| //===-- Half-precision atanh(x) function ----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/atanhf16.h" |
| #include "explogxf.h" |
| #include "hdr/errno_macros.h" |
| #include "hdr/fenv_macros.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/cast.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| static constexpr size_t N_EXCEPTS = 1; |
| static constexpr fputil::ExceptValues<float16, N_EXCEPTS> ATANHF16_EXCEPTS{{ |
| // (input, RZ output, RU offset, RD offset, RN offset) |
| // x = 0x1.a5cp-4, atanhf16(x) = 0x1.a74p-4 (RZ) |
| {0x2E97, 0x2E9D, 1, 0, 0}, |
| }}; |
| |
| LLVM_LIBC_FUNCTION(float16, atanhf16, (float16 x)) { |
| using FPBits = fputil::FPBits<float16>; |
| |
| FPBits xbits(x); |
| Sign sign = xbits.sign(); |
| uint16_t x_abs = xbits.abs().uintval(); |
| |
| // |x| >= 1 |
| if (LIBC_UNLIKELY(x_abs >= 0x3c00U)) { |
| if (xbits.is_nan()) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| return x; |
| } |
| |
| // |x| == 1.0 |
| if (x_abs == 0x3c00U) { |
| fputil::set_errno_if_required(ERANGE); |
| fputil::raise_except_if_required(FE_DIVBYZERO); |
| return FPBits::inf(sign).get_val(); |
| } |
| // |x| > 1.0 |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| if (auto r = ATANHF16_EXCEPTS.lookup(xbits.uintval()); |
| LIBC_UNLIKELY(r.has_value())) |
| return r.value(); |
| |
| // For |x| less than approximately 0.24 |
| if (LIBC_UNLIKELY(x_abs <= 0x33f3U)) { |
| // atanh(+/-0) = +/-0 |
| if (LIBC_UNLIKELY(x_abs == 0U)) |
| return x; |
| // The Taylor expansion of atanh(x) is: |
| // atanh(x) = x + x^3/3 + x^5/5 + x^7/7 + x^9/9 + x^11/11 |
| // = x * [1 + x^2/3 + x^4/5 + x^6/7 + x^8/9 + x^10/11] |
| // When |x| < 2^-5 (0x0800U), this can be approximated by: |
| // atanh(x) ≈ x + (1/3)*x^3 |
| if (LIBC_UNLIKELY(x_abs < 0x0800U)) { |
| float xf = x; |
| return fputil::cast<float16>(xf + 0x1.555556p-2f * xf * xf * xf); |
| } |
| |
| // For 2^-5 <= |x| <= 0x1.fccp-3 (~0.24): |
| // Let t = x^2. |
| // Define P(t) ≈ (1/3)*t + (1/5)*t^2 + (1/7)*t^3 + (1/9)*t^4 + (1/11)*t^5. |
| // Coefficients (from Sollya, RN, hexadecimal): |
| // 1/3 = 0x1.555556p-2, 1/5 = 0x1.99999ap-3, 1/7 = 0x1.24924ap-3, |
| // 1/9 = 0x1.c71c72p-4, 1/11 = 0x1.745d18p-4 |
| // Thus, atanh(x) ≈ x * (1 + P(x^2)). |
| float xf = x; |
| float x2 = xf * xf; |
| float pe = fputil::polyeval(x2, 0.0f, 0x1.555556p-2f, 0x1.99999ap-3f, |
| 0x1.24924ap-3f, 0x1.c71c72p-4f, 0x1.745d18p-4f); |
| return fputil::cast<float16>(fputil::multiply_add(xf, pe, xf)); |
| } |
| |
| float xf = x; |
| return fputil::cast<float16>(0.5 * log_eval_f((xf + 1.0f) / (xf - 1.0f))); |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |