|  | //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating from LLVM IR into SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H | 
|  | #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H | 
|  |  | 
|  | #include "StatepointLowering.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/SwitchLoweringUtils.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | class AllocaInst; | 
|  | class AtomicCmpXchgInst; | 
|  | class AtomicRMWInst; | 
|  | class BasicBlock; | 
|  | class BranchInst; | 
|  | class CallInst; | 
|  | class CallBrInst; | 
|  | class CatchPadInst; | 
|  | class CatchReturnInst; | 
|  | class CatchSwitchInst; | 
|  | class CleanupPadInst; | 
|  | class CleanupReturnInst; | 
|  | class Constant; | 
|  | class ConstantInt; | 
|  | class ConstrainedFPIntrinsic; | 
|  | class DbgValueInst; | 
|  | class DataLayout; | 
|  | class DIExpression; | 
|  | class DILocalVariable; | 
|  | class DILocation; | 
|  | class FenceInst; | 
|  | class FunctionLoweringInfo; | 
|  | class GCFunctionInfo; | 
|  | class GCRelocateInst; | 
|  | class GCResultInst; | 
|  | class IndirectBrInst; | 
|  | class InvokeInst; | 
|  | class LandingPadInst; | 
|  | class LLVMContext; | 
|  | class LoadInst; | 
|  | class MachineBasicBlock; | 
|  | class PHINode; | 
|  | class ResumeInst; | 
|  | class ReturnInst; | 
|  | class SDDbgValue; | 
|  | class StoreInst; | 
|  | class SwiftErrorValueTracking; | 
|  | class SwitchInst; | 
|  | class TargetLibraryInfo; | 
|  | class TargetMachine; | 
|  | class Type; | 
|  | class VAArgInst; | 
|  | class UnreachableInst; | 
|  | class Use; | 
|  | class User; | 
|  | class Value; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// SelectionDAGBuilder - This is the common target-independent lowering | 
|  | /// implementation that is parameterized by a TargetLowering object. | 
|  | /// | 
|  | class SelectionDAGBuilder { | 
|  | /// The current instruction being visited. | 
|  | const Instruction *CurInst = nullptr; | 
|  |  | 
|  | DenseMap<const Value*, SDValue> NodeMap; | 
|  |  | 
|  | /// Maps argument value for unused arguments. This is used | 
|  | /// to preserve debug information for incoming arguments. | 
|  | DenseMap<const Value*, SDValue> UnusedArgNodeMap; | 
|  |  | 
|  | /// Helper type for DanglingDebugInfoMap. | 
|  | class DanglingDebugInfo { | 
|  | const DbgValueInst* DI = nullptr; | 
|  | DebugLoc dl; | 
|  | unsigned SDNodeOrder = 0; | 
|  |  | 
|  | public: | 
|  | DanglingDebugInfo() = default; | 
|  | DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) | 
|  | : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {} | 
|  |  | 
|  | const DbgValueInst* getDI() { return DI; } | 
|  | DebugLoc getdl() { return dl; } | 
|  | unsigned getSDNodeOrder() { return SDNodeOrder; } | 
|  | }; | 
|  |  | 
|  | /// Helper type for DanglingDebugInfoMap. | 
|  | typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector; | 
|  |  | 
|  | /// Keeps track of dbg_values for which we have not yet seen the referent. | 
|  | /// We defer handling these until we do see it. | 
|  | MapVector<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap; | 
|  |  | 
|  | public: | 
|  | /// Loads are not emitted to the program immediately.  We bunch them up and | 
|  | /// then emit token factor nodes when possible.  This allows us to get simple | 
|  | /// disambiguation between loads without worrying about alias analysis. | 
|  | SmallVector<SDValue, 8> PendingLoads; | 
|  |  | 
|  | /// State used while lowering a statepoint sequence (gc_statepoint, | 
|  | /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details. | 
|  | StatepointLoweringState StatepointLowering; | 
|  |  | 
|  | private: | 
|  | /// CopyToReg nodes that copy values to virtual registers for export to other | 
|  | /// blocks need to be emitted before any terminator instruction, but they have | 
|  | /// no other ordering requirements. We bunch them up and the emit a single | 
|  | /// tokenfactor for them just before terminator instructions. | 
|  | SmallVector<SDValue, 8> PendingExports; | 
|  |  | 
|  | /// Similar to loads, nodes corresponding to constrained FP intrinsics are | 
|  | /// bunched up and emitted when necessary.  These can be moved across each | 
|  | /// other and any (normal) memory operation (load or store), but not across | 
|  | /// calls or instructions having unspecified side effects.  As a special | 
|  | /// case, constrained FP intrinsics using fpexcept.strict may not be deleted | 
|  | /// even if otherwise unused, so they need to be chained before any | 
|  | /// terminator instruction (like PendingExports).  We track the latter | 
|  | /// set of nodes in a separate list. | 
|  | SmallVector<SDValue, 8> PendingConstrainedFP; | 
|  | SmallVector<SDValue, 8> PendingConstrainedFPStrict; | 
|  |  | 
|  | /// Update root to include all chains from the Pending list. | 
|  | SDValue updateRoot(SmallVectorImpl<SDValue> &Pending); | 
|  |  | 
|  | /// A unique monotonically increasing number used to order the SDNodes we | 
|  | /// create. | 
