blob: 2f37c351baf9f6a28ba2051ef1e6e14450aab86b [file] [log] [blame]
//===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVAsmBackend.h"
#include "RISCVFixupKinds.h"
#include "llvm/ADT/APInt.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFragment.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Temporary workaround for old linkers that do not support ULEB128 relocations,
// which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair
// implemented in Clang/LLVM.
static cl::opt<bool> ULEB128Reloc(
"riscv-uleb128-reloc", cl::init(true), cl::Hidden,
cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate"));
RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI,
bool Is64Bit, const MCTargetOptions &Options)
: MCAsmBackend(llvm::endianness::little), STI(STI), OSABI(OSABI),
Is64Bit(Is64Bit), TargetOptions(Options) {
RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits());
}
std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const {
if (STI.getTargetTriple().isOSBinFormatELF()) {
unsigned Type;
Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
#undef ELF_RELOC
#define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def"
#undef ELF_RISCV_NONSTANDARD_RELOC
.Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE)
.Case("BFD_RELOC_32", ELF::R_RISCV_32)
.Case("BFD_RELOC_64", ELF::R_RISCV_64)
.Default(-1u);
if (Type != -1u)
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
}
return std::nullopt;
}
MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// RISCVFixupKinds.h.
//
// name offset bits flags
{"fixup_riscv_hi20", 12, 20, 0},
{"fixup_riscv_lo12_i", 20, 12, 0},
{"fixup_riscv_12_i", 20, 12, 0},
{"fixup_riscv_lo12_s", 0, 32, 0},
{"fixup_riscv_pcrel_hi20", 12, 20, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_pcrel_lo12_i", 20, 12,
MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget},
{"fixup_riscv_pcrel_lo12_s", 0, 32,
MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_IsTarget},
{"fixup_riscv_jal", 12, 20, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_rvc_jump", 2, 11, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_rvc_branch", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_call", 0, 64, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_call_plt", 0, 64, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_qc_e_branch", 0, 48, MCFixupKindInfo::FKF_IsPCRel},
{"fixup_riscv_qc_e_32", 16, 32, 0},
{"fixup_riscv_qc_abs20_u", 12, 20, 0},
{"fixup_riscv_qc_e_jump_plt", 0, 48, MCFixupKindInfo::FKF_IsPCRel},
};
static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds,
"Not all fixup kinds added to Infos array");
// Fixup kinds from raw relocation types and .reloc directives force
// relocations and do not use these fields.
if (mc::isRelocation(Kind))
return MCAsmBackend::getFixupKindInfo(FK_NONE);
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFixup &Fixup,
const MCValue &,
uint64_t Value,
bool Resolved) const {
int64_t Offset = int64_t(Value);
unsigned Kind = Fixup.getTargetKind();
// Return true if the symbol is unresolved.
if (!Resolved)
return true;
switch (Kind) {
default:
return false;
case RISCV::fixup_riscv_rvc_branch:
// For compressed branch instructions the immediate must be
// in the range [-256, 254].
return Offset > 254 || Offset < -256;
case RISCV::fixup_riscv_rvc_jump:
// For compressed jump instructions the immediate must be
// in the range [-2048, 2046].
return Offset > 2046 || Offset < -2048;
case RISCV::fixup_riscv_branch:
case RISCV::fixup_riscv_qc_e_branch:
// For conditional branch instructions the immediate must be
// in the range [-4096, 4094].
return Offset > 4094 || Offset < -4096;
case RISCV::fixup_riscv_jal:
// For jump instructions the immediate must be in the range
// [-1048576, 1048574]
return Offset > 1048574 || Offset < -1048576;
}
}
// Given a compressed control flow instruction this function returns
// the expanded instruction, or the original instruction code if no
// expansion is available.
static unsigned getRelaxedOpcode(const MCInst &Inst,
const MCSubtargetInfo &STI) {
switch (Inst.getOpcode()) {
case RISCV::C_BEQZ:
return RISCV::BEQ;
case RISCV::C_BNEZ:
return RISCV::BNE;
case RISCV::C_J:
case RISCV::C_JAL: // fall through.
// This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to
// QC.E.J, because we can always relax again if needed.
return RISCV::JAL;
case RISCV::JAL: {
// We can only relax JAL if we have Xqcilb
if (!STI.hasFeature(RISCV::FeatureVendorXqcilb))
break;
// And only if it is using X0 or X1 for rd.
MCRegister Reg = Inst.getOperand(0).getReg();
if (Reg == RISCV::X0)
return RISCV::QC_E_J;
if (Reg == RISCV::X1)
return RISCV::QC_E_JAL;
break;
}
case RISCV::BEQ:
return RISCV::PseudoLongBEQ;
case RISCV::BNE:
return RISCV::PseudoLongBNE;
case RISCV::BLT:
return RISCV::PseudoLongBLT;
case RISCV::BGE:
return RISCV::PseudoLongBGE;
case RISCV::BLTU:
return RISCV::PseudoLongBLTU;
case RISCV::BGEU:
return RISCV::PseudoLongBGEU;
case RISCV::QC_BEQI:
return RISCV::PseudoLongQC_BEQI;
case RISCV::QC_BNEI:
return RISCV::PseudoLongQC_BNEI;
case RISCV::QC_BLTI:
return RISCV::PseudoLongQC_BLTI;
case RISCV::QC_BGEI:
return RISCV::PseudoLongQC_BGEI;
case RISCV::QC_BLTUI:
return RISCV::PseudoLongQC_BLTUI;
case RISCV::QC_BGEUI:
return RISCV::PseudoLongQC_BGEUI;
case RISCV::QC_E_BEQI:
return RISCV::PseudoLongQC_E_BEQI;
case RISCV::QC_E_BNEI:
return RISCV::PseudoLongQC_E_BNEI;
case RISCV::QC_E_BLTI:
return RISCV::PseudoLongQC_E_BLTI;
case RISCV::QC_E_BGEI:
return RISCV::PseudoLongQC_E_BGEI;
case RISCV::QC_E_BLTUI:
return RISCV::PseudoLongQC_E_BLTUI;
case RISCV::QC_E_BGEUI:
return RISCV::PseudoLongQC_E_BGEUI;
}
// Returning the original opcode means we cannot relax the instruction.
return Inst.getOpcode();
}
void RISCVAsmBackend::relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const {
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return;
MCInst Res;
switch (Inst.getOpcode()) {
default:
llvm_unreachable("Opcode not expected!");
case RISCV::C_BEQZ:
case RISCV::C_BNEZ:
case RISCV::C_J:
case RISCV::C_JAL: {
[[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI);
assert(Success && "Can't uncompress instruction");
assert(Res.getOpcode() == getRelaxedOpcode(Inst, STI) &&
"Branch Relaxation Error");
break;
}
case RISCV::JAL: {
// This has to be written manually because the QC.E.J -> JAL is
// compression-only, so that it is not used when printing disassembly.
assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) &&
"JAL is only relaxable with Xqcilb");
assert((Inst.getOperand(0).getReg() == RISCV::X0 ||
Inst.getOperand(0).getReg() == RISCV::X1) &&
"JAL only relaxable with rd=x0 or rd=x1");
Res.setOpcode(getRelaxedOpcode(Inst, STI));
Res.addOperand(Inst.getOperand(1));
break;
}
case RISCV::BEQ:
case RISCV::BNE:
case RISCV::BLT:
case RISCV::BGE:
case RISCV::BLTU:
case RISCV::BGEU:
case RISCV::QC_BEQI:
case RISCV::QC_BNEI:
case RISCV::QC_BLTI:
case RISCV::QC_BGEI:
case RISCV::QC_BLTUI:
case RISCV::QC_BGEUI:
case RISCV::QC_E_BEQI:
case RISCV::QC_E_BNEI:
case RISCV::QC_E_BLTI:
case RISCV::QC_E_BGEI:
case RISCV::QC_E_BLTUI:
case RISCV::QC_E_BGEUI:
Res.setOpcode(getRelaxedOpcode(Inst, STI));
Res.addOperand(Inst.getOperand(0));
Res.addOperand(Inst.getOperand(1));
Res.addOperand(Inst.getOperand(2));
break;
}
Inst = std::move(Res);
}
bool RISCVAsmBackend::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF,
bool &WasRelaxed) const {
MCContext &C = getContext();
int64_t LineDelta = DF.getLineDelta();
const MCExpr &AddrDelta = DF.getAddrDelta();
SmallVectorImpl<char> &Data = DF.getContents();
SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
size_t OldSize = Data.size();
int64_t Value;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
Data.clear();
Fixups.clear();
raw_svector_ostream OS(Data);
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
if (LineDelta != INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_advance_line);
encodeSLEB128(LineDelta, OS);
}
unsigned Offset;
std::pair<MCFixupKind, MCFixupKind> Fixup;
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
// takes a single unsigned half (unencoded) operand. The maximum encodable
// value is therefore 65535. Set a conservative upper bound for relaxation.
