| //===-- Double-precision tan function -------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/tan.h" |
| #include "hdr/errno_macros.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/double_double.h" |
| #include "src/__support/FPUtil/dyadic_float.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/rounding_mode.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
| #include "src/math/generic/range_reduction_double_common.h" |
| |
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| #include "range_reduction_double_fma.h" |
| #else |
| #include "range_reduction_double_nofma.h" |
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| using DoubleDouble = fputil::DoubleDouble; |
| using Float128 = typename fputil::DyadicFloat<128>; |
| |
| namespace { |
| |
| LIBC_INLINE double tan_eval(const DoubleDouble &u, DoubleDouble &result) { |
| // Evaluate tan(y) = tan(x - k * (pi/128)) |
| // We use the degree-9 Taylor approximation: |
| // tan(y) ~ P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 |
| // Then the error is bounded by: |
| // |tan(y) - P(y)| < 2^-6 * |y|^11 < 2^-6 * 2^-66 = 2^-72. |
| // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms |
| // < ulp(u_hi^3) gives us: |
| // P(y) = y + y^3/3 + 2*y^5/15 + 17*y^7/315 + 62*y^9/2835 = ... |
| // ~ u_hi + u_hi^3 * (1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + |
| // + u_hi^2 * 62/2835))) + |
| // + u_lo (1 + u_hi^2 * (1 + u_hi^2 * 2/3)) |
| double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58. |
| // p1 ~ 17/315 + u_hi^2 62 / 2835. |
| double p1 = |
| fputil::multiply_add(u_hi_sq, 0x1.664f4882c10fap-6, 0x1.ba1ba1ba1ba1cp-5); |
| // p2 ~ 1/3 + u_hi^2 2 / 15. |
| double p2 = |
| fputil::multiply_add(u_hi_sq, 0x1.1111111111111p-3, 0x1.5555555555555p-2); |
| // q1 ~ 1 + u_hi^2 * 2/3. |
| double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-1, 1.0); |
| double u_hi_3 = u_hi_sq * u.hi; |
| double u_hi_4 = u_hi_sq * u_hi_sq; |
| // p3 ~ 1/3 + u_hi^2 * (2/15 + u_hi^2 * (17/315 + u_hi^2 * 62/2835)) |
| double p3 = fputil::multiply_add(u_hi_4, p1, p2); |
| // q2 ~ 1 + u_hi^2 * (1 + u_hi^2 * 2/3) |
| double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0); |
| double tan_lo = fputil::multiply_add(u_hi_3, p3, u.lo * q2); |
| // Overall, |tan(y) - (u_hi + tan_lo)| < ulp(u_hi^3) <= 2^-71. |
| // And the relative errors is: |
| // |(tan(y) - (u_hi + tan_lo)) / tan(y) | <= 2*ulp(u_hi^2) < 2^-64 |
| result = fputil::exact_add(u.hi, tan_lo); |
| return fputil::multiply_add(fputil::FPBits<double>(u_hi_3).abs().get_val(), |
| 0x1.0p-51, 0x1.0p-102); |
| } |
| |
| #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| // Accurate evaluation of tan for small u. |
| [[maybe_unused]] Float128 tan_eval(const Float128 &u) { |
| Float128 u_sq = fputil::quick_mul(u, u); |
| |
| // tan(x) ~ x + x^3/3 + x^5 * 2/15 + x^7 * 17/315 + x^9 * 62/2835 + |
| // + x^11 * 1382/155925 + x^13 * 21844/6081075 + |
| // + x^15 * 929569/638512875 + x^17 * 6404582/10854718875 |
| // Relative errors < 2^-127 for |u| < pi/256. |
| constexpr Float128 TAN_COEFFS[] = { |
| {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1 |
| {Sign::POS, -129, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1 |
| {Sign::POS, -130, 0x88888888'88888888'88888888'88888889_u128}, // 2/15 |
| {Sign::POS, -132, 0xdd0dd0dd'0dd0dd0d'd0dd0dd0'dd0dd0dd_u128}, // 17/315 |
| {Sign::POS, -133, 0xb327a441'6087cf99'6b5dd24e'ec0b327a_u128}, // 62/2835 |
| {Sign::POS, -134, |
| 0x91371aaf'3611e47a'da8e1cba'7d900eca_u128}, // 1382/155925 |
| {Sign::POS, -136, |
| 0xeb69e870'abeefdaf'e606d2e4'd1e65fbc_u128}, // 21844/6081075 |