|  | unsigned SDNodeOrder; | 
|  |  | 
|  | /// Determine the rank by weight of CC in [First,Last]. If CC has more weight | 
|  | /// than each cluster in the range, its rank is 0. | 
|  | unsigned caseClusterRank(const SwitchCG::CaseCluster &CC, | 
|  | SwitchCG::CaseClusterIt First, | 
|  | SwitchCG::CaseClusterIt Last); | 
|  |  | 
|  | /// Emit comparison and split W into two subtrees. | 
|  | void splitWorkItem(SwitchCG::SwitchWorkList &WorkList, | 
|  | const SwitchCG::SwitchWorkListItem &W, Value *Cond, | 
|  | MachineBasicBlock *SwitchMBB); | 
|  |  | 
|  | /// Lower W. | 
|  | void lowerWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond, | 
|  | MachineBasicBlock *SwitchMBB, | 
|  | MachineBasicBlock *DefaultMBB); | 
|  |  | 
|  | /// Peel the top probability case if it exceeds the threshold | 
|  | MachineBasicBlock * | 
|  | peelDominantCaseCluster(const SwitchInst &SI, | 
|  | SwitchCG::CaseClusterVector &Clusters, | 
|  | BranchProbability &PeeledCaseProb); | 
|  |  | 
|  | /// A class which encapsulates all of the information needed to generate a | 
|  | /// stack protector check and signals to isel via its state being initialized | 
|  | /// that a stack protector needs to be generated. | 
|  | /// | 
|  | /// *NOTE* The following is a high level documentation of SelectionDAG Stack | 
|  | /// Protector Generation. The reason that it is placed here is for a lack of | 
|  | /// other good places to stick it. | 
|  | /// | 
|  | /// High Level Overview of SelectionDAG Stack Protector Generation: | 
|  | /// | 
|  | /// Previously, generation of stack protectors was done exclusively in the | 
|  | /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated | 
|  | /// splitting basic blocks at the IR level to create the success/failure basic | 
|  | /// blocks in the tail of the basic block in question. As a result of this, | 
|  | /// calls that would have qualified for the sibling call optimization were no | 
|  | /// longer eligible for optimization since said calls were no longer right in | 
|  | /// the "tail position" (i.e. the immediate predecessor of a ReturnInst | 
|  | /// instruction). | 
|  | /// | 
|  | /// Then it was noticed that since the sibling call optimization causes the | 
|  | /// callee to reuse the caller's stack, if we could delay the generation of | 
|  | /// the stack protector check until later in CodeGen after the sibling call | 
|  | /// decision was made, we get both the tail call optimization and the stack | 
|  | /// protector check! | 
|  | /// | 
|  | /// A few goals in solving this problem were: | 
|  | /// | 
|  | ///   1. Preserve the architecture independence of stack protector generation. | 
|  | /// | 
|  | ///   2. Preserve the normal IR level stack protector check for platforms like | 
|  | ///      OpenBSD for which we support platform-specific stack protector | 
|  | ///      generation. | 
|  | /// | 
|  | /// The main problem that guided the present solution is that one can not | 
|  | /// solve this problem in an architecture independent manner at the IR level | 
|  | /// only. This is because: | 
|  | /// | 
|  | ///   1. The decision on whether or not to perform a sibling call on certain | 
|  | ///      platforms (for instance i386) requires lower level information | 
|  | ///      related to available registers that can not be known at the IR level. | 
|  | /// | 
|  | ///   2. Even if the previous point were not true, the decision on whether to | 
|  | ///      perform a tail call is done in LowerCallTo in SelectionDAG which | 
|  | ///      occurs after the Stack Protector Pass. As a result, one would need to | 
|  | ///      put the relevant callinst into the stack protector check success | 
|  | ///      basic block (where the return inst is placed) and then move it back | 
|  | ///      later at SelectionDAG/MI time before the stack protector check if the | 
|  | ///      tail call optimization failed. The MI level option was nixed | 
|  | ///      immediately since it would require platform-specific pattern | 
|  | ///      matching. The SelectionDAG level option was nixed because | 
|  | ///      SelectionDAG only processes one IR level basic block at a time | 
|  | ///      implying one could not create a DAG Combine to move the callinst. | 
|  | /// | 
|  | /// To get around this problem a few things were realized: | 
|  | /// | 
|  | ///   1. While one can not handle multiple IR level basic blocks at the | 
|  | ///      SelectionDAG Level, one can generate multiple machine basic blocks | 
|  | ///      for one IR level basic block. This is how we handle bit tests and | 
|  | ///      switches. | 
|  | /// | 
|  | ///   2. At the MI level, tail calls are represented via a special return | 
|  | ///      MIInst called "tcreturn". Thus if we know the basic block in which we | 
|  | ///      wish to insert the stack protector check, we get the correct behavior | 
|  | ///      by always inserting the stack protector check right before the return | 
|  | ///      statement. This is a "magical transformation" since no matter where | 
