blob: 9dc1a0d0b4678ae4b44cf455ea801d66f997e1c5 [file] [log] [blame]
//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/IndexedMemProfData.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <ctime>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
namespace llvm {
class InstrProfRecordWriterTrait {
public:
using key_type = StringRef;
using key_type_ref = StringRef;
using data_type = const InstrProfWriter::ProfilingData *const;
using data_type_ref = const InstrProfWriter::ProfilingData *const;
using hash_value_type = uint64_t;
using offset_type = uint64_t;
llvm::endianness ValueProfDataEndianness = llvm::endianness::little;
InstrProfSummaryBuilder *SummaryBuilder;
InstrProfSummaryBuilder *CSSummaryBuilder;
InstrProfRecordWriterTrait() = default;
static hash_value_type ComputeHash(key_type_ref K) {
return IndexedInstrProf::ComputeHash(K);
}
static std::pair<offset_type, offset_type>
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
using namespace support;
endian::Writer LE(Out, llvm::endianness::little);
offset_type N = K.size();
LE.write<offset_type>(N);
offset_type M = 0;
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
M += sizeof(uint64_t); // The function hash
M += sizeof(uint64_t); // The size of the Counts vector
M += ProfRecord.Counts.size() * sizeof(uint64_t);
M += sizeof(uint64_t); // The size of the Bitmap vector
M += ProfRecord.BitmapBytes.size() * sizeof(uint64_t);
// Value data
M += ValueProfData::getSize(ProfileData.second);
}
LE.write<offset_type>(M);
return std::make_pair(N, M);
}
void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
Out.write(K.data(), N);
}
void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
using namespace support;
endian::Writer LE(Out, llvm::endianness::little);
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
CSSummaryBuilder->addRecord(ProfRecord);
else
SummaryBuilder->addRecord(ProfRecord);
LE.write<uint64_t>(ProfileData.first); // Function hash
LE.write<uint64_t>(ProfRecord.Counts.size());
for (uint64_t I : ProfRecord.Counts)
LE.write<uint64_t>(I);
LE.write<uint64_t>(ProfRecord.BitmapBytes.size());
for (uint64_t I : ProfRecord.BitmapBytes)
LE.write<uint64_t>(I);
// Write value data
std::unique_ptr<ValueProfData> VDataPtr =
ValueProfData::serializeFrom(ProfileData.second);
uint32_t S = VDataPtr->getSize();
VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
Out.write((const char *)VDataPtr.get(), S);
}
}
};
} // end namespace llvm
InstrProfWriter::InstrProfWriter(
bool Sparse, uint64_t TemporalProfTraceReservoirSize,
uint64_t MaxTemporalProfTraceLength, bool WritePrevVersion,
memprof::IndexedVersion MemProfVersionRequested, bool MemProfFullSchema,
bool MemprofGenerateRandomHotness,
unsigned MemprofGenerateRandomHotnessSeed)
: Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength),
TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize),
InfoObj(new InstrProfRecordWriterTrait()),
WritePrevVersion(WritePrevVersion),
MemProfVersionRequested(MemProfVersionRequested),
MemProfFullSchema(MemProfFullSchema),
MemprofGenerateRandomHotness(MemprofGenerateRandomHotness) {
// Set up the random number seed if requested.