| {Sign::POS, -137, |
| 0xbed1b229'5baf15b5'0ec9af45'a2619971_u128}, // 929569/638512875 |
| {Sign::POS, -138, |
| 0x9aac1240'1b3a2291'1b2ac7e3'e4627d0a_u128}, // 6404582/10854718875 |
| }; |
| |
| return fputil::quick_mul( |
| u, fputil::polyeval(u_sq, TAN_COEFFS[0], TAN_COEFFS[1], TAN_COEFFS[2], |
| TAN_COEFFS[3], TAN_COEFFS[4], TAN_COEFFS[5], |
| TAN_COEFFS[6], TAN_COEFFS[7], TAN_COEFFS[8])); |
| } |
| |
| // Calculation a / b = a * (1/b) for Float128. |
| // Using the initial approximation of q ~ (1/b), then apply 2 Newton-Raphson |
| // iterations, before multiplying by a. |
| [[maybe_unused]] Float128 newton_raphson_div(const Float128 &a, Float128 b, |
| double q) { |
| Float128 q0(q); |
| constexpr Float128 TWO(2.0); |
| b.sign = (b.sign == Sign::POS) ? Sign::NEG : Sign::POS; |
| Float128 q1 = |
| fputil::quick_mul(q0, fputil::quick_add(TWO, fputil::quick_mul(b, q0))); |
| Float128 q2 = |
| fputil::quick_mul(q1, fputil::quick_add(TWO, fputil::quick_mul(b, q1))); |
| return fputil::quick_mul(a, q2); |
| } |
| #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| |
| } // anonymous namespace |
| |
| LLVM_LIBC_FUNCTION(double, tan, (double x)) { |
| using FPBits = typename fputil::FPBits<double>; |
| FPBits xbits(x); |
| |
| uint16_t x_e = xbits.get_biased_exponent(); |
| |
| DoubleDouble y; |
| unsigned k; |
| LargeRangeReduction range_reduction_large{}; |
| |
| // |x| < 2^16 |
| if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) { |
| // |x| < 2^-7 |
| if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) { |
| // |x| < 2^-27, |tan(x) - x| < ulp(x)/2. |
| if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) { |
| // Signed zeros. |
| if (LIBC_UNLIKELY(x == 0.0)) |
| return x + x; // Make sure it works with FTZ/DAZ. |
| |
| #ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| return fputil::multiply_add(x, 0x1.0p-54, x); |
| #else |
| if (LIBC_UNLIKELY(x_e < 4)) { |
| int rounding_mode = fputil::quick_get_round(); |
| if ((xbits.sign() == Sign::POS && rounding_mode == FE_UPWARD) || |
| (xbits.sign() == Sign::NEG && rounding_mode == FE_DOWNWARD)) |
| return FPBits(xbits.uintval() + 1).get_val(); |
| } |
| return fputil::multiply_add(x, 0x1.0p-54, x); |
| #endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE |
| } |
| // No range reduction needed. |
| k = 0; |
| y.lo = 0.0; |
| y.hi = x; |
| } else { |
| // Small range reduction. |
| k = range_reduction_small(x, y); |
| } |
| } else { |
| // Inf or NaN |
| if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| // tan(+-Inf) = NaN |
| if (xbits.get_mantissa() == 0) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| } |
| return x + FPBits::quiet_nan().get_val(); |
| } |
| |
| // Large range reduction. |
| k = range_reduction_large.fast(x, y); |
| } |
| |
| DoubleDouble tan_y; |
| [[maybe_unused]] double err = tan_eval(y, tan_y); |
| |
| // Look up sin(k * pi/128) and cos(k * pi/128) |
| #ifdef LIBC_MATH_HAS_SMALL_TABLES |
| // Memory saving versions. Use 65-entry table: |
| auto get_idx_dd = [](unsigned kk) -> DoubleDouble { |
| unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); |
| DoubleDouble ans = SIN_K_PI_OVER_128[idx]; |
| if (kk & 128) { |
| ans.hi = -ans.hi; |
| ans.lo = -ans.lo; |
| } |
| return ans; |
| }; |
| DoubleDouble msin_k = get_idx_dd(k + 128); |
| DoubleDouble cos_k = get_idx_dd(k + 64); |
| #else |
| // Fast look up version, but needs 256-entry table. |
| // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
| DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255]; |
| DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255]; |
| #endif // LIBC_MATH_HAS_SMALL_TABLES |
