri8, X86::SUB16mi8, makeMIInst },
{ X86::SUB16rr, X86::SUB16mr, makeMRInst },
{ X86::SUB32ri, X86::SUB32mi, makeMIInst },
{ X86::SUB32ri8, X86::SUB32mi8, makeMIInst },
{ X86::SUB32rr, X86::SUB32mr, makeMRInst },
{ X86::SUB8ri, X86::SUB8mi, makeMIInst },
{ X86::SUB8rr, X86::SUB8mr, makeMRInst },
{ X86::XCHG16rr, X86::XCHG16mr, makeMRInst },
{ X86::XCHG32rr, X86::XCHG32mr, makeMRInst },
{ X86::XCHG8rr, X86::XCHG8mr, makeMRInst },
{ X86::XOR16ri, X86::XOR16mi, makeMIInst },
{ X86::XOR16ri8, X86::XOR16mi8, makeMIInst },
{ X86::XOR16rr, X86::XOR16mr, makeMRInst },
{ X86::XOR32ri, X86::XOR32mi, makeMIInst },
{ X86::XOR32ri8, X86::XOR32mi8, makeMIInst },
{ X86::XOR32rr, X86::XOR32mr, makeMRInst },
{ X86::XOR8ri, X86::XOR8mi, makeMIInst },
{ X86::XOR8rr, X86::XOR8mr, makeMRInst }
};
ASSERT_SORTED(OpcodeTable);
OpcodeTablePtr = OpcodeTable;
OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
} else if (i == 1) {
static const TableEntry OpcodeTable[] = {
{ X86::ADC32rr, X86::ADC32rm, makeRMInst },
{ X86::ADD16rr, X86::ADD16rm, makeRMInst },
{ X86::ADD32rr, X86::ADD32rm, makeRMInst },
{ X86::ADD8rr, X86::ADD8rm, makeRMInst },
{ X86::ADDPDrr, X86::ADDPDrm, makeRMInst },
{ X86::ADDPSrr, X86::ADDPSrm, makeRMInst },
{ X86::ADDSDrr, X86::ADDSDrm, makeRMInst },
{ X86::ADDSSrr, X86::ADDSSrm, makeRMInst },
{ X86::ADDSUBPDrr, X86::ADDSUBPDrm, makeRMInst },
{ X86::ADDSUBPSrr, X86::ADDSUBPSrm, makeRMInst },
{ X86::AND16rr, X86::AND16rm, makeRMInst },
{ X86::AND32rr, X86::AND32rm, makeRMInst },
{ X86::AND8rr, X86::AND8rm, makeRMInst },
{ X86::ANDNPDrr, X86::ANDNPDrm, makeRMInst },
{ X86::ANDNPSrr, X86::ANDNPSrm, makeRMInst },
{ X86::ANDPDrr, X86::ANDPDrm, makeRMInst },
{ X86::ANDPSrr, X86::ANDPSrm, makeRMInst },
{ X86::CMOVA16rr, X86::CMOVA16rm, makeRMInst },
{ X86::CMOVA32rr, X86::CMOVA32rm, makeRMInst },
{ X86::CMOVAE16rr, X86::CMOVAE16rm, makeRMInst },
{ X86::CMOVAE32rr, X86::CMOVAE32rm, makeRMInst },
{ X86::CMOVB16rr, X86::CMOVB16rm, makeRMInst },
{ X86::CMOVB32rr, X86::CMOVB32rm, makeRMInst },
{ X86::CMOVBE16rr, X86::CMOVBE16rm, makeRMInst },
{ X86::CMOVBE32rr, X86::CMOVBE32rm, makeRMInst },
{ X86::CMOVE16rr, X86::CMOVE16rm, makeRMInst },
{ X86::CMOVE32rr, X86::CMOVE32rm, makeRMInst },
{ X86::CMOVG16rr, X86::CMOVG16rm, makeRMInst },
{ X86::CMOVG32rr, X86::CMOVG32rm, makeRMInst },
{ X86::CMOVGE16rr, X86::CMOVGE16rm, makeRMInst },
{ X86::CMOVGE32rr, X86::CMOVGE32rm, makeRMInst },
{ X86::CMOVL16rr, X86::CMOVL16rm, makeRMInst },
{ X86::CMOVL32rr, X86::CMOVL32rm, makeRMInst },
{ X86::CMOVLE16rr, X86::CMOVLE16rm, makeRMInst },
{ X86::CMOVLE32rr, X86::CMOVLE32rm, makeRMInst },
{ X86::CMOVNE16rr, X86::CMOVNE16rm, makeRMInst },
{ X86::CMOVNE32rr, X86::CMOVNE32rm, makeRMInst },
{ X86::CMOVNP16rr, X86::CMOVNP16rm, makeRMInst },
{ X86::CMOVNP32rr, X86::CMOVNP32rm, makeRMInst },
{ X86::CMOVNS16rr, X86::CMOVNS16rm, makeRMInst },
{ X86::CMOVNS32rr, X86::CMOVNS32rm, makeRMInst },
{ X86::CMOVP16rr, X86::CMOVP16rm, makeRMInst },
{ X86::CMOVP32rr, X86::CMOVP32rm, makeRMInst },
{ X86::CMOVS16rr, X86::CMOVS16rm, makeRMInst },
{ X86::CMOVS32rr, X86::CMOVS32rm, makeRMInst },
{ X86::CMP16ri, X86::CMP16mi, makeMIInst },
{ X86::CMP16ri8, X86::CMP16mi8, makeMIInst },
{ X86::CMP16rr, X86::CMP16rm, makeRMInst },
{ X86::CMP32ri, X86::CMP32mi, makeMIInst },
{ X86::CMP32ri8, X86::CMP32mi8, makeRMInst },
{ X86::CMP32rr, X86::CMP32rm, makeRMInst },
{ X86::CMP8ri, X86::CMP8mi, makeRMInst },
{ X86::CMP8rr, X86::CMP8rm, makeRMInst },
{ X86::CMPPDrri, X86::CMPPDrmi, makeRMIInst },
{ X86::CMPPSrri, X86::CMPPSrmi, makeRMIInst },
{ X86::CMPSDrr, X86::CMPSDrm, makeRMInst },
{ X86::CMPSSrr, X86::CMPSSrm, makeRMInst },
{ X86::CVTSD2SSrr, X86::CVTSD2SSrm, makeRMInst },
{ X86::CVTSI2SDrr, X86::CVTSI2SDrm, makeRMInst },
{ X86::CVTSI2SSrr, X86::CVTSI2SSrm, makeRMInst },
{ X86::CVTSS2SDrr, X86::CVTSS2SDrm, makeRMInst },
{ X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, makeRMInst },
{ X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, makeRMInst },
{ X86::DIVPDrr, X86::DIVPDrm, makeRMInst },
{ X86::DIVPSrr, X86::DIVPSrm, makeRMInst },
{ X86::DIVSDrr, X86::DIVSDrm, makeRMInst },
{ X86::DIVSSrr, X86::DIVSSrm, makeRMInst },
{ X86::FsMOVAPDrr, X86::MOVSDrm, makeRMInst },
{ X86::FsMOVAPSrr, X86::MOVSSrm, makeRMInst },
{ X86::HADDPDrr, X86::HADDPDrm, makeRMInst },
{ X86::HADDPSrr, X86::HADDPSrm, makeRMInst },
{ X86::HSUBPDrr, X86::HSUBPDrm, makeRMInst },
{ X86::HSUBPSrr, X86::HSUBPSrm, makeRMInst },
{ X86::IMUL16rr, X86::IMUL16rm, makeRMInst },
{ X86::IMUL16rri, X86::IMUL16rmi, makeRMIInst },
{ X86::IMUL16rri8, X86::IMUL16rmi8, makeRMIInst },
{ X86::IMUL32rr, X86::IMUL32rm, makeRMInst },
{ X86::IMUL32rri, X86::IMUL32rmi, makeRMIInst },
{ X86::IMUL32rri8, X86::IMUL32rmi8, makeRMIInst },
{ X86::Int_CMPSDrr, X86::Int_CMPSDrm, makeRMInst },
{ X86::Int_CMPSSrr, X86::Int_CMPSSrm, makeRMInst },
{ X86::Int_COMISDrr, X86::Int_COMISDrm, makeRMInst },
{ X86::Int_COMISSrr, X86::Int_COMISSrm, makeRMInst },
{ X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, makeRMInst },
{ X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, makeRMInst },
{ X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, makeRMInst },
{ X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, makeRMInst },
{ X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, makeRMInst },
{ X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, makeRMInst },
{ X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, makeRMInst },
{ X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, makeRMInst },
{ X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, makeRMInst },
{ X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, makeRMInst },
{ X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, makeRMInst },
{ X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, makeRMInst },
{ X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, makeRMInst },
{ X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, makeRMInst },
{ X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, makeRMInst },
{ X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, makeRMInst },
{ X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, makeRMInst },
{ X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, makeRMInst },
{ X86::MAXPDrr, X86::MAXPDrm, makeRMInst },
{ X86::MAXPSrr, X86::MAXPSrm, makeRMInst },
{ X86::MINPDrr, X86::MINPDrm, makeRMInst },
{ X86::MINPSrr, X86::MINPSrm, makeRMInst },
{ X86::MOV16rr, X86::MOV16rm, makeRMInst },
{ X86::MOV32rr, X86::MOV32rm, makeRMInst },
{ X86::MOV8rr, X86::MOV8rm, makeRMInst },
{ X86::MOVAPDrr, X86::MOVAPDrm, makeRMInst },
{ X86::MOVAPSrr, X86::MOVAPSrm, makeRMInst },
{ X86::MOVDDUPrr, X86::MOVDDUPrm, makeRMInst },
{ X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, makeRMInst },
{ X86::MOVQI2PQIrr, X86::MOVQI2PQIrm, makeRMInst },
{ X86::MOVSD2PDrr, X86::MOVSD2PDrm, makeRMInst },
{ X86::MOVSDrr, X86::MOVSDrm, makeRMInst },
{ X86::MOVSHDUPrr, X86::MOVSHDUPrm, makeRMInst },
{ X86::MOVSLDUPrr, X86::MOVSLDUPrm, makeRMInst },
{ X86::MOVSS2PSrr, X86::MOVSS2PSrm, makeRMInst },
{ X86::MOVSSrr, X86::MOVSSrm, makeRMInst },
{ X86::MOVSX16rr8, X86::MOVSX16rm8, makeRMInst },
{ X86::MOVSX32rr16, X86::MOVSX32rm16, makeRMInst },
{ X86::MOVSX32rr8, X86::MOVSX32rm8, makeRMInst },
{ X86::MOVUPDrr, X86::MOVUPDrm, makeRMInst },
{ X86::MOVUPSrr, X86::MOVUPSrm, makeRMInst },
{ X86::MOVZX16rr8, X86::MOVZX16rm8, makeRMInst },
{ X86::MOVZX32rr16, X86::MOVZX32rm16, makeRMInst },
{ X86::MOVZX32rr8, X86::MOVZX32rm8, makeRMInst },
{ X86::MULPDrr, X86::MULPDrm, makeRMInst },
{ X86::MULPSrr, X86::MULPSrm, makeRMInst },
{ X86::MULSDrr, X86::MULSDrm, makeRMInst },
{ X86::MULSSrr, X86::MULSSrm, makeRMInst },
{ X86::OR16rr, X86::OR16rm, makeRMInst },
{ X86::OR32rr, X86::OR32rm, makeRMInst },
{ X86::OR8rr, X86::OR8rm, makeRMInst },
{ X86::ORPDrr, X86::ORPDrm, makeRMInst },
{ X86::ORPSrr, X86::ORPSrm, makeRMInst },
{ X86::PACKSSDWrr, X86::PACKSSDWrm, makeRMInst },
{ X86::PACKSSWBrr, X86::PACKSSWBrm, makeRMInst },
{ X86::PACKUSWBrr, X86::PACKUSWBrm, makeRMInst },
{ X86::PADDBrr, X86::PADDBrm, makeRMInst },
{ X86::PADDDrr, X86::PADDDrm, makeRMInst },
{ X86::PADDSBrr, X86::PADDSBrm, makeRMInst },
{ X86::PADDSWrr, X86::PADDSWrm, makeRMInst },
{ X86::PADDWrr, X86::PADDWrm, makeRMInst },
{ X86::PANDNrr, X86::PANDNrm, makeRMInst },
{ X86::PANDrr, X86::PANDrm, makeRMInst },
{ X86::PAVGBrr, X86::PAVGBrm, makeRMInst },