if (Value > 60000) {
unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
OS << uint8_t(dwarf::DW_LNS_extended_op);
encodeULEB128(PtrSize + 1, OS);
OS << uint8_t(dwarf::DW_LNE_set_address);
Offset = OS.tell();
assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
Fixup = RISCV::getRelocPairForSize(PtrSize);
OS.write_zeros(PtrSize);
} else {
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
Offset = OS.tell();
Fixup = RISCV::getRelocPairForSize(2);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
}
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
if (LineDelta == INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_extended_op);
OS << uint8_t(1);
OS << uint8_t(dwarf::DW_LNE_end_sequence);
} else {
OS << uint8_t(dwarf::DW_LNS_copy);
}
WasRelaxed = OldSize != Data.size();
return true;
}
bool RISCVAsmBackend::relaxDwarfCFA(MCDwarfCallFrameFragment &DF,
bool &WasRelaxed) const {
const MCExpr &AddrDelta = DF.getAddrDelta();
SmallVectorImpl<char> &Data = DF.getContents();
SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
size_t OldSize = Data.size();
int64_t Value;
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
Data.clear();
Fixups.clear();
raw_svector_ostream OS(Data);
assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
"expected 1-byte alignment");
if (Value == 0) {
WasRelaxed = OldSize != Data.size();
return true;
}
auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset,
std::pair<unsigned, unsigned> Fixup) {
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
};
if (isUIntN(6, Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc);
AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6});
} else if (isUInt<8>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8});
} else if (isUInt<16>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16});
} else if (isUInt<32>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32});
} else {
llvm_unreachable("unsupported CFA encoding");
}
WasRelaxed = OldSize != Data.size();
return true;
}
std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCLEBFragment &LF,
int64_t &Value) const {
if (LF.isSigned())
return std::make_pair(false, false);
const MCExpr &Expr = LF.getValue();
if (ULEB128Reloc) {
LF.getFixups().push_back(
MCFixup::create(0, &Expr, FK_Data_leb128, Expr.getLoc()));
}
return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false);
}
bool RISCVAsmBackend::mayNeedRelaxation(const MCInst &Inst,
const MCSubtargetInfo &STI) const {
// This function has access to two STIs, the member of the AsmBackend, and the
// one passed as an argument. The latter is more specific, so we query it for
// specific features.
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return false;
return getRelaxedOpcode(Inst, STI) != Inst.getOpcode();
}
bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const {
// We mostly follow binutils' convention here: align to even boundary with a
// 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is
// enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops.
// Instructions always are at even addresses. We must be in a data area or
// be unaligned due to some other reason.
if (Count % 2) {
OS.write("\0", 1);
Count -= 1;
}
bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) ||
STI->hasFeature(RISCV::FeatureStdExtZca);
// The canonical nop on RVC is c.nop.
if (Count % 4 == 2) {
OS.write(UseCompressedNop ? "\x01\0" : "\0\0", 2);
Count -= 2;
}
// The canonical nop on RISC-V is addi x0, x0, 0.
for (; Count >= 4; Count -= 4)
OS.write("\x13\0\0\0", 4);
return true;
}
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
MCContext &Ctx) {
switch (Fixup.getTargetKind()) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
case FK_Data_leb128:
return Value;
case RISCV::fixup_riscv_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_i:
return Value & 0xfff;
case RISCV::fixup_riscv_12_i:
if (!isInt<12>(Value)) {
Ctx.reportError(Fixup.getLoc(),
"operand must be a constant 12-bit integer");
}
return Value & 0xfff;
case RISCV::fixup_riscv_lo12_s:
case RISCV::fixup_riscv_pcrel_lo12_s:
return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7);
case RISCV::fixup_riscv_hi20:
case RISCV::fixup_riscv_pcrel_hi20:
// Add 1 if bit 11 is 1, to compensate for low 12 bits being negative.
return ((Value + 0x800) >> 12) & 0xfffff;
case RISCV::fixup_riscv_jal: {
if (!isInt<21>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to produce imm[19|10:1|11|19:12] from the 21-bit Value.
unsigned Sbit = (Value >> 20) & 0x1;
unsigned Hi8 = (Value >> 12) & 0xff;
unsigned Mid1 = (Value >> 11) & 0x1;
unsigned Lo10 = (Value >> 1) & 0x3ff;
// Inst{31} = Sbit;
// Inst{30-21} = Lo10;
// Inst{20} = Mid1;
// Inst{19-12} = Hi8;
Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8;
return Value;
}
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_branch: {
if (!isInt<13>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit
// Value.
unsigned Sbit = (Value >> 12) & 0x1;
unsigned Hi1 = (Value >> 11) & 0x1;
unsigned Mid6 = (Value >> 5) & 0x3f;
unsigned Lo4 = (Value >> 1) & 0xf;
// Inst{31} = Sbit;
// Inst{30-25} = Mid6;
// Inst{11-8} = Lo4;
// Inst{7} = Hi1;
Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7);
return Value;
}
case RISCV::fixup_riscv_call:
case RISCV::fixup_riscv_call_plt: {
// Jalr will add UpperImm with the sign-extended 12-bit LowerImm,
// we need to add 0x800ULL before extract upper bits to reflect the
// effect of the sign extension.
uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL;
uint64_t LowerImm = Value & 0xfffULL;
return UpperImm | ((LowerImm << 20) << 32);
}
case RISCV::fixup_riscv_rvc_jump: {
if (!isInt<12>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value.
unsigned Bit11 = (Value >> 11) & 0x1;
unsigned Bit4 = (Value >> 4) & 0x1;
unsigned Bit9_8 = (Value >> 8) & 0x3;
unsigned Bit10 = (Value >> 10) & 0x1;
unsigned Bit6 = (Value >> 6) & 0x1;
unsigned Bit7 = (Value >> 7) & 0x1;
unsigned Bit3_1 = (Value >> 1) & 0x7;
unsigned Bit5 = (Value >> 5) & 0x1;
Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) |
(Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5;
return Value;
}
case RISCV::fixup_riscv_rvc_branch: {
if (!isInt<9>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5]
unsigned Bit8 = (Value >> 8) & 0x1;
unsigned Bit7_6 = (Value >> 6) & 0x3;
unsigned Bit5 = (Value >> 5) & 0x1;
unsigned Bit4_3 = (Value >> 3) & 0x3;
unsigned Bit2_1 = (Value >> 1) & 0x3;
Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) |
(Bit5 << 2);
return Value;
}
case RISCV::fixup_riscv_qc_e_32: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
return ((Value & 0xffffffff) << 16);
}
case RISCV::fixup_riscv_qc_abs20_u: {
if (!isInt<20>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
unsigned Bit19 = (Value >> 19) & 0x1;
unsigned Bit14_0 = Value & 0x7fff;
unsigned Bit18_15 = (Value >> 15) & 0xf;
Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12);
return Value;
}
case RISCV::fixup_riscv_qc_e_jump_plt: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
uint64_t Bit31_16 = (Value >> 16) & 0xffff;
uint64_t Bit12 = (Value >> 12) & 0x1;
uint64_t Bit10_5 = (Value >> 5) & 0x3f;
uint64_t Bit15_13 = (Value >> 13) & 0x7;
uint64_t Bit4_1 = (Value >> 1) & 0xf;
uint64_t Bit11 = (Value >> 11) & 0x1;
Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) |
(Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7);
return Value;
}
}
}
bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA,
const MCFragment &F) {
// If the section does not contain linker-relaxable fragments, PC-relative
// fixups can be resolved.
if (!F.getParent()->isLinkerRelaxable())
return true;
// Otherwise, check if the offset between the symbol and fragment is fully
// resolved, unaffected by linker-relaxable fragments (e.g. instructions or
// offset-affected MCAlignFragment). Complements the generic
// isSymbolRefDifferenceFullyResolvedImpl.
if (!PCRelTemp)
PCRelTemp = getContext().createTempSymbol();
PCRelTemp->setFragment(const_cast<MCFragment *>(&F));
MCValue Res;
MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA),
MCValue::get(nullptr, PCRelTemp), Res);
return !Res.getSubSym();
}
// Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and
// optionally the fragment containing it.