if (MemprofGenerateRandomHotness) {
unsigned seed = MemprofGenerateRandomHotnessSeed
? MemprofGenerateRandomHotnessSeed
: std::time(nullptr);
errs() << "random hotness seed = " << seed << "\n";
std::srand(seed);
}
}
InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(llvm::endianness Endianness) {
InfoObj->ValueProfDataEndianness = Endianness;
}
void InstrProfWriter::setOutputSparse(bool Sparse) { this->Sparse = Sparse; }
void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto Name = I.Name;
auto Hash = I.Hash;
addRecord(Name, Hash, std::move(I), Weight, Warn);
}
void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
OverlapStats &Overlap,
OverlapStats &FuncLevelOverlap,
const OverlapFuncFilters &FuncFilter) {
auto Name = Other.Name;
auto Hash = Other.Hash;
Other.accumulateCounts(FuncLevelOverlap.Test);
auto It = FunctionData.find(Name);
if (It == FunctionData.end()) {
Overlap.addOneUnique(FuncLevelOverlap.Test);
return;
}
if (FuncLevelOverlap.Test.CountSum < 1.0f) {
Overlap.Overlap.NumEntries += 1;
return;
}
auto &ProfileDataMap = It->second;
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
if (NewFunc) {
Overlap.addOneMismatch(FuncLevelOverlap.Test);
return;
}
InstrProfRecord &Dest = Where->second;
uint64_t ValueCutoff = FuncFilter.ValueCutoff;
if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
ValueCutoff = 0;
Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
}
void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
InstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
InstrProfRecord &Dest = Where->second;
auto MapWarn = [&](instrprof_error E) {
Warn(make_error<InstrProfError>(E));
};
if (NewFunc) {
// We've never seen a function with this name and hash, add it.
Dest = std::move(I);
if (Weight > 1)
Dest.scale(Weight, 1, MapWarn);
} else {
// We're updating a function we've seen before.
Dest.merge(I, Weight, MapWarn);
}
Dest.sortValueData();
}
void InstrProfWriter::addMemProfRecord(
const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
auto NewRecord = Record;
// Provoke random hotness values if requested. We specify the lifetime access
// density and lifetime length that will result in a cold or not cold hotness.
// See the logic in getAllocType() in Analysis/MemoryProfileInfo.cpp.
if (MemprofGenerateRandomHotness) {
for (auto &Alloc : NewRecord.AllocSites) {
// To get a not cold context, set the lifetime access density to the
// maximum value and the lifetime to 0.
uint64_t NewTLAD = std::numeric_limits<uint64_t>::max();
uint64_t NewTL = 0;
bool IsCold = std::rand() % 2;
if (IsCold) {
// To get a cold context, set the lifetime access density to 0 and the
// lifetime to the maximum value.
NewTLAD = 0;
NewTL = std::numeric_limits<uint64_t>::max();
}
Alloc.Info.setTotalLifetimeAccessDensity(NewTLAD);
Alloc.Info.setTotalLifetime(NewTL);
}
}
auto [Iter, Inserted] = MemProfData.Records.insert({Id, NewRecord});
// If we inserted a new record then we are done.
if (Inserted) {
return;
}
memprof::IndexedMemProfRecord &Existing = Iter->second;
Existing.merge(NewRecord);
}
bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
const memprof::Frame &Frame,
function_ref<void(Error)> Warn) {
auto [Iter, Inserted] = MemProfData.Frames.insert({Id, Frame});
// If a mapping already exists for the current frame id and it does not
// match the new mapping provided then reset the existing contents and bail
// out. We don't support the merging of memprof data whose Frame -> Id
// mapping across profiles is inconsistent.
if (!Inserted && Iter->second != Frame) {
Warn(make_error<InstrProfError>(instrprof_error::malformed,
"frame to id mapping mismatch"));
return false;
}
return true;
}
bool InstrProfWriter::addMemProfCallStack(
const memprof::CallStackId CSId,
const llvm::SmallVector<memprof::FrameId> &CallStack,
function_ref<void(Error)> Warn) {
auto [Iter, Inserted] = MemProfData.CallStacks.insert({CSId, CallStack});
// If a mapping already exists for the current call stack id and it does not
// match the new mapping provided then reset the existing contents and bail
// out. We don't support the merging of memprof data whose CallStack -> Id
// mapping across profiles is inconsistent.
if (!Inserted && Iter->second != CallStack) {
Warn(make_error<InstrProfError>(instrprof_error::malformed,
"call stack to id mapping mismatch"));
return false;
}
return true;
}
bool InstrProfWriter::addMemProfData(memprof::IndexedMemProfData Incoming,
function_ref<void(Error)> Warn) {
// Return immediately if everything is empty.
if (Incoming.Frames.empty() && Incoming.CallStacks.empty() &&
Incoming.Records.empty())
return true;
// Otherwise, every component must be non-empty.