{ X86::PAVGWrr, X86::PAVGWrm, makeRMInst },
{ X86::PCMPEQBrr, X86::PCMPEQBrm, makeRMInst },
{ X86::PCMPEQDrr, X86::PCMPEQDrm, makeRMInst },
{ X86::PCMPEQWrr, X86::PCMPEQWrm, makeRMInst },
{ X86::PCMPGTBrr, X86::PCMPGTBrm, makeRMInst },
{ X86::PCMPGTDrr, X86::PCMPGTDrm, makeRMInst },
{ X86::PCMPGTWrr, X86::PCMPGTWrm, makeRMInst },
{ X86::PINSRWrri, X86::PINSRWrmi, makeRMIInst },
{ X86::PMADDWDrr, X86::PMADDWDrm, makeRMInst },
{ X86::PMAXSWrr, X86::PMAXSWrm, makeRMInst },
{ X86::PMAXUBrr, X86::PMAXUBrm, makeRMInst },
{ X86::PMINSWrr, X86::PMINSWrm, makeRMInst },
{ X86::PMINUBrr, X86::PMINUBrm, makeRMInst },
{ X86::PMULHUWrr, X86::PMULHUWrm, makeRMInst },
{ X86::PMULHWrr, X86::PMULHWrm, makeRMInst },
{ X86::PMULLWrr, X86::PMULLWrm, makeRMInst },
{ X86::PMULUDQrr, X86::PMULUDQrm, makeRMInst },
{ X86::PORrr, X86::PORrm, makeRMInst },
{ X86::PSADBWrr, X86::PSADBWrm, makeRMInst },
{ X86::PSHUFDri, X86::PSHUFDmi, makeRMIInst },
{ X86::PSHUFHWri, X86::PSHUFHWmi, makeRMIInst },
{ X86::PSHUFLWri, X86::PSHUFLWmi, makeRMIInst },
{ X86::PSLLDrr, X86::PSLLDrm, makeRMInst },
{ X86::PSLLQrr, X86::PSLLQrm, makeRMInst },
{ X86::PSLLWrr, X86::PSLLWrm, makeRMInst },
{ X86::PSRADrr, X86::PSRADrm, makeRMInst },
{ X86::PSRAWrr, X86::PSRAWrm, makeRMInst },
{ X86::PSRLDrr, X86::PSRLDrm, makeRMInst },
{ X86::PSRLQrr, X86::PSRLQrm, makeRMInst },
{ X86::PSRLWrr, X86::PSRLWrm, makeRMInst },
{ X86::PSUBBrr, X86::PSUBBrm, makeRMInst },
{ X86::PSUBDrr, X86::PSUBDrm, makeRMInst },
{ X86::PSUBSBrr, X86::PSUBSBrm, makeRMInst },
{ X86::PSUBSWrr, X86::PSUBSWrm, makeRMInst },
{ X86::PSUBWrr, X86::PSUBWrm, makeRMInst },
{ X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, makeRMInst },
{ X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, makeRMInst },
{ X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, makeRMInst },
{ X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, makeRMInst },
{ X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, makeRMInst },
{ X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, makeRMInst },
{ X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, makeRMInst },
{ X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, makeRMInst },
{ X86::PXORrr, X86::PXORrm, makeRMInst },
{ X86::RCPPSr, X86::RCPPSm, makeRMInst },
{ X86::RSQRTPSr, X86::RSQRTPSm, makeRMInst },
{ X86::SBB32rr, X86::SBB32rm, makeRMInst },
{ X86::SHUFPDrri, X86::SHUFPDrmi, makeRMIInst },
{ X86::SHUFPSrri, X86::SHUFPSrmi, makeRMIInst },
{ X86::SQRTPDr, X86::SQRTPDm, makeRMInst },
{ X86::SQRTPSr, X86::SQRTPSm, makeRMInst },
{ X86::SQRTSDr, X86::SQRTSDm, makeRMInst },
{ X86::SQRTSSr, X86::SQRTSSm, makeRMInst },
{ X86::SUB16rr, X86::SUB16rm, makeRMInst },
{ X86::SUB32rr, X86::SUB32rm, makeRMInst },
{ X86::SUB8rr, X86::SUB8rm, makeRMInst },
{ X86::SUBPDrr, X86::SUBPDrm, makeRMInst },
{ X86::SUBPSrr, X86::SUBPSrm, makeRMInst },
{ X86::SUBSDrr, X86::SUBSDrm, makeRMInst },
{ X86::SUBSSrr, X86::SUBSSrm, makeRMInst },
{ X86::TEST16ri, X86::TEST16mi, makeMIInst },
{ X86::TEST16rr, X86::TEST16rm, makeRMInst },
{ X86::TEST32ri, X86::TEST32mi, makeMIInst },
{ X86::TEST32rr, X86::TEST32rm, makeRMInst },
{ X86::TEST8ri, X86::TEST8mi, makeMIInst },
{ X86::TEST8rr, X86::TEST8rm, makeRMInst },
{ X86::UCOMISDrr, X86::UCOMISDrm, makeRMInst },
{ X86::UCOMISSrr, X86::UCOMISSrm, makeRMInst },
{ X86::UNPCKHPDrr, X86::UNPCKHPDrm, makeRMInst },
{ X86::UNPCKHPSrr, X86::UNPCKHPSrm, makeRMInst },
{ X86::UNPCKLPDrr, X86::UNPCKLPDrm, makeRMInst },
{ X86::UNPCKLPSrr, X86::UNPCKLPSrm, makeRMInst },
{ X86::XCHG16rr, X86::XCHG16rm, makeRMInst },
{ X86::XCHG32rr, X86::XCHG32rm, makeRMInst },
{ X86::XCHG8rr, X86::XCHG8rm, makeRMInst },
{ X86::XOR16rr, X86::XOR16rm, makeRMInst },
{ X86::XOR32rr, X86::XOR32rm, makeRMInst },
{ X86::XOR8rr, X86::XOR8rm, makeRMInst },
{ X86::XORPDrr, X86::XORPDrm, makeRMInst },
{ X86::XORPSrr, X86::XORPSrm, makeRMInst }
};
ASSERT_SORTED(OpcodeTable);
OpcodeTablePtr = OpcodeTable;
OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
}
// If table selected
if (OpcodeTablePtr) {
// Opcode to fuse
unsigned fromOpcode = MI->getOpcode();
// Lookup fromOpcode in table
const TableEntry *entry = TableLookup(OpcodeTablePtr, OpcodeTableSize,
fromOpcode);
// If opcode found in table
if (entry) {
// Fused opcode
unsigned toOpcode = entry->to;
// Make new instruction
switch (entry->make) {
case makeM0Inst: return MakeM0Inst(toOpcode, FrameIndex, MI);
case makeMIInst: return MakeMIInst(toOpcode, FrameIndex, MI);
case makeMInst: return MakeMInst(toOpcode, FrameIndex, MI);
case makeMRIInst: return MakeMRIInst(toOpcode, FrameIndex, MI);
case makeMRInst: return MakeMRInst(toOpcode, FrameIndex, MI);
case makeRMIInst: return MakeRMIInst(toOpcode, FrameIndex, MI);
case makeRMInst: return MakeRMInst(toOpcode, FrameIndex, MI);
default: assert(0 && "Unknown instruction make");
}
}
}
// No fusion
if (PrintFailedFusing)
std::cerr << "We failed to fuse ("
<< ((i == 1) ? "r" : "s") << "): " << *MI;
return NULL;
}
const unsigned *X86RegisterInfo::getCalleeSaveRegs() const {
static const unsigned CalleeSaveRegs[] = {
X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0
};
return CalleeSaveRegs;
}
const TargetRegisterClass* const*
X86RegisterInfo::getCalleeSaveRegClasses() const {
static const TargetRegisterClass * const CalleeSaveRegClasses[] = {
&X86::GR32RegClass, &X86::GR32RegClass,
&X86::GR32RegClass, &X86::GR32RegClass, 0
};
return CalleeSaveRegClasses;
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
// hasFP - Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function has variable sized allocas or
// if frame pointer elimination is disabled.