//
// \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative
// HI fixup.
static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr,
const MCFragment **DFOut) {
MCValue AUIPCLoc;
if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr))
return nullptr;
const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym();
if (!AUIPCSymbol)
return nullptr;
const auto *DF = dyn_cast_or_null<MCDataFragment>(AUIPCSymbol->getFragment());
if (!DF)
return nullptr;
uint64_t Offset = AUIPCSymbol->getOffset();
if (DF->getContents().size() == Offset) {
DF = dyn_cast_or_null<MCDataFragment>(DF->getNext());
if (!DF)
return nullptr;
Offset = 0;
}
for (const MCFixup &F : DF->getFixups()) {
if (F.getOffset() != Offset)
continue;
auto Kind = F.getTargetKind();
if (!mc::isRelocation(F.getKind())) {
if (Kind == RISCV::fixup_riscv_pcrel_hi20) {
*DFOut = DF;
return &F;
}
break;
}
switch (Kind) {
case ELF::R_RISCV_GOT_HI20:
case ELF::R_RISCV_TLS_GOT_HI20:
case ELF::R_RISCV_TLS_GD_HI20:
case ELF::R_RISCV_TLSDESC_HI20:
*DFOut = DF;
return &F;
}
}
return nullptr;
}
bool RISCVAsmBackend::evaluateTargetFixup(const MCFixup &Fixup,
const MCValue &Target,
uint64_t &Value) {
const MCFixup *AUIPCFixup;
const MCFragment *AUIPCDF;
MCValue AUIPCTarget;
switch (Fixup.getTargetKind()) {
default:
llvm_unreachable("Unexpected fixup kind!");
case RISCV::fixup_riscv_pcrel_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_s: {
AUIPCFixup =
getPCRelHiFixup(cast<MCSpecifierExpr>(*Fixup.getValue()), &AUIPCDF);
if (!AUIPCFixup) {
getContext().reportError(Fixup.getLoc(),
"could not find corresponding %pcrel_hi");
return true;
}
// MCAssembler::evaluateFixup will emit an error for this case when it sees
// the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo.
const MCExpr *AUIPCExpr = AUIPCFixup->getValue();
if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm))
return true;
break;
}
}
if (!AUIPCTarget.getAddSym())
return false;
const MCSymbolELF &SA = cast<MCSymbolELF>(*AUIPCTarget.getAddSym());
if (SA.isUndefined())
return false;
bool IsResolved = &SA.getSection() == AUIPCDF->getParent() &&
SA.getBinding() == ELF::STB_LOCAL &&
SA.getType() != ELF::STT_GNU_IFUNC;
if (!IsResolved)
return false;
Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant();
Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset();
return AUIPCFixup->getTargetKind() == RISCV::fixup_riscv_pcrel_hi20 &&
isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF);
}
void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F,
const MCFixup &Fixup) {
StringRef VendorIdentifier;
switch (Fixup.getTargetKind()) {
default:
// No Vendor Relocation Required.
return;
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_qc_abs20_u:
case RISCV::fixup_riscv_qc_e_32:
case RISCV::fixup_riscv_qc_e_jump_plt:
VendorIdentifier = "QUALCOMM";
break;
}
// Create a local symbol for the vendor relocation to reference. It's fine if
// the symbol has the same name as an existing symbol.
MCContext &Ctx = Asm->getContext();
MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier);
auto [It, Inserted] =
VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol);
if (Inserted) {
// Setup the just-created symbol
VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx));
Asm->registerSymbol(*VendorSymbol);
} else {
// Fetch the existing symbol
VendorSymbol = It->getValue();
}
MCFixup VendorFixup =
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR);
// Explicitly create MCValue rather than using an MCExpr and evaluating it so
// that the absolute vendor symbol is not evaluated to constant 0.