assert(!Incoming.Frames.empty() && !Incoming.CallStacks.empty() &&
!Incoming.Records.empty());
if (MemProfData.Frames.empty())
MemProfData.Frames = std::move(Incoming.Frames);
else
for (const auto &[Id, F] : Incoming.Frames)
if (addMemProfFrame(Id, F, Warn))
return false;
if (MemProfData.CallStacks.empty())
MemProfData.CallStacks = std::move(Incoming.CallStacks);
else
for (const auto &[CSId, CS] : Incoming.CallStacks)
if (addMemProfCallStack(CSId, CS, Warn))
return false;
// Add one record at a time if randomization is requested.
if (MemProfData.Records.empty() && !MemprofGenerateRandomHotness)
MemProfData.Records = std::move(Incoming.Records);
else
for (const auto &[GUID, Record] : Incoming.Records)
addMemProfRecord(GUID, Record);
return true;
}
void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
llvm::append_range(BinaryIds, BIs);
}
void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) {
assert(Trace.FunctionNameRefs.size() <= MaxTemporalProfTraceLength);
assert(!Trace.FunctionNameRefs.empty());
if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) {
// Simply append the trace if we have not yet hit our reservoir size limit.
TemporalProfTraces.push_back(std::move(Trace));
} else {
// Otherwise, replace a random trace in the stream.
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
TemporalProfTraces[RandomIndex] = std::move(Trace);
}
++TemporalProfTraceStreamSize;
}
void InstrProfWriter::addTemporalProfileTraces(
SmallVectorImpl<TemporalProfTraceTy> &SrcTraces, uint64_t SrcStreamSize) {
for (auto &Trace : SrcTraces)
if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength)
Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength);
llvm::erase_if(SrcTraces, [](auto &T) { return T.FunctionNameRefs.empty(); });
// Assume that the source has the same reservoir size as the destination to
// avoid needing to record it in the indexed profile format.
bool IsDestSampled =
(TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize);
bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize);
if (!IsDestSampled && IsSrcSampled) {
// If one of the traces are sampled, ensure that it belongs to Dest.
std::swap(TemporalProfTraces, SrcTraces);
std::swap(TemporalProfTraceStreamSize, SrcStreamSize);
std::swap(IsDestSampled, IsSrcSampled);
}
if (!IsSrcSampled) {
// If the source stream is not sampled, we add each source trace normally.
for (auto &Trace : SrcTraces)
addTemporalProfileTrace(std::move(Trace));
return;
}
// Otherwise, we find the traces that would have been removed if we added
// the whole source stream.
SmallSetVector<uint64_t, 8> IndicesToReplace;
for (uint64_t I = 0; I < SrcStreamSize; I++) {
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
IndicesToReplace.insert(RandomIndex);
++TemporalProfTraceStreamSize;
}
// Then we insert a random sample of the source traces.
llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG);
for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces))
TemporalProfTraces[Index] = std::move(Trace);
}
void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
function_ref<void(Error)> Warn) {
for (auto &I : IPW.FunctionData)
for (auto &Func : I.getValue())
addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
for (auto &I : IPW.BinaryIds)
addBinaryIds(I);
addTemporalProfileTraces(IPW.TemporalProfTraces,
IPW.TemporalProfTraceStreamSize);
MemProfData.Frames.reserve(IPW.MemProfData.Frames.size());
for (auto &[FrameId, Frame] : IPW.MemProfData.Frames) {
// If we weren't able to add the frame mappings then it doesn't make sense
// to try to merge the records from this profile.
if (!addMemProfFrame(FrameId, Frame, Warn))
return;
}
MemProfData.CallStacks.reserve(IPW.MemProfData.CallStacks.size());
for (auto &[CSId, CallStack] : IPW.MemProfData.CallStacks) {
if (!addMemProfCallStack(CSId, CallStack, Warn))
return;
}
MemProfData.Records.reserve(IPW.MemProfData.Records.size());
for (auto &[GUID, Record] : IPW.MemProfData.Records) {
addMemProfRecord(GUID, Record);
}
}
bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
if (!Sparse)
return true;
for (const auto &Func : PD) {
const InstrProfRecord &IPR = Func.second;
if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
return true;
if (llvm::any_of(IPR.BitmapBytes, [](uint8_t Byte) { return Byte > 0; }))
return true;
}
return false;
}
static void setSummary(IndexedInstrProf::Summary *TheSummary,
ProfileSummary &PS) {
using namespace IndexedInstrProf;
const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
TheSummary->NumSummaryFields = Summary::NumKinds;
TheSummary->NumCutoffEntries = Res.size();
TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
for (unsigned I = 0; I < Res.size(); I++)
TheSummary->setEntry(I, Res[I]);
}
uint64_t InstrProfWriter::writeHeader(const IndexedInstrProf::Header &Header,
const bool WritePrevVersion,
ProfOStream &OS) {
// Only write out the first four fields.
for (int I = 0; I < 4; I++)
OS.write(reinterpret_cast<const uint64_t *>(&Header)[I]);
// Remember the offset of the remaining fields to allow back patching later.
auto BackPatchStartOffset = OS.tell();
// Reserve the space for back patching later.
OS.write(0); // HashOffset
OS.write(0); // MemProfOffset
OS.write(0); // BinaryIdOffset
OS.write(0); // TemporalProfTracesOffset
if (!WritePrevVersion)
OS.write(0); // VTableNamesOffset
return BackPatchStartOffset;
}
Error InstrProfWriter::writeBinaryIds(ProfOStream &OS) {
// BinaryIdSection has two parts:
// 1. uint64_t BinaryIdsSectionSize
// 2. list of binary ids that consist of:
// a. uint64_t BinaryIdLength
// b. uint8_t BinaryIdData
// c. uint8_t Padding (if necessary)
// Calculate size of binary section.
uint64_t BinaryIdsSectionSize = 0;
// Remove duplicate binary ids.
llvm::sort(BinaryIds);
BinaryIds.erase(llvm::unique(BinaryIds), BinaryIds.end());
for (const auto &BI : BinaryIds) {
// Increment by binary id length data type size.
BinaryIdsSectionSize += sizeof(uint64_t);
// Increment by binary id data length, aligned to 8 bytes.
BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
}
// Write binary ids section size.
OS.write(BinaryIdsSectionSize);
for (const auto &BI : BinaryIds) {
uint64_t BILen = BI.size();
// Write binary id length.
OS.write(BILen);
// Write binary id data.
for (unsigned K = 0; K < BILen; K++)
OS.writeByte(BI[K]);
// Write padding if necessary.
uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
for (unsigned K = 0; K < PaddingSize; K++)
OS.writeByte(0);
}
return Error::success();
}
Error InstrProfWriter::writeVTableNames(ProfOStream &OS) {
std::vector<std::string> VTableNameStrs;
for (StringRef VTableName : VTableNames.keys())
VTableNameStrs.push_back(VTableName.str());
std::string CompressedVTableNames;
if (!VTableNameStrs.empty())
if (Error E = collectGlobalObjectNameStrings(
VTableNameStrs, compression::zlib::isAvailable(),
CompressedVTableNames))
return E;
const uint64_t CompressedStringLen = CompressedVTableNames.length();
// Record the length of compressed string.
OS.write(CompressedStringLen);
// Write the chars in compressed strings.
for (auto &c : CompressedVTableNames)
OS.writeByte(static_cast<uint8_t>(c));
// Pad up to a multiple of 8.
// InstrProfReader could read bytes according to 'CompressedStringLen'.
const uint64_t PaddedLength = alignTo(CompressedStringLen, 8);
for (uint64_t K = CompressedStringLen; K < PaddedLength; K++)
OS.writeByte(0);
return Error::success();
}
Error InstrProfWriter::writeImpl(ProfOStream &OS) {
using namespace IndexedInstrProf;
using namespace support;
OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->SummaryBuilder = &ISB;
InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->CSSummaryBuilder = &CSISB;
// Populate the hash table generator.
SmallVector<std::pair<StringRef, const ProfilingData *>> OrderedData;
for (const auto &I : FunctionData)
if (shouldEncodeData(I.getValue()))
OrderedData.emplace_back((I.getKey()), &I.getValue());
llvm::sort(OrderedData, less_first());
for (const auto &I : OrderedData)
Generator.insert(I.first, I.second);
// Write the header.
IndexedInstrProf::Header Header;
Header.Version = WritePrevVersion
? IndexedInstrProf::ProfVersion::Version11
: IndexedInstrProf::ProfVersion::CurrentVersion;
// The WritePrevVersion handling will either need to be removed or updated
// if the version is advanced beyond 12.
static_assert(IndexedInstrProf::ProfVersion::CurrentVersion ==
IndexedInstrProf::ProfVersion::Version12);
if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
Header.Version |= VARIANT_MASK_IR_PROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
Header.Version |= VARIANT_MASK_CSIR_PROF;
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
Header.Version |= VARIANT_MASK_INSTR_ENTRY;
if (static_cast<bool>(ProfileKind &
InstrProfKind::LoopEntriesInstrumentation))
Header.Version |= VARIANT_MASK_INSTR_LOOP_ENTRIES;
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
Header.Version |= VARIANT_MASK_MEMPROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
Header.Version |= VARIANT_MASK_TEMPORAL_PROF;
const uint64_t BackPatchStartOffset =
writeHeader(Header, WritePrevVersion, OS);
// Reserve space to write profile summary data.
uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
// Remember the summary offset.
uint64_t SummaryOffset = OS.tell();
for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
OS.write(0);
uint64_t CSSummaryOffset = 0;
uint64_t CSSummarySize = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
CSSummaryOffset = OS.tell();
CSSummarySize = SummarySize / sizeof(uint64_t);
for (unsigned I = 0; I < CSSummarySize; I++)
OS.write(0);
}
// Write the hash table.
uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
// Write the MemProf profile data if we have it.
uint64_t MemProfSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
MemProfSectionStart = OS.tell();
if (auto E = writeMemProf(OS, MemProfData, MemProfVersionRequested,
MemProfFullSchema))
return E;
}
uint64_t BinaryIdSectionStart = OS.tell();
if (auto E = writeBinaryIds(OS))
return E;
uint64_t VTableNamesSectionStart = OS.tell();
if (!WritePrevVersion)
if (Error E = writeVTableNames(OS))
return E;
uint64_t TemporalProfTracesSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile)) {
TemporalProfTracesSectionStart = OS.tell();
OS.write(TemporalProfTraces.size());
OS.write(TemporalProfTraceStreamSize);
for (auto &Trace : TemporalProfTraces) {
OS.write(Trace.Weight);
OS.write(Trace.FunctionNameRefs.size());
for (auto &NameRef : Trace.FunctionNameRefs)
OS.write(NameRef);
}
}
// Allocate space for data to be serialized out.
std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
IndexedInstrProf::allocSummary(SummarySize);
// Compute the Summary and copy the data to the data
// structure to be serialized out (to disk or buffer).
std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
setSummary(TheSummary.get(), *PS);
InfoObj->SummaryBuilder = nullptr;
// For Context Sensitive summary.
std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
setSummary(TheCSSummary.get(), *CSPS);
}
InfoObj->CSSummaryBuilder = nullptr;
SmallVector<uint64_t, 8> HeaderOffsets = {HashTableStart, MemProfSectionStart,
BinaryIdSectionStart,
TemporalProfTracesSectionStart};
if (!WritePrevVersion)
HeaderOffsets.push_back(VTableNamesSectionStart);
PatchItem PatchItems[] = {
// Patch the Header fields
{BackPatchStartOffset, HeaderOffsets},
// Patch the summary data.
{SummaryOffset,
ArrayRef<uint64_t>(reinterpret_cast<uint64_t *>(TheSummary.get()),
SummarySize / sizeof(uint64_t))},
{CSSummaryOffset,
ArrayRef<uint64_t>(reinterpret_cast<uint64_t *>(TheCSSummary.get()),
CSSummarySize)}};
OS.patch(PatchItems);
for (const auto &I : FunctionData)
for (const auto &F : I.getValue())
if (Error E = validateRecord(F.second))
return E;
return Error::success();
}
Error InstrProfWriter::write(raw_fd_ostream &OS) {
// Write the hash table.
ProfOStream POS(OS);
return writeImpl(POS);
}
Error InstrProfWriter::write(raw_string_ostream &OS) {
ProfOStream POS(OS);
return writeImpl(POS);
}
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
std::string Data;
raw_string_ostream OS(Data);
// Write the hash table.
if (Error E = write(OS))
return nullptr;
// Return this in an aligned memory buffer.
return MemoryBuffer::getMemBufferCopy(Data);
}
static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};
Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget)
continue;
uint32_t NS = Func.getNumValueSites(VK);
for (uint32_t S = 0; S < NS; S++) {
DenseSet<uint64_t> SeenValues;
for (const auto &V : Func.getValueArrayForSite(VK, S))
if (!SeenValues.insert(V.Value).second)
return make_error<InstrProfError>(instrprof_error::invalid_prof);
}
}
return Error::success();
}
void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
const InstrProfRecord &Func,
InstrProfSymtab &Symtab,
raw_fd_ostream &OS) {
OS << Name << "\n";
OS << "# Func Hash:\n" << Hash << "\n";
OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
OS << "# Counter Values:\n";
for (uint64_t Count : Func.Counts)
OS << Count << "\n";
if (Func.BitmapBytes.size() > 0) {
OS << "# Num Bitmap Bytes:\n$" << Func.BitmapBytes.size() << "\n";
OS << "# Bitmap Byte Values:\n";
for (uint8_t Byte : Func.BitmapBytes) {
OS << "0x";
OS.write_hex(Byte);
OS << "\n";
}
OS << "\n";
}
uint32_t NumValueKinds = Func.getNumValueKinds();
if (!NumValueKinds) {
OS << "\n";
return;
}
OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
OS << "# NumValueSites:\n" << NS << "\n";
for (uint32_t S = 0; S < NS; S++) {
auto VD = Func.getValueArrayForSite(VK, S);
OS << VD.size() << "\n";
for (const auto &V : VD) {
if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget)
OS << Symtab.getFuncOrVarNameIfDefined(V.Value) << ":" << V.Count
<< "\n";
else
OS << V.Value << ":" << V.Count << "\n";
}
}
}
OS << "\n";
}
Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
// Check CS first since it implies an IR level profile.
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
OS << "# CSIR level Instrumentation Flag\n:csir\n";
else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
OS << "# IR level Instrumentation Flag\n:ir\n";
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
OS << "# Always instrument the function entry block\n:entry_first\n";
if (static_cast<bool>(ProfileKind &
InstrProfKind::LoopEntriesInstrumentation))
OS << "# Always instrument the loop entry "
"blocks\n:instrument_loop_entries\n";
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
OS << "# Instrument block coverage\n:single_byte_coverage\n";
InstrProfSymtab Symtab;
using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
using RecordType = std::pair<StringRef, FuncPair>;
SmallVector<RecordType, 4> OrderedFuncData;
for (const auto &I : FunctionData) {
if (shouldEncodeData(I.getValue())) {
if (Error E = Symtab.addFuncName(I.getKey()))
return E;
for (const auto &Func : I.getValue())
OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
}
}
for (const auto &VTableName : VTableNames)
if (Error E = Symtab.addVTableName(VTableName.getKey()))
return E;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
writeTextTemporalProfTraceData(OS, Symtab);
llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
return std::tie(A.first, A.second.first) <
std::tie(B.first, B.second.first);
});
for (const auto &record : OrderedFuncData) {
const StringRef &Name = record.first;
const FuncPair &Func = record.second;
writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
}
for (const auto &record : OrderedFuncData) {
const FuncPair &Func = record.second;
if (Error E = validateRecord(Func.second))
return E;
}
return Error::success();
}
void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS,
InstrProfSymtab &Symtab) {
OS << ":temporal_prof_traces\n";
OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n";
OS << "# Temporal Profile Trace Stream Size:\n"
<< TemporalProfTraceStreamSize << "\n";
for (auto &Trace : TemporalProfTraces) {
OS << "# Weight:\n" << Trace.Weight << "\n";
for (auto &NameRef : Trace.FunctionNameRefs)
OS << Symtab.getFuncOrVarName(NameRef) << ",";
OS << "\n";
}
OS << "\n";
}