|  | ///      the stack protector check intrinsic is, we always insert the stack | 
|  | ///      protector check code at the end of the BB. | 
|  | /// | 
|  | /// Given the aforementioned constraints, the following solution was devised: | 
|  | /// | 
|  | ///   1. On platforms that do not support SelectionDAG stack protector check | 
|  | ///      generation, allow for the normal IR level stack protector check | 
|  | ///      generation to continue. | 
|  | /// | 
|  | ///   2. On platforms that do support SelectionDAG stack protector check | 
|  | ///      generation: | 
|  | /// | 
|  | ///     a. Use the IR level stack protector pass to decide if a stack | 
|  | ///        protector is required/which BB we insert the stack protector check | 
|  | ///        in by reusing the logic already therein. If we wish to generate a | 
|  | ///        stack protector check in a basic block, we place a special IR | 
|  | ///        intrinsic called llvm.stackprotectorcheck right before the BB's | 
|  | ///        returninst or if there is a callinst that could potentially be | 
|  | ///        sibling call optimized, before the call inst. | 
|  | /// | 
|  | ///     b. Then when a BB with said intrinsic is processed, we codegen the BB | 
|  | ///        normally via SelectBasicBlock. In said process, when we visit the | 
|  | ///        stack protector check, we do not actually emit anything into the | 
|  | ///        BB. Instead, we just initialize the stack protector descriptor | 
|  | ///        class (which involves stashing information/creating the success | 
|  | ///        mbbb and the failure mbb if we have not created one for this | 
|  | ///        function yet) and export the guard variable that we are going to | 
|  | ///        compare. | 
|  | /// | 
|  | ///     c. After we finish selecting the basic block, in FinishBasicBlock if | 
|  | ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is | 
|  | ///        initialized, we produce the validation code with one of these | 
|  | ///        techniques: | 
|  | ///          1) with a call to a guard check function | 
|  | ///          2) with inlined instrumentation | 
|  | /// | 
|  | ///        1) We insert a call to the check function before the terminator. | 
|  | /// | 
|  | ///        2) We first find a splice point in the parent basic block | 
|  | ///        before the terminator and then splice the terminator of said basic | 
|  | ///        block into the success basic block. Then we code-gen a new tail for | 
|  | ///        the parent basic block consisting of the two loads, the comparison, | 
|  | ///        and finally two branches to the success/failure basic blocks. We | 
|  | ///        conclude by code-gening the failure basic block if we have not | 
|  | ///        code-gened it already (all stack protector checks we generate in | 
|  | ///        the same function, use the same failure basic block). | 
|  | class StackProtectorDescriptor { | 
|  | public: | 
|  | StackProtectorDescriptor() = default; | 
|  |  | 
|  | /// Returns true if all fields of the stack protector descriptor are | 
|  | /// initialized implying that we should/are ready to emit a stack protector. | 
|  | bool shouldEmitStackProtector() const { | 
|  | return ParentMBB && SuccessMBB && FailureMBB; | 
|  | } | 
|  |  | 
|  | bool shouldEmitFunctionBasedCheckStackProtector() const { | 
|  | return ParentMBB && !SuccessMBB && !FailureMBB; | 
|  | } | 
|  |  | 
|  | /// Initialize the stack protector descriptor structure for a new basic | 
|  | /// block. | 
|  | void initialize(const BasicBlock *BB, MachineBasicBlock *MBB, | 
|  | bool FunctionBasedInstrumentation) { | 
|  | // Make sure we are not initialized yet. | 
|  | assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is " | 
|  | "already initialized!"); | 
|  | ParentMBB = MBB; | 
|  | if (!FunctionBasedInstrumentation) { | 
|  | SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true); | 
|  | FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Reset state that changes when we handle different basic blocks. | 
|  | /// | 
|  | /// This currently includes: | 
|  | /// | 
|  | /// 1. The specific basic block we are generating a | 
|  | /// stack protector for (ParentMBB). | 
|  | /// | 
|  | /// 2. The successor machine basic block that will contain the tail of | 
|  | /// parent mbb after we create the stack protector check (SuccessMBB). This | 
|  | /// BB is visited only on stack protector check success. | 
|  | void resetPerBBState() { | 
|  | ParentMBB = nullptr; | 
|  | SuccessMBB = nullptr; | 
|  | } | 
|  |  | 
|  | /// Reset state that only changes when we switch functions. | 
|  | /// | 
|  | /// This currently includes: | 
|  | /// | 
|  | /// 1. FailureMBB since we reuse the failure code path for all stack | 
|  | /// protector checks created in an individual function. | 
|  | /// | 
|  | /// 2.The guard variable since the guard variable we are checking against is | 
|  | /// always the same. | 
|  | void resetPerFunctionState() { | 
|  | FailureMBB = nullptr; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *getParentMBB() { return ParentMBB; } | 
|  | MachineBasicBlock *getSuccessMBB() { return SuccessMBB; } | 
|  | MachineBasicBlock *getFailureMBB() { return FailureMBB; } | 
|  |  | 
|  | private: | 
|  | /// The basic block for which we are generating the stack protector. | 
|  | /// | 
|  | /// As a result of stack protector generation, we will splice the | 
|  | /// terminators of this basic block into the successor mbb SuccessMBB and | 
|  | /// replace it with a compare/branch to the successor mbbs | 
|  | /// SuccessMBB/FailureMBB depending on whether or not the stack protector | 
|  | /// was violated. | 
|  | MachineBasicBlock *ParentMBB = nullptr; | 
|  |  | 
|  | /// A basic block visited on stack protector check success that contains the | 
|  | /// terminators of ParentMBB. | 
|  | MachineBasicBlock *SuccessMBB = nullptr; | 
|  |  | 
|  | /// This basic block visited on stack protector check failure that will | 
|  | /// contain a call to __stack_chk_fail(). | 
|  | MachineBasicBlock *FailureMBB = nullptr; | 
|  |  | 
|  | /// Add a successor machine basic block to ParentMBB. If the successor mbb | 
|  | /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic | 
|  | /// block will be created. Assign a large weight if IsLikely is true. | 
|  | MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB, | 
|  | MachineBasicBlock *ParentMBB, | 
|  | bool IsLikely, | 
|  | MachineBasicBlock *SuccMBB = nullptr); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | const TargetMachine &TM; | 
|  |  | 
|  | public: | 
|  | /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling | 
|  | /// nodes without a corresponding SDNode. | 
|  | static const unsigned LowestSDNodeOrder = 1; | 
|  |  | 
|  | SelectionDAG &DAG; | 
|  | const DataLayout *DL = nullptr; | 
|  | AliasAnalysis *AA = nullptr; | 
|  | const TargetLibraryInfo *LibInfo; | 
|  |  | 
|  | class SDAGSwitchLowering : public SwitchCG::SwitchLowering { | 
|  | public: | 
|  | SDAGSwitchLowering(SelectionDAGBuilder *sdb, FunctionLoweringInfo &funcinfo) | 
|  | : SwitchCG::SwitchLowering(funcinfo), SDB(sdb) {} | 
|  |  | 
|  | virtual void addSuccessorWithProb( | 
|  | MachineBasicBlock *Src, MachineBasicBlock *Dst, | 
|  | BranchProbability Prob = BranchProbability::getUnknown()) override { | 
|  | SDB->addSuccessorWithProb(Src, Dst, Prob); | 
|  | } | 
|  |  | 
|  | private: | 
|  | SelectionDAGBuilder *SDB; | 
|  | }; | 
|  |  | 
|  | std::unique_ptr<SDAGSwitchLowering> SL; | 
|  |  | 
|  | /// A StackProtectorDescriptor structure used to communicate stack protector | 
|  | /// information in between SelectBasicBlock and FinishBasicBlock. | 
|  | StackProtectorDescriptor SPDescriptor; | 
|  |  | 
|  | // Emit PHI-node-operand constants only once even if used by multiple | 
|  | // PHI nodes. | 
|  | DenseMap<const Constant *, unsigned> ConstantsOut; | 
|  |  | 
|  | /// Information about the function as a whole. | 
|  | FunctionLoweringInfo &FuncInfo; | 
|  |  | 
|  | /// Information about the swifterror values used throughout the function. | 
|  | SwiftErrorValueTracking &SwiftError; | 
|  |  | 
|  | /// Garbage collection metadata for the function. | 
|  | GCFunctionInfo *GFI; | 
|  |  | 
|  | /// Map a landing pad to the call site indexes. | 
|  | DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap; | 
|  |  | 
|  | /// This is set to true if a call in the current block has been translated as | 
|  | /// a tail call. In this case, no subsequent DAG nodes should be created. | 
|  | bool HasTailCall = false; | 
|  |  | 
|  | LLVMContext *Context; | 
|  |  | 
|  | SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, | 
|  | SwiftErrorValueTracking &swifterror, CodeGenOpt::Level ol) | 
|  | : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag), | 
|  | SL(std::make_unique<SDAGSwitchLowering>(this, funcinfo)), FuncInfo(funcinfo), | 
|  | SwiftError(swifterror) {} | 
|  |  | 
|  | void init(GCFunctionInfo *gfi, AliasAnalysis *AA, | 
|  | const TargetLibraryInfo *li); | 
|  |  | 
|  | /// Clear out the current SelectionDAG and the associated state and prepare | 
|  | /// this SelectionDAGBuilder object to be used for a new block. This doesn't | 
|  | /// clear out information about additional blocks that are needed to complete | 
|  | /// switch lowering or PHI node updating; that information is cleared out as | 
|  | /// it is consumed. | 
|  | void clear(); | 
|  |  | 
|  | /// Clear the dangling debug information map. This function is separated from | 
|  | /// the clear so that debug information that is dangling in a basic block can | 
|  | /// be properly resolved in a different basic block. This allows the | 
|  | /// SelectionDAG to resolve dangling debug information attached to PHI nodes. | 
|  | void clearDanglingDebugInfo(); | 
|  |  | 
|  | /// Return the current virtual root of the Selection DAG, flushing any | 
|  | /// PendingLoad items. This must be done before emitting a store or any other | 
|  | /// memory node that may need to be ordered after any prior load instructions. | 
|  | SDValue getMemoryRoot(); | 
|  |  | 
|  | /// Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) | 
|  | /// items. This must be done before emitting any call other any other node | 
|  | /// that may need to be ordered after FP instructions due to other side | 
|  | /// effects. | 
|  | SDValue getRoot(); | 
|  |  | 
|  | /// Similar to getRoot, but instead of flushing all the PendingLoad items, | 
|  | /// flush all the PendingExports (and PendingConstrainedFPStrict) items. | 
|  | /// It is necessary to do this before emitting a terminator instruction. | 
|  | SDValue getControlRoot(); | 
|  |  | 
|  | SDLoc getCurSDLoc() const { | 
|  | return SDLoc(CurInst, SDNodeOrder); | 
|  | } | 
|  |  | 
|  | DebugLoc getCurDebugLoc() const { | 
|  | return CurInst ? CurInst->getDebugLoc() : DebugLoc(); | 
|  | } | 
|  |  | 
|  | void CopyValueToVirtualRegister(const Value *V, unsigned Reg); | 
|  |  | 
|  | void visit(const Instruction &I); | 
|  |  | 
|  | void visit(unsigned Opcode, const User &I); | 
|  |  | 
|  | /// If there was virtual register allocated for the value V emit CopyFromReg | 
|  | /// of the specified type Ty. Return empty SDValue() otherwise. | 
|  | SDValue getCopyFromRegs(const Value *V, Type *Ty); | 
|  |  | 
|  | /// If we have dangling debug info that describes \p Variable, or an | 
|  | /// overlapping part of variable considering the \p Expr, then this method | 
|  | /// will drop that debug info as it isn't valid any longer. | 
|  | void dropDanglingDebugInfo(const DILocalVariable *Variable, | 
|  | const DIExpression *Expr); | 
|  |  | 
|  | /// If we saw an earlier dbg_value referring to V, generate the debug data | 
|  | /// structures now that we've seen its definition. | 
|  | void resolveDanglingDebugInfo(const Value *V, SDValue Val); | 
|  |  | 
|  | /// For the given dangling debuginfo record, perform last-ditch efforts to | 
|  | /// resolve the debuginfo to something that is represented in this DAG. If | 
|  | /// this cannot be done, produce an Undef debug value record. | 
|  | void salvageUnresolvedDbgValue(DanglingDebugInfo &DDI); | 
|  |  | 
|  | /// For a given Value, attempt to create and record a SDDbgValue in the | 
|  | /// SelectionDAG. | 
|  | bool handleDebugValue(const Value *V, DILocalVariable *Var, | 
|  | DIExpression *Expr, DebugLoc CurDL, | 
|  | DebugLoc InstDL, unsigned Order); | 
|  |  | 
|  | /// Evict any dangling debug information, attempting to salvage it first. | 
|  | void resolveOrClearDbgInfo(); | 
|  |  | 
|  | SDValue getValue(const Value *V); | 
|  | bool findValue(const Value *V) const; | 
|  |  | 
|  | /// Return the SDNode for the specified IR value if it exists. | 
|  | SDNode *getNodeForIRValue(const Value *V) { | 
|  | if (NodeMap.find(V) == NodeMap.end()) | 
|  | return nullptr; | 
|  | return NodeMap[V].getNode(); | 
|  | } | 
|  |  | 
|  | SDValue getNonRegisterValue(const Value *V); | 
|  | SDValue getValueImpl(const Value *V); | 
|  |  | 
|  | void setValue(const Value *V, SDValue NewN) { | 
|  | SDValue &N = NodeMap[V]; | 
|  | assert(!N.getNode() && "Already set a value for this node!"); | 
|  | N = NewN; | 
|  | } | 
|  |  | 
|  | void setUnusedArgValue(const Value *V, SDValue NewN) { | 
|  | SDValue &N = UnusedArgNodeMap[V]; | 
|  | assert(!N.getNode() && "Already set a value for this node!"); | 
|  | N = NewN; | 
|  | } | 
|  |  | 
|  | void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | Instruction::BinaryOps Opc, BranchProbability TProb, | 
|  | BranchProbability FProb, bool InvertCond); | 
|  | void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, | 
|  | MachineBasicBlock *CurBB, | 
|  | MachineBasicBlock *SwitchBB, | 
|  | BranchProbability TProb, BranchProbability FProb, | 
|  | bool InvertCond); | 
|  | bool ShouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases); | 
|  | bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); | 
|  | void CopyToExportRegsIfNeeded(const Value *V); | 
|  | void ExportFromCurrentBlock(const Value *V); | 
|  | void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | // Lower range metadata from 0 to N to assert zext to an integer of nearest | 
|  | // floor power of two. | 
|  | SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, | 
|  | SDValue Op); | 
|  |  | 
|  | void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, | 
|  | const CallBase *Call, unsigned ArgIdx, | 
|  | unsigned NumArgs, SDValue Callee, | 
|  | Type *ReturnTy, bool IsPatchPoint); | 
|  |  | 
|  | std::pair<SDValue, SDValue> | 
|  | lowerInvokable(TargetLowering::CallLoweringInfo &CLI, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | /// When an MBB was split during scheduling, update the | 
|  | /// references that need to refer to the last resulting block. | 
|  | void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); | 
|  |  | 
|  | /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes | 
|  | /// of lowering into a STATEPOINT node. | 
|  | struct StatepointLoweringInfo { | 
|  | /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set | 
|  | /// of gc pointers this STATEPOINT has to relocate. | 
|  | SmallVector<const Value *, 16> Bases; | 
|  | SmallVector<const Value *, 16> Ptrs; | 
|  |  | 
|  | /// The set of gc.relocate calls associated with this gc.statepoint. | 
|  | SmallVector<const GCRelocateInst *, 16> GCRelocates; | 
|  |  | 
|  | /// The full list of gc arguments to the gc.statepoint being lowered. | 
|  | ArrayRef<const Use> GCArgs; | 
|  |  | 
|  | /// The gc.statepoint instruction. | 
|  | const Instruction *StatepointInstr = nullptr; | 
|  |  | 
|  | /// The list of gc transition arguments present in the gc.statepoint being | 
|  | /// lowered. | 
|  | ArrayRef<const Use> GCTransitionArgs; | 
|  |  | 
|  | /// The ID that the resulting STATEPOINT instruction has to report. | 
|  | unsigned ID = -1; | 
|  |  | 
|  | /// Information regarding the underlying call instruction. | 
|  | TargetLowering::CallLoweringInfo CLI; | 
|  |  | 
|  | /// The deoptimization state associated with this gc.statepoint call, if | 
|  | /// any. | 
|  | ArrayRef<const Use> DeoptState; | 
|  |  | 
|  | /// Flags associated with the meta arguments being lowered. | 
|  | uint64_t StatepointFlags = -1; | 
|  |  | 
|  | /// The number of patchable bytes the call needs to get lowered into. | 
|  | unsigned NumPatchBytes = -1; | 
|  |  | 
|  | /// The exception handling unwind destination, in case this represents an | 
|  | /// invoke of gc.statepoint. | 
|  | const BasicBlock *EHPadBB = nullptr; | 
|  |  | 
|  | explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {} | 
|  | }; | 
|  |  | 
|  | /// Lower \p SLI into a STATEPOINT instruction. | 
|  | SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI); | 
|  |  | 
|  | // This function is responsible for the whole statepoint lowering process. | 
|  | // It uniformly handles invoke and call statepoints. | 
|  | void LowerStatepoint(ImmutableStatepoint ISP, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, | 
|  | const BasicBlock *EHPadBB); | 
|  |  | 
|  | void LowerDeoptimizeCall(const CallInst *CI); | 
|  | void LowerDeoptimizingReturn(); | 
|  |  | 
|  | void LowerCallSiteWithDeoptBundleImpl(const CallBase *Call, SDValue Callee, | 
|  | const BasicBlock *EHPadBB, | 
|  | bool VarArgDisallowed, | 
|  | bool ForceVoidReturnTy); | 
|  |  | 
|  | /// Returns the type of FrameIndex and TargetFrameIndex nodes. | 
|  | MVT getFrameIndexTy() { | 
|  | return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Terminator instructions. | 
|  | void visitRet(const ReturnInst &I); | 
|  | void visitBr(const BranchInst &I); | 
|  | void visitSwitch(const SwitchInst &I); | 
|  | void visitIndirectBr(const IndirectBrInst &I); | 
|  | void visitUnreachable(const UnreachableInst &I); | 
|  | void visitCleanupRet(const CleanupReturnInst &I); | 
|  | void visitCatchSwitch(const CatchSwitchInst &I); | 
|  | void visitCatchRet(const CatchReturnInst &I); | 
|  | void visitCatchPad(const CatchPadInst &I); | 
|  | void visitCleanupPad(const CleanupPadInst &CPI); | 
|  |  | 
|  | BranchProbability getEdgeProbability(const MachineBasicBlock *Src, | 
|  | const MachineBasicBlock *Dst) const; | 
|  | void addSuccessorWithProb( | 
|  | MachineBasicBlock *Src, MachineBasicBlock *Dst, | 
|  | BranchProbability Prob = BranchProbability::getUnknown()); | 
|  |  | 
|  | public: | 
|  | void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB); | 
|  | void visitSPDescriptorParent(StackProtectorDescriptor &SPD, | 
|  | MachineBasicBlock *ParentBB); | 
|  | void visitSPDescriptorFailure(StackProtectorDescriptor &SPD); | 
|  | void visitBitTestHeader(SwitchCG::BitTestBlock &B, | 
|  | MachineBasicBlock *SwitchBB); | 
|  | void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, | 
|  | BranchProbability BranchProbToNext, unsigned Reg, | 
|  | SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB); | 
|  | void visitJumpTable(SwitchCG::JumpTable &JT); | 
|  | void visitJumpTableHeader(SwitchCG::JumpTable &JT, | 
|  | SwitchCG::JumpTableHeader &JTH, | 
|  | MachineBasicBlock *SwitchBB); | 
|  |  | 
|  | private: | 
|  | // These all get lowered before this pass. | 
|  | void visitInvoke(const InvokeInst &I); | 
|  | void visitCallBr(const CallBrInst &I); | 
|  | void visitResume(const ResumeInst &I); | 
|  |  | 
|  | void visitUnary(const User &I, unsigned Opcode); | 
|  | void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); } | 
|  |  | 
|  | void visitBinary(const User &I, unsigned Opcode); | 
|  | void visitShift(const User &I, unsigned Opcode); | 
|  | void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); } | 
|  | void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } | 
|  | void visitSub(const User &I)  { visitBinary(I, ISD::SUB); } | 
|  | void visitFSub(const User &I); | 
|  | void visitMul(const User &I)  { visitBinary(I, ISD::MUL); } | 
|  | void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } | 
|  | void visitURem(const User &I) { visitBinary(I, ISD::UREM); } | 
|  | void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } | 
|  | void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } | 
|  | void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } | 
|  | void visitSDiv(const User &I); | 
|  | void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } | 
|  | void visitAnd (const User &I) { visitBinary(I, ISD::AND); } | 
|  | void visitOr  (const User &I) { visitBinary(I, ISD::OR); } | 
|  | void visitXor (const User &I) { visitBinary(I, ISD::XOR); } | 
|  | void visitShl (const User &I) { visitShift(I, ISD::SHL); } | 
|  | void visitLShr(const User &I) { visitShift(I, ISD::SRL); } | 
|  | void visitAShr(const User &I) { visitShift(I, ISD::SRA); } | 
|  | void visitICmp(const User &I); | 
|  | void visitFCmp(const User &I); | 
|  | // Visit the conversion instructions | 
|  | void visitTrunc(const User &I); | 
|  | void visitZExt(const User &I); | 
|  | void visitSExt(const User &I); | 
|  | void visitFPTrunc(const User &I); | 
|  | void visitFPExt(const User &I); | 
|  | void visitFPToUI(const User &I); | 
|  | void visitFPToSI(const User &I); | 
|  | void visitUIToFP(const User &I); | 
|  | void visitSIToFP(const User &I); | 
|  | void visitPtrToInt(const User &I); | 
|  | void visitIntToPtr(const User &I); | 
|  | void visitBitCast(const User &I); | 
|  | void visitAddrSpaceCast(const User &I); | 
|  |  | 
|  | void visitExtractElement(const User &I); | 
|  | void visitInsertElement(const User &I); | 
|  | void visitShuffleVector(const User &I); | 
|  |  | 
|  | void visitExtractValue(const User &I); | 
|  | void visitInsertValue(const User &I); | 
|  | void visitLandingPad(const LandingPadInst &LP); | 
|  |  | 
|  | void visitGetElementPtr(const User &I); | 
|  | void visitSelect(const User &I); | 
|  |  | 
|  | void visitAlloca(const AllocaInst &I); | 
|  | void visitLoad(const LoadInst &I); | 
|  | void visitStore(const StoreInst &I); | 
|  | void visitMaskedLoad(const CallInst &I, bool IsExpanding = false); | 
|  | void visitMaskedStore(const CallInst &I, bool IsCompressing = false); | 
|  | void visitMaskedGather(const CallInst &I); | 
|  | void visitMaskedScatter(const CallInst &I); | 
|  | void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); | 
|  | void visitAtomicRMW(const AtomicRMWInst &I); | 
|  | void visitFence(const FenceInst &I); | 
|  | void visitPHI(const PHINode &I); | 
|  | void visitCall(const CallInst &I); | 
|  | bool visitMemCmpCall(const CallInst &I); | 
|  | bool visitMemPCpyCall(const CallInst &I); | 
|  | bool visitMemChrCall(const CallInst &I); | 
|  | bool visitStrCpyCall(const CallInst &I, bool isStpcpy); | 
|  | bool visitStrCmpCall(const CallInst &I); | 
|  | bool visitStrLenCall(const CallInst &I); | 
|  | bool visitStrNLenCall(const CallInst &I); | 
|  | bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode); | 
|  | bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode); | 
|  | void visitAtomicLoad(const LoadInst &I); | 
|  | void visitAtomicStore(const StoreInst &I); | 
|  | void visitLoadFromSwiftError(const LoadInst &I); | 
|  | void visitStoreToSwiftError(const StoreInst &I); | 
|  | void visitFreeze(const FreezeInst &I); | 
|  |  | 
|  | void visitInlineAsm(ImmutableCallSite CS); | 
|  | void visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); | 
|  | void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); | 
|  | void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI); | 
|  |  | 
|  | void visitVAStart(const CallInst &I); | 
|  | void visitVAArg(const VAArgInst &I); | 
|  | void visitVAEnd(const CallInst &I); | 
|  | void visitVACopy(const CallInst &I); | 
|  | void visitStackmap(const CallInst &I); | 
|  | void visitPatchpoint(ImmutableCallSite CS, | 
|  | const BasicBlock *EHPadBB = nullptr); | 
|  |  | 
|  | // These two are implemented in StatepointLowering.cpp | 
|  | void visitGCRelocate(const GCRelocateInst &Relocate); | 
|  | void visitGCResult(const GCResultInst &I); | 
|  |  | 
|  | void visitVectorReduce(const CallInst &I, unsigned Intrinsic); | 
|  |  | 
|  | void visitUserOp1(const Instruction &I) { | 
|  | llvm_unreachable("UserOp1 should not exist at instruction selection time!"); | 
|  | } | 
|  | void visitUserOp2(const Instruction &I) { | 
|  | llvm_unreachable("UserOp2 should not exist at instruction selection time!"); | 
|  | } | 
|  |  | 
|  | void processIntegerCallValue(const Instruction &I, | 
|  | SDValue Value, bool IsSigned); | 
|  |  | 
|  | void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); | 
|  |  | 
|  | void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message); | 
|  |  | 
|  | /// If V is an function argument then create corresponding DBG_VALUE machine | 
|  | /// instruction for it now. At the end of instruction selection, they will be | 
|  | /// inserted to the entry BB. | 
|  | bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable, | 
|  | DIExpression *Expr, DILocation *DL, | 
|  | bool IsDbgDeclare, const SDValue &N); | 
|  |  | 
|  | /// Return the next block after MBB, or nullptr if there is none. | 
|  | MachineBasicBlock *NextBlock(MachineBasicBlock *MBB); | 
|  |  | 
|  | /// Update the DAG and DAG builder with the relevant information after | 
|  | /// a new root node has been created which could be a tail call. | 
|  | void updateDAGForMaybeTailCall(SDValue MaybeTC); | 
|  |  | 
|  | /// Return the appropriate SDDbgValue based on N. | 
|  | SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable, | 
|  | DIExpression *Expr, const DebugLoc &dl, | 
|  | unsigned DbgSDNodeOrder); | 
|  |  | 
|  | /// Lowers CallInst to an external symbol. | 
|  | void lowerCallToExternalSymbol(const CallInst &I, const char *FunctionName); | 
|  | }; | 
|  |  | 
|  | /// This struct represents the registers (physical or virtual) | 
|  | /// that a particular set of values is assigned, and the type information about | 
|  | /// the value. The most common situation is to represent one value at a time, | 
|  | /// but struct or array values are handled element-wise as multiple values.  The | 
|  | /// splitting of aggregates is performed recursively, so that we never have | 
|  | /// aggregate-typed registers. The values at this point do not necessarily have | 
|  | /// legal types, so each value may require one or more registers of some legal | 
|  | /// type. | 
|  | /// | 
|  | struct RegsForValue { | 
|  | /// The value types of the values, which may not be legal, and | 
|  | /// may need be promoted or synthesized from one or more registers. | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  |  | 
|  | /// The value types of the registers. This is the same size as ValueVTs and it | 
|  | /// records, for each value, what the type of the assigned register or | 
|  | /// registers are. (Individual values are never synthesized from more than one | 
|  | /// type of register.) | 
|  | /// | 
|  | /// With virtual registers, the contents of RegVTs is redundant with TLI's | 
|  | /// getRegisterType member function, however when with physical registers | 
|  | /// it is necessary to have a separate record of the types. | 
|  | SmallVector<MVT, 4> RegVTs; | 
|  |  | 
|  | /// This list holds the registers assigned to the values. | 
|  | /// Each legal or promoted value requires one register, and each | 
|  | /// expanded value requires multiple registers. | 
|  | SmallVector<unsigned, 4> Regs; | 
|  |  | 
|  | /// This list holds the number of registers for each value. | 
|  | SmallVector<unsigned, 4> RegCount; | 
|  |  | 
|  | /// Records if this value needs to be treated in an ABI dependant manner, | 
|  | /// different to normal type legalization. | 
|  | Optional<CallingConv::ID> CallConv; | 
|  |  | 
|  | RegsForValue() = default; | 
|  | RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt, | 
|  | Optional<CallingConv::ID> CC = None); | 
|  | RegsForValue(LLVMContext &Context, const TargetLowering &TLI, | 
|  | const DataLayout &DL, unsigned Reg, Type *Ty, | 
|  | Optional<CallingConv::ID> CC); | 
|  |  | 
|  | bool isABIMangled() const { | 
|  | return CallConv.hasValue(); | 
|  | } | 
|  |  | 
|  | /// Add the specified values to this one. | 
|  | void append(const RegsForValue &RHS) { | 
|  | ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); | 
|  | RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); | 
|  | Regs.append(RHS.Regs.begin(), RHS.Regs.end()); | 
|  | RegCount.push_back(RHS.Regs.size()); | 
|  | } | 
|  |  | 
|  | /// Emit a series of CopyFromReg nodes that copies from this value and returns | 
|  | /// the result as a ValueVTs value. This uses Chain/Flag as the input and | 
|  | /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no | 
|  | /// flag is used. | 
|  | SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, | 
|  | const SDLoc &dl, SDValue &Chain, SDValue *Flag, | 
|  | const Value *V = nullptr) const; | 
|  |  | 
|  | /// Emit a series of CopyToReg nodes that copies the specified value into the | 
|  | /// registers specified by this object. This uses Chain/Flag as the input and | 
|  | /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no | 
|  | /// flag is used. If V is not nullptr, then it is used in printing better | 
|  | /// diagnostic messages on error. | 
|  | void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, | 
|  | SDValue &Chain, SDValue *Flag, const Value *V = nullptr, | 
|  | ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; | 
|  |  | 
|  | /// Add this value to the specified inlineasm node operand list. This adds the | 
|  | /// code marker, matching input operand index (if applicable), and includes | 
|  | /// the number of values added into it. | 
|  | void AddInlineAsmOperands(unsigned Code, bool HasMatching, | 
|  | unsigned MatchingIdx, const SDLoc &dl, | 
|  | SelectionDAG &DAG, std::vector<SDValue> &Ops) const; | 
|  |  | 
|  | /// Check if the total RegCount is greater than one. | 
|  | bool occupiesMultipleRegs() const { | 
|  | return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1; | 
|  | } | 
|  |  | 
|  | /// Return a list of registers and their sizes. | 
|  | SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const; | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H |