MCValue VendorTarget = MCValue::get(VendorSymbol);
uint64_t VendorValue;
Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue);
}
bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint64_t &FixedValue,
bool IsResolved) {
uint64_t FixedValueA, FixedValueB;
if (Target.getSubSym()) {
assert(Target.getSpecifier() == 0 &&
"relocatable SymA-SymB cannot have relocation specifier");
unsigned TA = 0, TB = 0;
switch (Fixup.getKind()) {
case llvm::FK_Data_1:
TA = ELF::R_RISCV_ADD8;
TB = ELF::R_RISCV_SUB8;
break;
case llvm::FK_Data_2:
TA = ELF::R_RISCV_ADD16;
TB = ELF::R_RISCV_SUB16;
break;
case llvm::FK_Data_4:
TA = ELF::R_RISCV_ADD32;
TB = ELF::R_RISCV_SUB32;
break;
case llvm::FK_Data_8:
TA = ELF::R_RISCV_ADD64;
TB = ELF::R_RISCV_SUB64;
break;
case llvm::FK_Data_leb128:
TA = ELF::R_RISCV_SET_ULEB128;
TB = ELF::R_RISCV_SUB_ULEB128;
break;
default:
llvm_unreachable("unsupported fixup size");
}
MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant());
MCValue B = MCValue::get(Target.getSubSym());
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA);
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB);
Asm->getWriter().recordRelocation(F, FA, A, FixedValueA);
Asm->getWriter().recordRelocation(F, FB, B, FixedValueB);
FixedValue = FixedValueA - FixedValueB;
return false;
}
// If linker relaxation is enabled and supported by the current relocation,
// generate a relocation and then append a RELAX.
if (Fixup.isLinkerRelaxable())
IsResolved = false;
if (IsResolved &&
(getFixupKindInfo(Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel))
IsResolved = isPCRelFixupResolved(Target.getAddSym(), F);
if (!IsResolved) {
// Some Fixups require a vendor relocation, record it (directly) before we
// add the relocation.
maybeAddVendorReloc(F, Fixup);
Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue);
}
if (Fixup.isLinkerRelaxable()) {
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX);
Asm->getWriter().recordRelocation(F, FA, MCValue::get(nullptr),
FixedValueA);
}
return false;
}
void RISCVAsmBackend::applyFixup(const MCFragment &, const MCFixup &Fixup,
const MCValue &Target,
MutableArrayRef<char> Data, uint64_t Value,
bool IsResolved) {
MCFixupKind Kind = Fixup.getKind();
if (mc::isRelocation(Kind))
return;
MCContext &Ctx = getContext();
MCFixupKindInfo Info = getFixupKindInfo(Kind);
if (!Value)
return; // Doesn't change encoding.
// Apply any target-specific value adjustments.
Value = adjustFixupValue(Fixup, Value, Ctx);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned Offset = Fixup.getOffset();
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
for (unsigned i = 0; i != NumBytes; ++i) {
Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
}
}
// Linker relaxation may change code size. We have to insert Nops
// for .align directive when linker relaxation enabled. So then Linker
// could satisfy alignment by removing Nops.
// The function return the total Nops Size we need to insert.
bool RISCVAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
const MCAlignFragment &AF, unsigned &Size) {
// Calculate Nops Size only when linker relaxation enabled.
const MCSubtargetInfo *STI = AF.getSubtargetInfo();
if (!STI->hasFeature(RISCV::FeatureRelax))
return false;
bool UseCompressedNop = STI->hasFeature(RISCV::FeatureStdExtC) ||
STI->hasFeature(RISCV::FeatureStdExtZca);
unsigned MinNopLen = UseCompressedNop ? 2 : 4;
if (AF.getAlignment() <= MinNopLen) {
return false;
} else {
Size = AF.getAlignment().value() - MinNopLen;
return true;
}
}
// We need to insert R_RISCV_ALIGN relocation type to indicate the
// position of Nops and the total bytes of the Nops have been inserted
// when linker relaxation enabled.
// The function insert fixup_riscv_align fixup which eventually will
// transfer to R_RISCV_ALIGN relocation type.
bool RISCVAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm,
MCAlignFragment &AF) {
// Insert the fixup only when linker relaxation enabled.
const MCSubtargetInfo *STI = AF.getSubtargetInfo();
if (!STI->hasFeature(RISCV::FeatureRelax))
return false;
// Calculate total Nops we need to insert. If there are none to insert
// then simply return.
unsigned Count;
if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count) || (Count == 0))
return false;
MCContext &Ctx = getContext();
const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
// Create fixup_riscv_align fixup.
MCFixup Fixup = MCFixup::create(0, Dummy, ELF::R_RISCV_ALIGN, SMLoc());
uint64_t FixedValue = 0;
MCValue NopBytes = MCValue::get(Count);
Asm.getWriter().recordRelocation(AF, Fixup, NopBytes, FixedValue);
return true;
}
std::unique_ptr<MCObjectTargetWriter>
RISCVAsmBackend::createObjectTargetWriter() const {
return createRISCVELFObjectWriter(OSABI, Is64Bit);
}
MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TT = STI.getTargetTriple();
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
}