| //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a printer that converts from our internal representation |
| // of machine-dependent LLVM code to GAS-format ARM assembly language. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "asm-printer" |
| #include "ARMAsmPrinter.h" |
| #include "ARM.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMFPUName.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMTargetMachine.h" |
| #include "ARMTargetObjectFile.h" |
| #include "InstPrinter/ARMInstPrinter.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMMCExpr.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
| #include "llvm/DebugInfo.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Mangler.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCELFStreamer.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstBuilder.h" |
| #include "llvm/MC/MCObjectStreamer.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/ARMBuildAttributes.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ELF.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cctype> |
| using namespace llvm; |
| |
| /// EmitDwarfRegOp - Emit dwarf register operation. |
| void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc, |
| bool Indirect) const { |
| const TargetRegisterInfo *RI = TM.getRegisterInfo(); |
| if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1) { |
| AsmPrinter::EmitDwarfRegOp(MLoc, Indirect); |
| return; |
| } |
| assert(MLoc.isReg() && !Indirect && |
| "This doesn't support offset/indirection - implement it if needed"); |
| unsigned Reg = MLoc.getReg(); |
| if (Reg >= ARM::S0 && Reg <= ARM::S31) { |
| assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering"); |
| // S registers are described as bit-pieces of a register |
| // S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0) |
| // S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32) |
| |
| unsigned SReg = Reg - ARM::S0; |
| bool odd = SReg & 0x1; |
| unsigned Rx = 256 + (SReg >> 1); |
| |
| OutStreamer.AddComment("DW_OP_regx for S register"); |
| EmitInt8(dwarf::DW_OP_regx); |
| |
| OutStreamer.AddComment(Twine(SReg)); |
| EmitULEB128(Rx); |
| |
| if (odd) { |
| OutStreamer.AddComment("DW_OP_bit_piece 32 32"); |
| EmitInt8(dwarf::DW_OP_bit_piece); |
| EmitULEB128(32); |
| EmitULEB128(32); |
| } else { |
| OutStreamer.AddComment("DW_OP_bit_piece 32 0"); |
| EmitInt8(dwarf::DW_OP_bit_piece); |
| EmitULEB128(32); |
| EmitULEB128(0); |
| } |
| } else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) { |
| assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering"); |
| // Q registers Q0-Q15 are described by composing two D registers together. |
| // Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1) |
| // DW_OP_piece(8) |
| |
| unsigned QReg = Reg - ARM::Q0; |
| unsigned D1 = 256 + 2 * QReg; |
| unsigned D2 = D1 + 1; |
| |
| OutStreamer.AddComment("DW_OP_regx for Q register: D1"); |
| EmitInt8(dwarf::DW_OP_regx); |
| EmitULEB128(D1); |
| OutStreamer.AddComment("DW_OP_piece 8"); |
| EmitInt8(dwarf::DW_OP_piece); |
| EmitULEB128(8); |
| |
| OutStreamer.AddComment("DW_OP_regx for Q register: D2"); |
| EmitInt8(dwarf::DW_OP_regx); |
| EmitULEB128(D2); |
| OutStreamer.AddComment("DW_OP_piece 8"); |
| EmitInt8(dwarf::DW_OP_piece); |
| EmitULEB128(8); |
| } |
| } |
| |
| void ARMAsmPrinter::EmitFunctionBodyEnd() { |
| // Make sure to terminate any constant pools that were at the end |
| // of the function. |
| if (!InConstantPool) |
| return; |
| InConstantPool = false; |
| OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); |
| } |
| |
| void ARMAsmPrinter::EmitFunctionEntryLabel() { |
| if (AFI->isThumbFunction()) { |
| OutStreamer.EmitAssemblerFlag(MCAF_Code16); |
| OutStreamer.EmitThumbFunc(CurrentFnSym); |
| } |
| |
| OutStreamer.EmitLabel(CurrentFnSym); |
| } |
| |
| void ARMAsmPrinter::EmitXXStructor(const Constant *CV) { |
| uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); |
| assert(Size && "C++ constructor pointer had zero size!"); |
| |
| const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); |
| assert(GV && "C++ constructor pointer was not a GlobalValue!"); |
| |
| const MCExpr *E = MCSymbolRefExpr::Create(getSymbol(GV), |
| (Subtarget->isTargetELF() |
| ? MCSymbolRefExpr::VK_ARM_TARGET1 |
| : MCSymbolRefExpr::VK_None), |
| OutContext); |
| |
| OutStreamer.EmitValue(E, Size); |
| } |
| |
| /// runOnMachineFunction - This uses the EmitInstruction() |
| /// method to print assembly for each instruction. |
| /// |
| bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { |
| AFI = MF.getInfo<ARMFunctionInfo>(); |
| MCP = MF.getConstantPool(); |
| |
| return AsmPrinter::runOnMachineFunction(MF); |
| } |
| |
| void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, |
| raw_ostream &O, const char *Modifier) { |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| unsigned TF = MO.getTargetFlags(); |
| |
| switch (MO.getType()) { |
| default: llvm_unreachable("<unknown operand type>"); |
| case MachineOperand::MO_Register: { |
| unsigned Reg = MO.getReg(); |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg)); |
| assert(!MO.getSubReg() && "Subregs should be eliminated!"); |
| if(ARM::GPRPairRegClass.contains(Reg)) { |
| const MachineFunction &MF = *MI->getParent()->getParent(); |
| const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); |
| Reg = TRI->getSubReg(Reg, ARM::gsub_0); |
| } |
| O << ARMInstPrinter::getRegisterName(Reg); |
| break; |
| } |
| case MachineOperand::MO_Immediate: { |
| int64_t Imm = MO.getImm(); |
| O << '#'; |
| if ((Modifier && strcmp(Modifier, "lo16") == 0) || |
| (TF == ARMII::MO_LO16)) |
| O << ":lower16:"; |
| else if ((Modifier && strcmp(Modifier, "hi16") == 0) || |
| (TF == ARMII::MO_HI16)) |
| O << ":upper16:"; |
| O << Imm; |
| break; |
| } |
| case MachineOperand::MO_MachineBasicBlock: |
| O << *MO.getMBB()->getSymbol(); |
| return; |
| case MachineOperand::MO_GlobalAddress: { |
| const GlobalValue *GV = MO.getGlobal(); |
| if ((Modifier && strcmp(Modifier, "lo16") == 0) || |
| (TF & ARMII::MO_LO16)) |
| O << ":lower16:"; |
| else if ((Modifier && strcmp(Modifier, "hi16") == 0) || |
| (TF & ARMII::MO_HI16)) |
| O << ":upper16:"; |
| O << *getSymbol(GV); |
| |
| printOffset(MO.getOffset(), O); |
| if (TF == ARMII::MO_PLT) |
| O << "(PLT)"; |
| break; |
| } |
| case MachineOperand::MO_ConstantPoolIndex: |
| O << *GetCPISymbol(MO.getIndex()); |
| break; |
| } |
| } |
| |
| //===--------------------------------------------------------------------===// |
| |
| MCSymbol *ARMAsmPrinter:: |
| GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const { |
| const DataLayout *DL = TM.getDataLayout(); |
| SmallString<60> Name; |
| raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI" |
| << getFunctionNumber() << '_' << uid << '_' << uid2; |
| return OutContext.GetOrCreateSymbol(Name.str()); |
| } |
| |
| |
| MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const { |
| const DataLayout *DL = TM.getDataLayout(); |
| SmallString<60> Name; |
| raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH" |
| << getFunctionNumber(); |
| return OutContext.GetOrCreateSymbol(Name.str()); |
| } |
| |
| bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, |
| unsigned AsmVariant, const char *ExtraCode, |
| raw_ostream &O) { |
| // Does this asm operand have a single letter operand modifier? |
| if (ExtraCode && ExtraCode[0]) { |
| if (ExtraCode[1] != 0) return true; // Unknown modifier. |
| |
| switch (ExtraCode[0]) { |
| default: |
| // See if this is a generic print operand |
| return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); |
| case 'a': // Print as a memory address. |
| if (MI->getOperand(OpNum).isReg()) { |
| O << "[" |
| << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) |
| << "]"; |
| return false; |
| } |
| // Fallthrough |
| case 'c': // Don't print "#" before an immediate operand. |
| if (!MI->getOperand(OpNum).isImm()) |
| return true; |
| O << MI->getOperand(OpNum).getImm(); |
| return false; |
| case 'P': // Print a VFP double precision register. |
| case 'q': // Print a NEON quad precision register. |
| printOperand(MI, OpNum, O); |
| return false; |
| case 'y': // Print a VFP single precision register as indexed double. |
| if (MI->getOperand(OpNum).isReg()) { |
| unsigned Reg = MI->getOperand(OpNum).getReg(); |
| const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); |
| // Find the 'd' register that has this 's' register as a sub-register, |
| // and determine the lane number. |
| for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { |
| if (!ARM::DPRRegClass.contains(*SR)) |
| continue; |
| bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; |
| O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); |
| return false; |
| } |
| } |
| return true; |
| case 'B': // Bitwise inverse of integer or symbol without a preceding #. |
| if (!MI->getOperand(OpNum).isImm()) |
| return true; |
| O << ~(MI->getOperand(OpNum).getImm()); |
| return false; |
| case 'L': // The low 16 bits of an immediate constant. |
| if (!MI->getOperand(OpNum).isImm()) |
| return true; |
| O << (MI->getOperand(OpNum).getImm() & 0xffff); |
| return false; |
| case 'M': { // A register range suitable for LDM/STM. |
| if (!MI->getOperand(OpNum).isReg()) |
| return true; |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| unsigned RegBegin = MO.getReg(); |
| // This takes advantage of the 2 operand-ness of ldm/stm and that we've |
| // already got the operands in registers that are operands to the |
| // inline asm statement. |
| O << "{"; |
| if (ARM::GPRPairRegClass.contains(RegBegin)) { |
| const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); |
| unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); |
| O << ARMInstPrinter::getRegisterName(Reg0) << ", ";; |
| RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); |
| } |
| O << ARMInstPrinter::getRegisterName(RegBegin); |
| |
| // FIXME: The register allocator not only may not have given us the |
| // registers in sequence, but may not be in ascending registers. This |
| // will require changes in the register allocator that'll need to be |
| // propagated down here if the operands change. |
| unsigned RegOps = OpNum + 1; |
| while (MI->getOperand(RegOps).isReg()) { |
| O << ", " |
| << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); |
| RegOps++; |
| } |
| |
| O << "}"; |
| |
| return false; |
| } |
| case 'R': // The most significant register of a pair. |
| case 'Q': { // The least significant register of a pair. |
| if (OpNum == 0) |
| return true; |
| const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); |
| if (!FlagsOP.isImm()) |
| return true; |
| unsigned Flags = FlagsOP.getImm(); |
| |
| // This operand may not be the one that actually provides the register. If |
| // it's tied to a previous one then we should refer instead to that one |
| // for registers and their classes. |
| unsigned TiedIdx; |
| if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { |
| for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { |
| unsigned OpFlags = MI->getOperand(OpNum).getImm(); |
| OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; |
| } |
| Flags = MI->getOperand(OpNum).getImm(); |
| |
| // Later code expects OpNum to be pointing at the register rather than |
| // the flags. |
| OpNum += 1; |
| } |
| |
| unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); |
| unsigned RC; |
| InlineAsm::hasRegClassConstraint(Flags, RC); |
| if (RC == ARM::GPRPairRegClassID) { |
| if (NumVals != 1) |
| return true; |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| if (!MO.isReg()) |
| return true; |
| const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); |
| unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? |
| ARM::gsub_0 : ARM::gsub_1); |
| O << ARMInstPrinter::getRegisterName(Reg); |
| return false; |
| } |
| if (NumVals != 2) |
| return true; |
| unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; |
| if (RegOp >= MI->getNumOperands()) |
| return true; |
| const MachineOperand &MO = MI->getOperand(RegOp); |
| if (!MO.isReg()) |
| return true; |
| unsigned Reg = MO.getReg(); |
| O << ARMInstPrinter::getRegisterName(Reg); |
| return false; |
| } |
| |
| case 'e': // The low doubleword register of a NEON quad register. |
| case 'f': { // The high doubleword register of a NEON quad register. |
| if (!MI->getOperand(OpNum).isReg()) |
| return true; |
| unsigned Reg = MI->getOperand(OpNum).getReg(); |
| if (!ARM::QPRRegClass.contains(Reg)) |
| return true; |
| const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); |
| unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? |
| ARM::dsub_0 : ARM::dsub_1); |
| O << ARMInstPrinter::getRegisterName(SubReg); |
| return false; |
| } |
| |
| // This modifier is not yet supported. |
| case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. |
| return true; |
| case 'H': { // The highest-numbered register of a pair. |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| if (!MO.isReg()) |
| return true; |
| const MachineFunction &MF = *MI->getParent()->getParent(); |
| const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); |
| unsigned Reg = MO.getReg(); |
| if(!ARM::GPRPairRegClass.contains(Reg)) |
| return false; |
| Reg = TRI->getSubReg(Reg, ARM::gsub_1); |
| O << ARMInstPrinter::getRegisterName(Reg); |
| return false; |
| } |
| } |
| } |
| |
| printOperand(MI, OpNum, O); |
| return false; |
| } |
| |
| bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, |
| unsigned OpNum, unsigned AsmVariant, |
| const char *ExtraCode, |
| raw_ostream &O) { |
| // Does this asm operand have a single letter operand modifier? |
| if (ExtraCode && ExtraCode[0]) { |
| if (ExtraCode[1] != 0) return true; // Unknown modifier. |
| |
| switch (ExtraCode[0]) { |
| case 'A': // A memory operand for a VLD1/VST1 instruction. |
| default: return true; // Unknown modifier. |
| case 'm': // The base register of a memory operand. |
| if (!MI->getOperand(OpNum).isReg()) |
| return true; |
| O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); |
| return false; |
| } |
| } |
| |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| assert(MO.isReg() && "unexpected inline asm memory operand"); |
| O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; |
| return false; |
| } |
| |
| static bool isThumb(const MCSubtargetInfo& STI) { |
| return (STI.getFeatureBits() & ARM::ModeThumb) != 0; |
| } |
| |
| void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, |
| const MCSubtargetInfo *EndInfo) const { |
| // If either end mode is unknown (EndInfo == NULL) or different than |
| // the start mode, then restore the start mode. |
| const bool WasThumb = isThumb(StartInfo); |
| if (EndInfo == NULL || WasThumb != isThumb(*EndInfo)) { |
| OutStreamer.EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); |
| } |
| } |
| |
| void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { |
| if (Subtarget->isTargetMachO()) { |
| Reloc::Model RelocM = TM.getRelocationModel(); |
| if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) { |
| // Declare all the text sections up front (before the DWARF sections |
| // emitted by AsmPrinter::doInitialization) so the assembler will keep |
| // them together at the beginning of the object file. This helps |
| // avoid out-of-range branches that are due a fundamental limitation of |
| // the way symbol offsets are encoded with the current Darwin ARM |
| // relocations. |
| const TargetLoweringObjectFileMachO &TLOFMacho = |
| static_cast<const TargetLoweringObjectFileMachO &>( |
| getObjFileLowering()); |
| |
| // Collect the set of sections our functions will go into. |
| SetVector<const MCSection *, SmallVector<const MCSection *, 8>, |
| SmallPtrSet<const MCSection *, 8> > TextSections; |
| // Default text section comes first. |
| TextSections.insert(TLOFMacho.getTextSection()); |
| // Now any user defined text sections from function attributes. |
| for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F) |
| if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) |
| TextSections.insert(TLOFMacho.SectionForGlobal(F, *Mang, TM)); |
| // Now the coalescable sections. |
| TextSections.insert(TLOFMacho.getTextCoalSection()); |
| TextSections.insert(TLOFMacho.getConstTextCoalSection()); |
| |
| // Emit the sections in the .s file header to fix the order. |
| for (unsigned i = 0, e = TextSections.size(); i != e; ++i) |
| OutStreamer.SwitchSection(TextSections[i]); |
| |
| if (RelocM == Reloc::DynamicNoPIC) { |
| const MCSection *sect = |
| OutContext.getMachOSection("__TEXT", "__symbol_stub4", |
| MCSectionMachO::S_SYMBOL_STUBS, |
| 12, SectionKind::getText()); |
| OutStreamer.SwitchSection(sect); |
| } else { |
| const MCSection *sect = |
| OutContext.getMachOSection("__TEXT", "__picsymbolstub4", |
| MCSectionMachO::S_SYMBOL_STUBS, |
| 16, SectionKind::getText()); |
| OutStreamer.SwitchSection(sect); |
| } |
| const MCSection *StaticInitSect = |
| OutContext.getMachOSection("__TEXT", "__StaticInit", |
| MCSectionMachO::S_REGULAR | |
| MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, |
| SectionKind::getText()); |
| OutStreamer.SwitchSection(StaticInitSect); |
| } |
| |
| // Compiling with debug info should not affect the code |
| // generation. Ensure the cstring section comes before the |
| // optional __DWARF secion. Otherwise, PC-relative loads would |
| // have to use different instruction sequences at "-g" in order to |
| // reach global data in the same object file. |
| OutStreamer.SwitchSection(getObjFileLowering().getCStringSection()); |
| } |
| |
| // Use unified assembler syntax. |
| OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified); |
| |
| // Emit ARM Build Attributes |
| if (Subtarget->isTargetELF()) |
| emitAttributes(); |
| } |
| |
| |
| void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { |
| if (Subtarget->isTargetMachO()) { |
| // All darwin targets use mach-o. |
| const TargetLoweringObjectFileMachO &TLOFMacho = |
| static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); |
| MachineModuleInfoMachO &MMIMacho = |
| MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
| |
| // Output non-lazy-pointers for external and common global variables. |
| MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); |
| |
| if (!Stubs.empty()) { |
| // Switch with ".non_lazy_symbol_pointer" directive. |
| OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); |
| EmitAlignment(2); |
| for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { |
| // L_foo$stub: |
| OutStreamer.EmitLabel(Stubs[i].first); |
| // .indirect_symbol _foo |
| MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second; |
| OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol); |
| |
| if (MCSym.getInt()) |
| // External to current translation unit. |
| OutStreamer.EmitIntValue(0, 4/*size*/); |
| else |
| // Internal to current translation unit. |
| // |
| // When we place the LSDA into the TEXT section, the type info |
| // pointers need to be indirect and pc-rel. We accomplish this by |
| // using NLPs; however, sometimes the types are local to the file. |
| // We need to fill in the value for the NLP in those cases. |
| OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(), |
| OutContext), |
| 4/*size*/); |
| } |
| |
| Stubs.clear(); |
| OutStreamer.AddBlankLine(); |
| } |
| |
| Stubs = MMIMacho.GetHiddenGVStubList(); |
| if (!Stubs.empty()) { |
| OutStreamer.SwitchSection(getObjFileLowering().getDataSection()); |
| EmitAlignment(2); |
| for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { |
| // L_foo$stub: |
| OutStreamer.EmitLabel(Stubs[i].first); |
| // .long _foo |
| OutStreamer.EmitValue(MCSymbolRefExpr:: |
| Create(Stubs[i].second.getPointer(), |
| OutContext), |
| 4/*size*/); |
| } |
| |
| Stubs.clear(); |
| OutStreamer.AddBlankLine(); |
| } |
| |
| // Funny Darwin hack: This flag tells the linker that no global symbols |
| // contain code that falls through to other global symbols (e.g. the obvious |
| // implementation of multiple entry points). If this doesn't occur, the |
| // linker can safely perform dead code stripping. Since LLVM never |
| // generates code that does this, it is always safe to set. |
| OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() |
| // FIXME: |
| // The following seem like one-off assembler flags, but they actually need |
| // to appear in the .ARM.attributes section in ELF. |
| // Instead of subclassing the MCELFStreamer, we do the work here. |
| |
| static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, |
| const ARMSubtarget *Subtarget) { |
| if (CPU == "xscale") |
| return ARMBuildAttrs::v5TEJ; |
| |
| if (Subtarget->hasV8Ops()) |
| return ARMBuildAttrs::v8; |
| else if (Subtarget->hasV7Ops()) { |
| if (Subtarget->isMClass() && Subtarget->hasThumb2DSP()) |
| return ARMBuildAttrs::v7E_M; |
| return ARMBuildAttrs::v7; |
| } else if (Subtarget->hasV6T2Ops()) |
| return ARMBuildAttrs::v6T2; |
| else if (Subtarget->hasV6MOps()) |
| return ARMBuildAttrs::v6S_M; |
| else if (Subtarget->hasV6Ops()) |
| return ARMBuildAttrs::v6; |
| else if (Subtarget->hasV5TEOps()) |
| return ARMBuildAttrs::v5TE; |
| else if (Subtarget->hasV5TOps()) |
| return ARMBuildAttrs::v5T; |
| else if (Subtarget->hasV4TOps()) |
| return ARMBuildAttrs::v4T; |
| else |
| return ARMBuildAttrs::v4; |
| } |
| |
| void ARMAsmPrinter::emitAttributes() { |
| MCTargetStreamer &TS = *OutStreamer.getTargetStreamer(); |
| ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
| |
| ATS.switchVendor("aeabi"); |
| |
| std::string CPUString = Subtarget->getCPUString(); |
| |
| // FIXME: remove krait check when GNU tools support krait cpu |
| if (CPUString != "generic" && CPUString != "krait") |
| ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); |
| |
| ATS.emitAttribute(ARMBuildAttrs::CPU_arch, |
| getArchForCPU(CPUString, Subtarget)); |
| |
| // Tag_CPU_arch_profile must have the default value of 0 when "Architecture |
| // profile is not applicable (e.g. pre v7, or cross-profile code)". |
| if (Subtarget->hasV7Ops()) { |
| if (Subtarget->isAClass()) { |
| ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, |
| ARMBuildAttrs::ApplicationProfile); |
| } else if (Subtarget->isRClass()) { |
| ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, |
| ARMBuildAttrs::RealTimeProfile); |
| } else if (Subtarget->isMClass()) { |
| ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, |
| ARMBuildAttrs::MicroControllerProfile); |
| } |
| } |
| |
| ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, Subtarget->hasARMOps() ? |
| ARMBuildAttrs::Allowed : ARMBuildAttrs::Not_Allowed); |
| if (Subtarget->isThumb1Only()) { |
| ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, |
| ARMBuildAttrs::Allowed); |
| } else if (Subtarget->hasThumb2()) { |
| ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, |
| ARMBuildAttrs::AllowThumb32); |
| } |
| |
| if (Subtarget->hasNEON()) { |
| /* NEON is not exactly a VFP architecture, but GAS emit one of |
| * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ |
| if (Subtarget->hasFPARMv8()) { |
| if (Subtarget->hasCrypto()) |
| ATS.emitFPU(ARM::CRYPTO_NEON_FP_ARMV8); |
| else |
| ATS.emitFPU(ARM::NEON_FP_ARMV8); |
| } |
| else if (Subtarget->hasVFP4()) |
| ATS.emitFPU(ARM::NEON_VFPV4); |
| else |
| ATS.emitFPU(ARM::NEON); |
| // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture |
| if (Subtarget->hasV8Ops()) |
| ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, |
| ARMBuildAttrs::AllowNeonARMv8); |
| } else { |
| if (Subtarget->hasFPARMv8()) |
| ATS.emitFPU(ARM::FP_ARMV8); |
| else if (Subtarget->hasVFP4()) |
| ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4); |
| else if (Subtarget->hasVFP3()) |
| ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3); |
| else if (Subtarget->hasVFP2()) |
| ATS.emitFPU(ARM::VFPV2); |
| } |
| |
| // Signal various FP modes. |
| if (!TM.Options.UnsafeFPMath) { |
| ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed); |
| ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, |
| ARMBuildAttrs::Allowed); |
| } |
| |
| if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) |
| ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, |
| ARMBuildAttrs::Allowed); |
| else |
| ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, |
| ARMBuildAttrs::AllowIEE754); |
| |
| // FIXME: add more flags to ARMBuildAttributes.h |
| // 8-bytes alignment stuff. |
| ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); |
| ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); |
| |
| // ABI_HardFP_use attribute to indicate single precision FP. |
| if (Subtarget->isFPOnlySP()) |
| ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, |
| ARMBuildAttrs::HardFPSinglePrecision); |
| |
| // Hard float. Use both S and D registers and conform to AAPCS-VFP. |
| if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) |
| ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); |
| |
| // FIXME: Should we signal R9 usage? |
| |
| if (Subtarget->hasFP16()) |
| ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); |
| |
| if (Subtarget->hasMPExtension()) |
| ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); |
| |
| // Hardware divide in ARM mode is part of base arch, starting from ARMv8. |
| // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). |
| // It is not possible to produce DisallowDIV: if hwdiv is present in the base |
| // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. |
| // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; |
| // otherwise, the default value (AllowDIVIfExists) applies. |
| if (Subtarget->hasDivideInARMMode() && !Subtarget->hasV8Ops()) |
| ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); |
| |
| if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization()) |
| ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, |
| ARMBuildAttrs::AllowTZVirtualization); |
| else if (Subtarget->hasTrustZone()) |
| ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, |
| ARMBuildAttrs::AllowTZ); |
| else if (Subtarget->hasVirtualization()) |
| ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, |
| ARMBuildAttrs::AllowVirtualization); |
| |
| ATS.finishAttributeSection(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, |
| unsigned LabelId, MCContext &Ctx) { |
| |
| MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix) |
| + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); |
| return Label; |
| } |
| |
| static MCSymbolRefExpr::VariantKind |
| getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { |
| switch (Modifier) { |
| case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; |
| case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD; |
| case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF; |
| case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF; |
| case ARMCP::GOT: return MCSymbolRefExpr::VK_GOT; |
| case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_GOTOFF; |
| } |
| llvm_unreachable("Invalid ARMCPModifier!"); |
| } |
| |
| MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, |
| unsigned char TargetFlags) { |
| bool isIndirect = Subtarget->isTargetMachO() && |
| (TargetFlags & ARMII::MO_NONLAZY) && |
| Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); |
| if (!isIndirect) |
| return getSymbol(GV); |
| |
| // FIXME: Remove this when Darwin transition to @GOT like syntax. |
| MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); |
| MachineModuleInfoMachO &MMIMachO = |
| MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
| MachineModuleInfoImpl::StubValueTy &StubSym = |
| GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) : |
| MMIMachO.getGVStubEntry(MCSym); |
| if (StubSym.getPointer() == 0) |
| StubSym = MachineModuleInfoImpl:: |
| StubValueTy(getSymbol(GV), !GV->hasInternalLinkage()); |
| return MCSym; |
| } |
| |
| void ARMAsmPrinter:: |
| EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { |
| const DataLayout *DL = TM.getDataLayout(); |
| int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType()); |
| |
| ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); |
| |
| MCSymbol *MCSym; |
| if (ACPV->isLSDA()) { |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << DL->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber(); |
| MCSym = OutContext.GetOrCreateSymbol(OS.str()); |
| } else if (ACPV->isBlockAddress()) { |
| const BlockAddress *BA = |
| cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); |
| MCSym = GetBlockAddressSymbol(BA); |
| } else if (ACPV->isGlobalValue()) { |
| const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); |
| |
| // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so |
| // flag the global as MO_NONLAZY. |
| unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; |
| MCSym = GetARMGVSymbol(GV, TF); |
| } else if (ACPV->isMachineBasicBlock()) { |
| const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); |
| MCSym = MBB->getSymbol(); |
| } else { |
| assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); |
| const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); |
| MCSym = GetExternalSymbolSymbol(Sym); |
| } |
| |
| // Create an MCSymbol for the reference. |
| const MCExpr *Expr = |
| MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()), |
| OutContext); |
| |
| if (ACPV->getPCAdjustment()) { |
| MCSymbol *PCLabel = getPICLabel(DL->getPrivateGlobalPrefix(), |
| getFunctionNumber(), |
| ACPV->getLabelId(), |
| OutContext); |
| const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext); |
| PCRelExpr = |
| MCBinaryExpr::CreateAdd(PCRelExpr, |
| MCConstantExpr::Create(ACPV->getPCAdjustment(), |
| OutContext), |
| OutContext); |
| if (ACPV->mustAddCurrentAddress()) { |
| // We want "(<expr> - .)", but MC doesn't have a concept of the '.' |
| // label, so just emit a local label end reference that instead. |
| MCSymbol *DotSym = OutContext.CreateTempSymbol(); |
| OutStreamer.EmitLabel(DotSym); |
| const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext); |
| PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext); |
| } |
| Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext); |
| } |
| OutStreamer.EmitValue(Expr, Size); |
| } |
| |
| void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) { |
| unsigned Opcode = MI->getOpcode(); |
| int OpNum = 1; |
| if (Opcode == ARM::BR_JTadd) |
| OpNum = 2; |
| else if (Opcode == ARM::BR_JTm) |
| OpNum = 3; |
| |
| const MachineOperand &MO1 = MI->getOperand(OpNum); |
| const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id |
| unsigned JTI = MO1.getIndex(); |
| |
| // Emit a label for the jump table. |
| MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); |
| OutStreamer.EmitLabel(JTISymbol); |
| |
| // Mark the jump table as data-in-code. |
| OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); |
| |
| // Emit each entry of the table. |
| const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| |
| for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { |
| MachineBasicBlock *MBB = JTBBs[i]; |
| // Construct an MCExpr for the entry. We want a value of the form: |
| // (BasicBlockAddr - TableBeginAddr) |
| // |
| // For example, a table with entries jumping to basic blocks BB0 and BB1 |
| // would look like: |
| // LJTI_0_0: |
| // .word (LBB0 - LJTI_0_0) |
| // .word (LBB1 - LJTI_0_0) |
| const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); |
| |
| if (TM.getRelocationModel() == Reloc::PIC_) |
| Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol, |
| OutContext), |
| OutContext); |
| // If we're generating a table of Thumb addresses in static relocation |
| // model, we need to add one to keep interworking correctly. |
| else if (AFI->isThumbFunction()) |
| Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext), |
| OutContext); |
| OutStreamer.EmitValue(Expr, 4); |
| } |
| // Mark the end of jump table data-in-code region. |
| OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); |
| } |
| |
| void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) { |
| unsigned Opcode = MI->getOpcode(); |
| int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1; |
| const MachineOperand &MO1 = MI->getOperand(OpNum); |
| const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id |
| unsigned JTI = MO1.getIndex(); |
| |
| MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); |
| OutStreamer.EmitLabel(JTISymbol); |
| |
| // Emit each entry of the table. |
| const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| unsigned OffsetWidth = 4; |
| if (MI->getOpcode() == ARM::t2TBB_JT) { |
| OffsetWidth = 1; |
| // Mark the jump table as data-in-code. |
| OutStreamer.EmitDataRegion(MCDR_DataRegionJT8); |
| } else if (MI->getOpcode() == ARM::t2TBH_JT) { |
| OffsetWidth = 2; |
| // Mark the jump table as data-in-code. |
| OutStreamer.EmitDataRegion(MCDR_DataRegionJT16); |
| } |
| |
| for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { |
| MachineBasicBlock *MBB = JTBBs[i]; |
| const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(), |
| OutContext); |
| // If this isn't a TBB or TBH, the entries are direct branch instructions. |
| if (OffsetWidth == 4) { |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2B) |
| .addExpr(MBBSymbolExpr) |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| continue; |
| } |
| // Otherwise it's an offset from the dispatch instruction. Construct an |
| // MCExpr for the entry. We want a value of the form: |
| // (BasicBlockAddr - TableBeginAddr) / 2 |
| // |
| // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 |
| // would look like: |
| // LJTI_0_0: |
| // .byte (LBB0 - LJTI_0_0) / 2 |
| // .byte (LBB1 - LJTI_0_0) / 2 |
| const MCExpr *Expr = |
| MCBinaryExpr::CreateSub(MBBSymbolExpr, |
| MCSymbolRefExpr::Create(JTISymbol, OutContext), |
| OutContext); |
| Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext), |
| OutContext); |
| OutStreamer.EmitValue(Expr, OffsetWidth); |
| } |
| // Mark the end of jump table data-in-code region. 32-bit offsets use |
| // actual branch instructions here, so we don't mark those as a data-region |
| // at all. |
| if (OffsetWidth != 4) |
| OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); |
| } |
| |
| void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { |
| assert(MI->getFlag(MachineInstr::FrameSetup) && |
| "Only instruction which are involved into frame setup code are allowed"); |
| |
| MCTargetStreamer &TS = *OutStreamer.getTargetStreamer(); |
| ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); |
| const MachineFunction &MF = *MI->getParent()->getParent(); |
| const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); |
| const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); |
| |
| unsigned FramePtr = RegInfo->getFrameRegister(MF); |
| unsigned Opc = MI->getOpcode(); |
| unsigned SrcReg, DstReg; |
| |
| if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { |
| // Two special cases: |
| // 1) tPUSH does not have src/dst regs. |
| // 2) for Thumb1 code we sometimes materialize the constant via constpool |
| // load. Yes, this is pretty fragile, but for now I don't see better |
| // way... :( |
| SrcReg = DstReg = ARM::SP; |
| } else { |
| SrcReg = MI->getOperand(1).getReg(); |
| DstReg = MI->getOperand(0).getReg(); |
| } |
| |
| // Try to figure out the unwinding opcode out of src / dst regs. |
| if (MI->mayStore()) { |
| // Register saves. |
| assert(DstReg == ARM::SP && |
| "Only stack pointer as a destination reg is supported"); |
| |
| SmallVector<unsigned, 4> RegList; |
| // Skip src & dst reg, and pred ops. |
| unsigned StartOp = 2 + 2; |
| // Use all the operands. |
| unsigned NumOffset = 0; |
| |
| switch (Opc) { |
| default: |
| MI->dump(); |
| llvm_unreachable("Unsupported opcode for unwinding information"); |
| case ARM::tPUSH: |
| // Special case here: no src & dst reg, but two extra imp ops. |
| StartOp = 2; NumOffset = 2; |
| case ARM::STMDB_UPD: |
| case ARM::t2STMDB_UPD: |
| case ARM::VSTMDDB_UPD: |
| assert(SrcReg == ARM::SP && |
| "Only stack pointer as a source reg is supported"); |
| for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; |
| i != NumOps; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| // Actually, there should never be any impdef stuff here. Skip it |
| // temporary to workaround PR11902. |
| if (MO.isImplicit()) |
| continue; |
| RegList.push_back(MO.getReg()); |
| } |
| break; |
| case ARM::STR_PRE_IMM: |
| case ARM::STR_PRE_REG: |
| case ARM::t2STR_PRE: |
| assert(MI->getOperand(2).getReg() == ARM::SP && |
| "Only stack pointer as a source reg is supported"); |
| RegList.push_back(SrcReg); |
| break; |
| } |
| ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); |
| } else { |
| // Changes of stack / frame pointer. |
| if (SrcReg == ARM::SP) { |
| int64_t Offset = 0; |
| switch (Opc) { |
| default: |
| MI->dump(); |
| llvm_unreachable("Unsupported opcode for unwinding information"); |
| case ARM::MOVr: |
| case ARM::tMOVr: |
| Offset = 0; |
| break; |
| case ARM::ADDri: |
| Offset = -MI->getOperand(2).getImm(); |
| break; |
| case ARM::SUBri: |
| case ARM::t2SUBri: |
| Offset = MI->getOperand(2).getImm(); |
| break; |
| case ARM::tSUBspi: |
| Offset = MI->getOperand(2).getImm()*4; |
| break; |
| case ARM::tADDspi: |
| case ARM::tADDrSPi: |
| Offset = -MI->getOperand(2).getImm()*4; |
| break; |
| case ARM::tLDRpci: { |
| // Grab the constpool index and check, whether it corresponds to |
| // original or cloned constpool entry. |
| unsigned CPI = MI->getOperand(1).getIndex(); |
| const MachineConstantPool *MCP = MF.getConstantPool(); |
| if (CPI >= MCP->getConstants().size()) |
| CPI = AFI.getOriginalCPIdx(CPI); |
| assert(CPI != -1U && "Invalid constpool index"); |
| |
| // Derive the actual offset. |
| const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; |
| assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); |
| // FIXME: Check for user, it should be "add" instruction! |
| Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); |
| break; |
| } |
| } |
| |
| if (DstReg == FramePtr && FramePtr != ARM::SP) |
| // Set-up of the frame pointer. Positive values correspond to "add" |
| // instruction. |
| ATS.emitSetFP(FramePtr, ARM::SP, -Offset); |
| else if (DstReg == ARM::SP) { |
| // Change of SP by an offset. Positive values correspond to "sub" |
| // instruction. |
| ATS.emitPad(Offset); |
| } else { |
| // Move of SP to a register. Positive values correspond to an "add" |
| // instruction. |
| ATS.emitMovSP(DstReg, -Offset); |
| } |
| } else if (DstReg == ARM::SP) { |
| MI->dump(); |
| llvm_unreachable("Unsupported opcode for unwinding information"); |
| } |
| else { |
| MI->dump(); |
| llvm_unreachable("Unsupported opcode for unwinding information"); |
| } |
| } |
| } |
| |
| // Simple pseudo-instructions have their lowering (with expansion to real |
| // instructions) auto-generated. |
| #include "ARMGenMCPseudoLowering.inc" |
| |
| void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { |
| const DataLayout *DL = TM.getDataLayout(); |
| |
| // If we just ended a constant pool, mark it as such. |
| if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { |
| OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); |
| InConstantPool = false; |
| } |
| |
| // Emit unwinding stuff for frame-related instructions |
| if (Subtarget->isTargetEHABICompatible() && |
| MI->getFlag(MachineInstr::FrameSetup)) |
| EmitUnwindingInstruction(MI); |
| |
| // Do any auto-generated pseudo lowerings. |
| if (emitPseudoExpansionLowering(OutStreamer, MI)) |
| return; |
| |
| assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && |
| "Pseudo flag setting opcode should be expanded early"); |
| |
| // Check for manual lowerings. |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); |
| case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); |
| case ARM::LEApcrel: |
| case ARM::tLEApcrel: |
| case ARM::t2LEApcrel: { |
| // FIXME: Need to also handle globals and externals |
| MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); |
| EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() == |
| ARM::t2LEApcrel ? ARM::t2ADR |
| : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR |
| : ARM::ADR)) |
| .addReg(MI->getOperand(0).getReg()) |
| .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext)) |
| // Add predicate operands. |
| .addImm(MI->getOperand(2).getImm()) |
| .addReg(MI->getOperand(3).getReg())); |
| return; |
| } |
| case ARM::LEApcrelJT: |
| case ARM::tLEApcrelJT: |
| case ARM::t2LEApcrelJT: { |
| MCSymbol *JTIPICSymbol = |
| GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(), |
| MI->getOperand(2).getImm()); |
| EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() == |
| ARM::t2LEApcrelJT ? ARM::t2ADR |
| : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR |
| : ARM::ADR)) |
| .addReg(MI->getOperand(0).getReg()) |
| .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext)) |
| // Add predicate operands. |
| .addImm(MI->getOperand(3).getImm()) |
| .addReg(MI->getOperand(4).getReg())); |
| return; |
| } |
| // Darwin call instructions are just normal call instructions with different |
| // clobber semantics (they clobber R9). |
| case ARM::BX_CALL: { |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) |
| .addReg(ARM::LR) |
| .addReg(ARM::PC) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // Add 's' bit operand (always reg0 for this) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX) |
| .addReg(MI->getOperand(0).getReg())); |
| return; |
| } |
| case ARM::tBX_CALL: { |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) |
| .addReg(ARM::LR) |
| .addReg(ARM::PC) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX) |
| .addReg(MI->getOperand(0).getReg()) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| return; |
| } |
| case ARM::BMOVPCRX_CALL: { |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) |
| .addReg(ARM::LR) |
| .addReg(ARM::PC) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // Add 's' bit operand (always reg0 for this) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) |
| .addReg(ARM::PC) |
| .addReg(MI->getOperand(0).getReg()) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // Add 's' bit operand (always reg0 for this) |
| .addReg(0)); |
| return; |
| } |
| case ARM::BMOVPCB_CALL: { |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) |
| .addReg(ARM::LR) |
| .addReg(ARM::PC) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // Add 's' bit operand (always reg0 for this) |
| .addReg(0)); |
| |
| const GlobalValue *GV = MI->getOperand(0).getGlobal(); |
| MCSymbol *GVSym = getSymbol(GV); |
| const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::Bcc) |
| .addExpr(GVSymExpr) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| return; |
| } |
| case ARM::MOVi16_ga_pcrel: |
| case ARM::t2MOVi16_ga_pcrel: { |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); |
| TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); |
| |
| unsigned TF = MI->getOperand(1).getTargetFlags(); |
| const GlobalValue *GV = MI->getOperand(1).getGlobal(); |
| MCSymbol *GVSym = GetARMGVSymbol(GV, TF); |
| const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); |
| |
| MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), |
| getFunctionNumber(), |
| MI->getOperand(2).getImm(), OutContext); |
| const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); |
| unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; |
| const MCExpr *PCRelExpr = |
| ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr, |
| MCBinaryExpr::CreateAdd(LabelSymExpr, |
| MCConstantExpr::Create(PCAdj, OutContext), |
| OutContext), OutContext), OutContext); |
| TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); |
| |
| // Add predicate operands. |
| TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); |
| TmpInst.addOperand(MCOperand::CreateReg(0)); |
| // Add 's' bit operand (always reg0 for this) |
| TmpInst.addOperand(MCOperand::CreateReg(0)); |
| EmitToStreamer(OutStreamer, TmpInst); |
| return; |
| } |
| case ARM::MOVTi16_ga_pcrel: |
| case ARM::t2MOVTi16_ga_pcrel: { |
| MCInst TmpInst; |
| TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel |
| ? ARM::MOVTi16 : ARM::t2MOVTi16); |
| TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); |
| TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); |
| |
| unsigned TF = MI->getOperand(2).getTargetFlags(); |
| const GlobalValue *GV = MI->getOperand(2).getGlobal(); |
| MCSymbol *GVSym = GetARMGVSymbol(GV, TF); |
| const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); |
| |
| MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), |
| getFunctionNumber(), |
| MI->getOperand(3).getImm(), OutContext); |
| const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); |
| unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; |
| const MCExpr *PCRelExpr = |
| ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr, |
| MCBinaryExpr::CreateAdd(LabelSymExpr, |
| MCConstantExpr::Create(PCAdj, OutContext), |
| OutContext), OutContext), OutContext); |
| TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); |
| // Add predicate operands. |
| TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); |
| TmpInst.addOperand(MCOperand::CreateReg(0)); |
| // Add 's' bit operand (always reg0 for this) |
| TmpInst.addOperand(MCOperand::CreateReg(0)); |
| EmitToStreamer(OutStreamer, TmpInst); |
| return; |
| } |
| case ARM::tPICADD: { |
| // This is a pseudo op for a label + instruction sequence, which looks like: |
| // LPC0: |
| // add r0, pc |
| // This adds the address of LPC0 to r0. |
| |
| // Emit the label. |
| OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), |
| getFunctionNumber(), MI->getOperand(2).getImm(), |
| OutContext)); |
| |
| // Form and emit the add. |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDhirr) |
| .addReg(MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(0).getReg()) |
| .addReg(ARM::PC) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| return; |
| } |
| case ARM::PICADD: { |
| // This is a pseudo op for a label + instruction sequence, which looks like: |
| // LPC0: |
| // add r0, pc, r0 |
| // This adds the address of LPC0 to r0. |
| |
| // Emit the label. |
| OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), |
| getFunctionNumber(), MI->getOperand(2).getImm(), |
| OutContext)); |
| |
| // Form and emit the add. |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr) |
| .addReg(MI->getOperand(0).getReg()) |
| .addReg(ARM::PC) |
| .addReg(MI->getOperand(1).getReg()) |
| // Add predicate operands. |
| .addImm(MI->getOperand(3).getImm()) |
| .addReg(MI->getOperand(4).getReg()) |
| // Add 's' bit operand (always reg0 for this) |
| .addReg(0)); |
| return; |
| } |
| case ARM::PICSTR: |
| case ARM::PICSTRB: |
| case ARM::PICSTRH: |
| case ARM::PICLDR: |
| case ARM::PICLDRB: |
| case ARM::PICLDRH: |
| case ARM::PICLDRSB: |
| case ARM::PICLDRSH: { |
| // This is a pseudo op for a label + instruction sequence, which looks like: |
| // LPC0: |
| // OP r0, [pc, r0] |
| // The LCP0 label is referenced by a constant pool entry in order to get |
| // a PC-relative address at the ldr instruction. |
| |
| // Emit the label. |
| OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), |
| getFunctionNumber(), MI->getOperand(2).getImm(), |
| OutContext)); |
| |
| // Form and emit the load |
| unsigned Opcode; |
| switch (MI->getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode!"); |
| case ARM::PICSTR: Opcode = ARM::STRrs; break; |
| case ARM::PICSTRB: Opcode = ARM::STRBrs; break; |
| case ARM::PICSTRH: Opcode = ARM::STRH; break; |
| case ARM::PICLDR: Opcode = ARM::LDRrs; break; |
| case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; |
| case ARM::PICLDRH: Opcode = ARM::LDRH; break; |
| case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; |
| case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; |
| } |
| EmitToStreamer(OutStreamer, MCInstBuilder(Opcode) |
| .addReg(MI->getOperand(0).getReg()) |
| .addReg(ARM::PC) |
| .addReg(MI->getOperand(1).getReg()) |
| .addImm(0) |
| // Add predicate operands. |
| .addImm(MI->getOperand(3).getImm()) |
| .addReg(MI->getOperand(4).getReg())); |
| |
| return; |
| } |
| case ARM::CONSTPOOL_ENTRY: { |
| /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool |
| /// in the function. The first operand is the ID# for this instruction, the |
| /// second is the index into the MachineConstantPool that this is, the third |
| /// is the size in bytes of this constant pool entry. |
| /// The required alignment is specified on the basic block holding this MI. |
| unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); |
| unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); |
| |
| // If this is the first entry of the pool, mark it. |
| if (!InConstantPool) { |
| OutStreamer.EmitDataRegion(MCDR_DataRegion); |
| InConstantPool = true; |
| } |
| |
| OutStreamer.EmitLabel(GetCPISymbol(LabelId)); |
| |
| const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; |
| if (MCPE.isMachineConstantPoolEntry()) |
| EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); |
| else |
| EmitGlobalConstant(MCPE.Val.ConstVal); |
| return; |
| } |
| case ARM::t2BR_JT: { |
| // Lower and emit the instruction itself, then the jump table following it. |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) |
| .addReg(ARM::PC) |
| .addReg(MI->getOperand(0).getReg()) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| // Output the data for the jump table itself |
| EmitJump2Table(MI); |
| return; |
| } |
| case ARM::t2TBB_JT: { |
| // Lower and emit the instruction itself, then the jump table following it. |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBB) |
| .addReg(ARM::PC) |
| .addReg(MI->getOperand(0).getReg()) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| // Output the data for the jump table itself |
| EmitJump2Table(MI); |
| // Make sure the next instruction is 2-byte aligned. |
| EmitAlignment(1); |
| return; |
| } |
| case ARM::t2TBH_JT: { |
| // Lower and emit the instruction itself, then the jump table following it. |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBH) |
| .addReg(ARM::PC) |
| .addReg(MI->getOperand(0).getReg()) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| // Output the data for the jump table itself |
| EmitJump2Table(MI); |
| return; |
| } |
| case ARM::tBR_JTr: |
| case ARM::BR_JTr: { |
| // Lower and emit the instruction itself, then the jump table following it. |
| // mov pc, target |
| MCInst TmpInst; |
| unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? |
| ARM::MOVr : ARM::tMOVr; |
| TmpInst.setOpcode(Opc); |
| TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); |
| TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); |
| // Add predicate operands. |
| TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); |
| TmpInst.addOperand(MCOperand::CreateReg(0)); |
| // Add 's' bit operand (always reg0 for this) |
| if (Opc == ARM::MOVr) |
| TmpInst.addOperand(MCOperand::CreateReg(0)); |
| EmitToStreamer(OutStreamer, TmpInst); |
| |
| // Make sure the Thumb jump table is 4-byte aligned. |
| if (Opc == ARM::tMOVr) |
| EmitAlignment(2); |
| |
| // Output the data for the jump table itself |
| EmitJumpTable(MI); |
| return; |
| } |
| case ARM::BR_JTm: { |
| // Lower and emit the instruction itself, then the jump table following it. |
| // ldr pc, target |
| MCInst TmpInst; |
| if (MI->getOperand(1).getReg() == 0) { |
| // literal offset |
| TmpInst.setOpcode(ARM::LDRi12); |
| TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); |
| TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); |
| TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); |
| } else { |
| TmpInst.setOpcode(ARM::LDRrs); |
| TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); |
| TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); |
| TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); |
| TmpInst.addOperand(MCOperand::CreateImm(0)); |
| } |
| // Add predicate operands. |
| TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); |
| TmpInst.addOperand(MCOperand::CreateReg(0)); |
| EmitToStreamer(OutStreamer, TmpInst); |
| |
| // Output the data for the jump table itself |
| EmitJumpTable(MI); |
| return; |
| } |
| case ARM::BR_JTadd: { |
| // Lower and emit the instruction itself, then the jump table following it. |
| // add pc, target, idx |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr) |
| .addReg(ARM::PC) |
| .addReg(MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()) |
| // Add predicate operands. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // Add 's' bit operand (always reg0 for this) |
| .addReg(0)); |
| |
| // Output the data for the jump table itself |
| EmitJumpTable(MI); |
| return; |
| } |
| case ARM::TRAP: { |
| // Non-Darwin binutils don't yet support the "trap" mnemonic. |
| // FIXME: Remove this special case when they do. |
| if (!Subtarget->isTargetMachO()) { |
| //.long 0xe7ffdefe @ trap |
| uint32_t Val = 0xe7ffdefeUL; |
| OutStreamer.AddComment("trap"); |
| OutStreamer.EmitIntValue(Val, 4); |
| return; |
| } |
| break; |
| } |
| case ARM::TRAPNaCl: { |
| //.long 0xe7fedef0 @ trap |
| uint32_t Val = 0xe7fedef0UL; |
| OutStreamer.AddComment("trap"); |
| OutStreamer.EmitIntValue(Val, 4); |
| return; |
| } |
| case ARM::tTRAP: { |
| // Non-Darwin binutils don't yet support the "trap" mnemonic. |
| // FIXME: Remove this special case when they do. |
| if (!Subtarget->isTargetMachO()) { |
| //.short 57086 @ trap |
| uint16_t Val = 0xdefe; |
| OutStreamer.AddComment("trap"); |
| OutStreamer.EmitIntValue(Val, 2); |
| return; |
| } |
| break; |
| } |
| case ARM::t2Int_eh_sjlj_setjmp: |
| case ARM::t2Int_eh_sjlj_setjmp_nofp: |
| case ARM::tInt_eh_sjlj_setjmp: { |
| // Two incoming args: GPR:$src, GPR:$val |
| // mov $val, pc |
| // adds $val, #7 |
| // str $val, [$src, #4] |
| // movs r0, #0 |
| // b 1f |
| // movs r0, #1 |
| // 1: |
| unsigned SrcReg = MI->getOperand(0).getReg(); |
| unsigned ValReg = MI->getOperand(1).getReg(); |
| MCSymbol *Label = GetARMSJLJEHLabel(); |
| OutStreamer.AddComment("eh_setjmp begin"); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) |
| .addReg(ValReg) |
| .addReg(ARM::PC) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDi3) |
| .addReg(ValReg) |
| // 's' bit operand |
| .addReg(ARM::CPSR) |
| .addReg(ValReg) |
| .addImm(7) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tSTRi) |
| .addReg(ValReg) |
| .addReg(SrcReg) |
| // The offset immediate is #4. The operand value is scaled by 4 for the |
| // tSTR instruction. |
| .addImm(1) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8) |
| .addReg(ARM::R0) |
| .addReg(ARM::CPSR) |
| .addImm(0) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tB) |
| .addExpr(SymbolExpr) |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| OutStreamer.AddComment("eh_setjmp end"); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8) |
| .addReg(ARM::R0) |
| .addReg(ARM::CPSR) |
| .addImm(1) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| OutStreamer.EmitLabel(Label); |
| return; |
| } |
| |
| case ARM::Int_eh_sjlj_setjmp_nofp: |
| case ARM::Int_eh_sjlj_setjmp: { |
| // Two incoming args: GPR:$src, GPR:$val |
| // add $val, pc, #8 |
| // str $val, [$src, #+4] |
| // mov r0, #0 |
| // add pc, pc, #0 |
| // mov r0, #1 |
| unsigned SrcReg = MI->getOperand(0).getReg(); |
| unsigned ValReg = MI->getOperand(1).getReg(); |
| |
| OutStreamer.AddComment("eh_setjmp begin"); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri) |
| .addReg(ValReg) |
| .addReg(ARM::PC) |
| .addImm(8) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // 's' bit operand (always reg0 for this). |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::STRi12) |
| .addReg(ValReg) |
| .addReg(SrcReg) |
| .addImm(4) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi) |
| .addReg(ARM::R0) |
| .addImm(0) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // 's' bit operand (always reg0 for this). |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri) |
| .addReg(ARM::PC) |
| .addReg(ARM::PC) |
| .addImm(0) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // 's' bit operand (always reg0 for this). |
| .addReg(0)); |
| |
| OutStreamer.AddComment("eh_setjmp end"); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi) |
| .addReg(ARM::R0) |
| .addImm(1) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0) |
| // 's' bit operand (always reg0 for this). |
| .addReg(0)); |
| return; |
| } |
| case ARM::Int_eh_sjlj_longjmp: { |
| // ldr sp, [$src, #8] |
| // ldr $scratch, [$src, #4] |
| // ldr r7, [$src] |
| // bx $scratch |
| unsigned SrcReg = MI->getOperand(0).getReg(); |
| unsigned ScratchReg = MI->getOperand(1).getReg(); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) |
| .addReg(ARM::SP) |
| .addReg(SrcReg) |
| .addImm(8) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) |
| .addReg(ScratchReg) |
| .addReg(SrcReg) |
| .addImm(4) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) |
| .addReg(ARM::R7) |
| .addReg(SrcReg) |
| .addImm(0) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX) |
| .addReg(ScratchReg) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| return; |
| } |
| case ARM::tInt_eh_sjlj_longjmp: { |
| // ldr $scratch, [$src, #8] |
| // mov sp, $scratch |
| // ldr $scratch, [$src, #4] |
| // ldr r7, [$src] |
| // bx $scratch |
| unsigned SrcReg = MI->getOperand(0).getReg(); |
| unsigned ScratchReg = MI->getOperand(1).getReg(); |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) |
| .addReg(ScratchReg) |
| .addReg(SrcReg) |
| // The offset immediate is #8. The operand value is scaled by 4 for the |
| // tLDR instruction. |
| .addImm(2) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) |
| .addReg(ARM::SP) |
| .addReg(ScratchReg) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) |
| .addReg(ScratchReg) |
| .addReg(SrcReg) |
| .addImm(1) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) |
| .addReg(ARM::R7) |
| .addReg(SrcReg) |
| .addImm(0) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| |
| EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX) |
| .addReg(ScratchReg) |
| // Predicate. |
| .addImm(ARMCC::AL) |
| .addReg(0)); |
| return; |
| } |
| } |
| |
| MCInst TmpInst; |
| LowerARMMachineInstrToMCInst(MI, TmpInst, *this); |
| |
| EmitToStreamer(OutStreamer, TmpInst); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Target Registry Stuff |
| //===----------------------------------------------------------------------===// |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeARMAsmPrinter() { |
| RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget); |
| RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget); |
| } |