//
static bool hasFP(MachineFunction &MF) {
return (NoFramePointerElim ||
MF.getFrameInfo()->hasVarSizedObjects() ||
MF.getInfo<X86FunctionInfo>()->getForceFramePointer());
}
void X86RegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (hasFP(MF)) {
// If we have a frame pointer, turn the adjcallstackup instruction into a
// 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP,
// <amt>'
MachineInstr *Old = I;
unsigned Amount = Old->getOperand(0).getImmedValue();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
MachineInstr *New = 0;
if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
New=BuildMI(X86::SUB32ri, 1, X86::ESP, MachineOperand::UseAndDef)
.addImm(Amount);
} else {
assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
// factor out the amount the callee already popped.
unsigned CalleeAmt = Old->getOperand(1).getImmedValue();
Amount -= CalleeAmt;
if (Amount) {
unsigned Opc = Amount < 128 ? X86::ADD32ri8 : X86::ADD32ri;
New = BuildMI(Opc, 1, X86::ESP,
MachineOperand::UseAndDef).addImm(Amount);
}
}
// Replace the pseudo instruction with a new instruction...
if (New) MBB.insert(I, New);
}
} else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
// If we are performing frame pointer elimination and if the callee pops
// something off the stack pointer, add it back. We do this until we have
// more advanced stack pointer tracking ability.
if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) {
unsigned Opc = CalleeAmt < 128 ? X86::SUB32ri8 : X86::SUB32ri;
MachineInstr *New =
BuildMI(Opc, 1, X86::ESP,
MachineOperand::UseAndDef).addImm(CalleeAmt);
MBB.insert(I, New);
}
}
MBB.erase(I);
}
void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{
unsigned i = 0;
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
while (!MI.getOperand(i).isFrameIndex()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getFrameIndex();
// This must be part of a four operand memory reference. Replace the
// FrameIndex with base register with EBP. Add add an offset to the offset.
MI.getOperand(i).ChangeToRegister(hasFP(MF) ? X86::EBP : X86::ESP);
// Now add the frame object offset to the offset from EBP.
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
MI.getOperand(i+3).getImmedValue()+4;
if (!hasFP(MF))
Offset += MF.getFrameInfo()->getStackSize();
else
Offset += 4; // Skip the saved EBP
MI.getOperand(i+3).ChangeToImmediate(Offset);
}
void
X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
if (hasFP(MF)) {
// Create a frame entry for the EBP register that must be saved.
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, -8);
assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
"Slot for EBP register must be last in order to be found!");
}
}
void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
const Function* Fn = MF.getFunction();
const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
MachineInstr *MI;
// Get the number of bytes to allocate from the FrameInfo
unsigned NumBytes = MFI->getStackSize();
if (MFI->hasCalls() || MF.getFrameInfo()->hasVarSizedObjects()) {
// When we have no frame pointer, we reserve argument space for call sites
// in the function immediately on entry to the current function. This
// eliminates the need for add/sub ESP brackets around call sites.
//
if (!hasFP(MF))
NumBytes += MFI->getMaxCallFrameSize();
// Round the size to a multiple of the alignment (don't forget the 4 byte
// offset though).
NumBytes = ((NumBytes+4)+Align-1)/Align*Align - 4;
}
// Update frame info to pretend that this is part of the stack...
MFI->setStackSize(NumBytes);
if (NumBytes) { // adjust stack pointer: ESP -= numbytes
if (NumBytes >= 4096 && Subtarget->TargetType == X86Subtarget::isCygwin) {
// Function prologue calls _alloca to probe the stack when allocating
// more than 4k bytes in one go. Touching the stack at 4K increments is
// necessary to ensure that the guard pages used by the OS virtual memory
// manager are allocated in correct sequence.
MI = BuildMI(X86::MOV32ri, 2, X86::EAX).addImm(NumBytes);
MBB.insert(MBBI, MI);
MI = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("_alloca");
MBB.insert(MBBI, MI);
} else {
unsigned Opc = NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri;
MI = BuildMI(Opc, 1, X86::ESP,MachineOperand::UseAndDef).addImm(NumBytes);
MBB.insert(MBBI, MI);
}
}
if (hasFP(MF)) {
// Get the offset of the stack slot for the EBP register... which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+4;
// Save EBP into the appropriate stack slot...
MI = addRegOffset(BuildMI(X86::MOV32mr, 5), // mov [ESP-<offset>], EBP
X86::ESP, EBPOffset+NumBytes).addReg(X86::EBP);
MBB.insert(MBBI, MI);
// Update EBP with the new base value...
if (NumBytes == 4) // mov EBP, ESP
MI = BuildMI(X86::MOV32rr, 2, X86::EBP).addReg(X86::ESP);
else // lea EBP, [ESP+StackSize]
MI = addRegOffset(BuildMI(X86::LEA32r, 5, X86::EBP), X86::ESP,NumBytes-4);
MBB.insert(MBBI, MI);
}
// If it's main() on Cygwin\Mingw32 we should align stack as well
if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
Subtarget->TargetType == X86Subtarget::isCygwin) {
MI = BuildMI(X86::AND32ri, 2, X86::ESP).addImm(-Align);
MBB.insert(MBBI, MI);
// Probe the stack
MI = BuildMI(X86::MOV32ri, 2, X86::EAX).addImm(Align);
MBB.insert(MBBI, MI);
MI = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("_alloca");
MBB.insert(MBBI, MI);
}
}
void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock::iterator MBBI = prior(MBB.end());
switch (MBBI->getOpcode()) {
case X86::RET:
case X86::RETI:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm: break; // These are ok
default:
assert(0 && "Can only insert epilog into returning blocks");
}
if (hasFP(MF)) {
// Get the offset of the stack slot for the EBP register... which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexEnd()-1)+4;
// mov ESP, EBP
BuildMI(MBB, MBBI, X86::MOV32rr, 1,X86::ESP).addReg(X86::EBP);
// pop EBP
BuildMI(MBB, MBBI, X86::POP32r, 0, X86::EBP);
} else {
// Get the number of bytes allocated from the FrameInfo...
unsigned NumBytes = MFI->getStackSize();
if (NumBytes) { // adjust stack pointer back: ESP += numbytes
// If there is an ADD32ri or SUB32ri of ESP immediately before this
// instruction, merge the two instructions.
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
if ((PI->getOpcode() == X86::ADD32ri ||
PI->getOpcode() == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == X86::ESP) {
NumBytes += PI->getOperand(1).getImmedValue();
MBB.erase(PI);
} else if ((PI->getOpcode() == X86::SUB32ri ||
PI->getOpcode() == X86::SUB32ri8) &&
PI->getOperand(0).getReg() == X86::ESP) {
NumBytes -= PI->getOperand(1).getImmedValue();
MBB.erase(PI);
} else if (PI->getOpcode() == X86::ADJSTACKPTRri) {
NumBytes += PI->getOperand(1).getImmedValue();
MBB.erase(PI);
}
}
if (NumBytes > 0) {
unsigned Opc = NumBytes < 128 ? X86::ADD32ri8 : X86::ADD32ri;
BuildMI(MBB, MBBI, Opc, 2)
.addReg(X86::ESP, MachineOperand::UseAndDef).addImm(NumBytes);
} else if ((int)NumBytes < 0) {
unsigned Opc = -NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri;
BuildMI(MBB, MBBI, Opc, 2)
.addReg(X86::ESP, MachineOperand::UseAndDef).addImm(-NumBytes);
}
}
}
}
unsigned X86RegisterInfo::getRARegister() const {
return X86::ST0; // use a non-register register
}
unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
return hasFP(MF) ? X86::EBP : X86::ESP;
}
namespace llvm {
unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
switch (VT) {
default: return Reg;
case MVT::i8:
if (High) {
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
return X86::AH;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
return X86::DH;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
return X86::CH;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
return X86::BH;
}
} else {
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
return X86::AL;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
return X86::DL;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
return X86::CL;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
return X86::BL;
}
}
case MVT::i16:
switch (Reg) {
default: return Reg;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
return X86::AX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
return X86::DX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
return X86::CX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
return X86::BX;
case X86::ESI:
return X86::SI;
case X86::EDI:
return X86::DI;
case X86::EBP:
return X86::BP;
case X86::ESP:
return X86::SP;
}
case MVT::i32:
switch (Reg) {
default: return true;
case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
return X86::EAX;
case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
return X86::EDX;
case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
return X86::ECX;
case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
return X86::EBX;
case X86::SI:
return X86::ESI;
case X86::DI:
return X86::EDI;
case X86::BP:
return X86::EBP;
case X86::SP:
return X86::ESP;
}
}
return Reg;
}
}
#include "X86GenRegisterInfo.inc"