| //===-- Half-precision sinpif function ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/sinpif16.h" |
| #include "hdr/errno_macros.h" |
| #include "hdr/fenv_macros.h" |
| #include "sincosf16_utils.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/cast.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| LLVM_LIBC_FUNCTION(float16, sinpif16, (float16 x)) { |
| using FPBits = typename fputil::FPBits<float16>; |
| FPBits xbits(x); |
| |
| uint16_t x_u = xbits.uintval(); |
| uint16_t x_abs = x_u & 0x7fff; |
| float xf = x; |
| |
| // Range reduction: |
| // For |x| > 1/32, we perform range reduction as follows: |
| // Find k and y such that: |
| // x = (k + y) * 1/32 |
| // k is an integer |
| // |y| < 0.5 |
| // |
| // This is done by performing: |
| // k = round(x * 32) |
| // y = x * 32 - k |
| // |
| // Once k and y are computed, we then deduce the answer by the sine of sum |
| // formula: |
| // sin(x * pi) = sin((k + y) * pi/32) |
| // = sin(k * pi/32) * cos(y * pi/32) + |
| // sin(y * pi/32) * cos(k * pi/32) |
| |
| // For signed zeros |
| if (LIBC_UNLIKELY(x_abs == 0U)) |
| return x; |
| |
| // Numbers greater or equal to 2^10 are integers, or infinity, or NaN |
| if (LIBC_UNLIKELY(x_abs >= 0x6400)) { |
| // Check for NaN or infinity values |
| if (LIBC_UNLIKELY(x_abs >= 0x7c00)) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| // If value is equal to infinity |
| if (x_abs == 0x7c00) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| } |
| |
| return x + FPBits::quiet_nan().get_val(); |
| } |
| return FPBits::zero(xbits.sign()).get_val(); |
| } |
| |
| float sin_k, cos_k, sin_y, cosm1_y; |
| sincospif16_eval(xf, sin_k, cos_k, sin_y, cosm1_y); |
| |
| if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0)) |
| return FPBits::zero(xbits.sign()).get_val(); |
| |
| // Since, cosm1_y = cos_y - 1, therefore: |
| // sin(x * pi) = cos_k * sin_y + sin_k + (cosm1_y * sin_k) |
| return fputil::cast<float16>(fputil::multiply_add( |
| sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |