blob: 5257310f5b005b9c715fd64b65aad3faece28b99 [file] [log] [blame]
//===- MergeConsecutiveInsertExtractSlicePatterns.cpp ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/ViewLikeInterfaceUtils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
/// Merges consecutive tensor.extract_slice ops into one.
// TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps.
struct MergeConsecutiveExtractSlice : public OpRewritePattern<ExtractSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractSliceOp nextOp,
PatternRewriter &rewriter) const override {
auto prevOp = nextOp.getSource().getDefiningOp<ExtractSliceOp>();
if (!prevOp)
return failure();
SmallVector<OpFoldResult> newOffsets, newSizes, newStrides;
if (failed(affine::mergeOffsetsSizesAndStrides(
rewriter, nextOp.getLoc(), prevOp, nextOp, prevOp.getDroppedDims(),
newOffsets, newSizes, newStrides)))
return failure();
rewriter.replaceOpWithNewOp<ExtractSliceOp>(nextOp, nextOp.getType(),
prevOp.getSource(), newOffsets,
newSizes, newStrides);
return success();
}
};
/// Merges consecutive tensor.insert_slice ops into one.
// TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps.
template <typename OpTy>
struct MergeConsecutiveInsertSlice : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy nextOp,
PatternRewriter &rewriter) const override {
auto prevOp = nextOp.getSource().template getDefiningOp<InsertSliceOp>();
if (!prevOp)
return failure();
if (!prevOp.hasUnitStride() || !nextOp.hasUnitStride())
return failure();
// The first insert_slice op should be rank reducing to make sure we cover
// the full source tensor to be inserted in the second insert_slice op.
SliceVerificationResult result =
isRankReducedType(prevOp.getDestType(), prevOp.getSourceType());
if (result != SliceVerificationResult::Success)
return failure();
// Dynamic dimensions can pass rank reducing check in the above, e.g,
// inserting <?xf32> into <1x?x1xf32>. For such cases we cannot be certain
// the dynamic size covers the full tensor.
if (!prevOp.getSourceType().hasStaticShape() ||
!prevOp.getDestType().hasStaticShape())
return failure();
rewriter.replaceOpWithNewOp<OpTy>(
nextOp, prevOp.getSource(), nextOp.getDest(), nextOp.getMixedOffsets(),
nextOp.getMixedSizes(), nextOp.getMixedStrides());
return success();
}
};
/// Drop redundant rank expansion. I.e., rank expansions that are directly
/// followed by rank reductions. E.g.:
/// %0 = tensor.insert_slice ... : tensor<5x10xf32> into tensor<1x1x5x10xf32>
/// %1 = tensor.extract_slice %0[0, 0, 2, 3] [1, 1, 2, 2] [1, 1, 1, 1]
/// : tensor<1x1x5x10xf32> to tensor<2x2xf32>
struct DropRedundantInsertSliceRankExpansion
: public OpRewritePattern<ExtractSliceOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractSliceOp extractSliceOp,
PatternRewriter &rewriter) const override {
// Nothing to do if no dims are dropped.
llvm::SmallBitVector droppedDims = extractSliceOp.getDroppedDims();
if (droppedDims.none())
return failure();
// Look for tensor.insert_slice op that has an inverse rank expansion.
auto insertSliceOp =
extractSliceOp.getSource().getDefiningOp<InsertSliceOp>();
if (!insertSliceOp)
return failure();
llvm::SmallBitVector expandedDims = insertSliceOp.getDroppedDims();
// TODO: This could be extended to support cases where the dropped dims are
// a subset of the expanded dims.
if (expandedDims != droppedDims)
return failure();
// The tensor.insert_slice may not be redundant if it has multiple users.
if (!insertSliceOp->hasOneUse())
return failure();
// Only consider tensor.insert_slice ops that are pure rank-reductions.
// I.e., no elements are taken from the destination.
if (!isCastLikeInsertSliceOp(insertSliceOp))
return failure();
// Extract directly from the source.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(extractSliceOp);
SmallVector<OpFoldResult> newOffsets, newSizes, newStrides;
for (int64_t i = 0, e = extractSliceOp.getSourceType().getRank(); i < e;
++i) {
if (droppedDims.test(i))
continue;
newOffsets.push_back(extractSliceOp.getMixedOffsets()[i]);
newSizes.push_back(extractSliceOp.getMixedSizes()[i]);
newStrides.push_back(extractSliceOp.getMixedStrides()[i]);
}
rewriter.replaceOpWithNewOp<ExtractSliceOp>(
extractSliceOp, /*source=*/insertSliceOp.getSource(), newOffsets,
newSizes, newStrides);
rewriter.eraseOp(insertSliceOp);
return success();
}
};
} // namespace
void mlir::tensor::populateMergeConsecutiveInsertExtractSlicePatterns(
RewritePatternSet &patterns) {
patterns.add<MergeConsecutiveExtractSlice,
MergeConsecutiveInsertSlice<InsertSliceOp>,
MergeConsecutiveInsertSlice<ParallelInsertSliceOp>>(
patterns.getContext());
}
void mlir::tensor::populateDropRedundantInsertSliceRankExpansionPatterns(
RewritePatternSet &patterns) {
patterns.add<DropRedundantInsertSliceRankExpansion>(patterns.getContext());
}