| |
| // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128). |
| // So k is an integer and -pi / 256 <= y <= pi / 256. |
| // Then tan(x) = sin(x) / cos(x) |
| // = sin((k * pi/128 + y) / cos((k * pi/128 + y) |
| // = (cos(y) * sin(k*pi/128) + sin(y) * cos(k*pi/128)) / |
| // / (cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128)) |
| // = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) / |
| // / (cos(k*pi/128) - tan(y) * sin(k*pi/128)) |
| DoubleDouble cos_k_tan_y = fputil::quick_mult(tan_y, cos_k); |
| DoubleDouble msin_k_tan_y = fputil::quick_mult(tan_y, msin_k); |
| |
| // num_dd = sin(k*pi/128) + tan(y) * cos(k*pi/128) |
| DoubleDouble num_dd = fputil::exact_add<false>(cos_k_tan_y.hi, -msin_k.hi); |
| // den_dd = cos(k*pi/128) - tan(y) * sin(k*pi/128) |
| DoubleDouble den_dd = fputil::exact_add<false>(msin_k_tan_y.hi, cos_k.hi); |
| num_dd.lo += cos_k_tan_y.lo - msin_k.lo; |
| den_dd.lo += msin_k_tan_y.lo + cos_k.lo; |
| |
| #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| double tan_x = (num_dd.hi + num_dd.lo) / (den_dd.hi + den_dd.lo); |
| return tan_x; |
| #else |
| // Accurate test and pass for correctly rounded implementation. |
| |
| // Accurate double-double division |
| DoubleDouble tan_x = fputil::div(num_dd, den_dd); |
| |
| // Simple error bound: |1 / den_dd| < 2^(1 + floor(-log2(den_dd)))). |
| uint64_t den_inv = (static_cast<uint64_t>(FPBits::EXP_BIAS + 1) |
| << (FPBits::FRACTION_LEN + 1)) - |
| (FPBits(den_dd.hi).uintval() & FPBits::EXP_MASK); |
| |
| // For tan_x = (num_dd + err) / (den_dd + err), the error is bounded by: |
| // | tan_x - num_dd / den_dd | <= err * ( 1 + | tan_x * den_dd | ). |
| double tan_err = |
| err * fputil::multiply_add(FPBits(den_inv).get_val(), |
| FPBits(tan_x.hi).abs().get_val(), 1.0); |
| |
| double err_higher = tan_x.lo + tan_err; |
| double err_lower = tan_x.lo - tan_err; |
| |
| double tan_upper = tan_x.hi + err_higher; |
| double tan_lower = tan_x.hi + err_lower; |
| |
| // Ziv's rounding test. |
| if (LIBC_LIKELY(tan_upper == tan_lower)) |
| return tan_upper; |
| |
| Float128 u_f128; |
| if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) |
| u_f128 = range_reduction_small_f128(x); |
| else |
| u_f128 = range_reduction_large.accurate(); |
| |
| Float128 tan_u = tan_eval(u_f128); |
| |
| auto get_sin_k = [](unsigned kk) -> Float128 { |
| unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); |
| Float128 ans = SIN_K_PI_OVER_128_F128[idx]; |
| if (kk & 128) |
| ans.sign = Sign::NEG; |
| return ans; |
| }; |
| |
| // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
| Float128 sin_k_f128 = get_sin_k(k); |
| Float128 cos_k_f128 = get_sin_k(k + 64); |
| Float128 msin_k_f128 = get_sin_k(k + 128); |
| |
| // num_f128 = sin(k*pi/128) + tan(y) * cos(k*pi/128) |
| Float128 num_f128 = |
| fputil::quick_add(sin_k_f128, fputil::quick_mul(cos_k_f128, tan_u)); |
| // den_f128 = cos(k*pi/128) - tan(y) * sin(k*pi/128) |
| Float128 den_f128 = |
| fputil::quick_add(cos_k_f128, fputil::quick_mul(msin_k_f128, tan_u)); |
| |
| // tan(x) = (sin(k*pi/128) + tan(y) * cos(k*pi/128)) / |
| // / (cos(k*pi/128) - tan(y) * sin(k*pi/128)) |
| // TODO: The initial seed 1.0/den_dd.hi for Newton-Raphson reciprocal can be |
| // reused from DoubleDouble fputil::div in the fast pass. |
| Float128 result = newton_raphson_div(num_f128, den_f128, 1.0 / den_dd.hi); |
| |
| // TODO: Add assertion if Ziv's accuracy tests fail in debug mode. |
| // https://github.com/llvm/llvm-project/issues/96452. |
| return static_cast<double>(result); |
| |
| #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |