| //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for writing dwarf debug info into asm files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DwarfDebug.h" |
| #include "ByteStreamer.h" |
| #include "DIEHash.h" |
| #include "DwarfCompileUnit.h" |
| #include "DwarfExpression.h" |
| #include "DwarfUnit.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/CodeGen/DIE.h" |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" |
| #include "llvm/DebugInfo/DWARF/DWARFExpression.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/MachineLocation.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/TargetParser/Triple.h" |
| #include <algorithm> |
| #include <cstddef> |
| #include <iterator> |
| #include <optional> |
| #include <string> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dwarfdebug" |
| |
| STATISTIC(NumCSParams, "Number of dbg call site params created"); |
| |
| static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( |
| "use-dwarf-ranges-base-address-specifier", cl::Hidden, |
| cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); |
| |
| static cl::opt<bool> GenerateARangeSection("generate-arange-section", |
| cl::Hidden, |
| cl::desc("Generate dwarf aranges"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, |
| cl::desc("Generate DWARF4 type units."), |
| cl::init(false)); |
| |
| static cl::opt<bool> SplitDwarfCrossCuReferences( |
| "split-dwarf-cross-cu-references", cl::Hidden, |
| cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); |
| |
| enum DefaultOnOff { Default, Enable, Disable }; |
| |
| static cl::opt<DefaultOnOff> UnknownLocations( |
| "use-unknown-locations", cl::Hidden, |
| cl::desc("Make an absence of debug location information explicit."), |
| cl::values(clEnumVal(Default, "At top of block or after label"), |
| clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), |
| cl::init(Default)); |
| |
| static cl::opt<AccelTableKind> AccelTables( |
| "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), |
| cl::values(clEnumValN(AccelTableKind::Default, "Default", |
| "Default for platform"), |
| clEnumValN(AccelTableKind::None, "Disable", "Disabled."), |
| clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), |
| clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), |
| cl::init(AccelTableKind::Default)); |
| |
| static cl::opt<DefaultOnOff> |
| DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, |
| cl::desc("Use inlined strings rather than string section."), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), |
| clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| static cl::opt<bool> |
| NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, |
| cl::desc("Disable emission .debug_ranges section."), |
| cl::init(false)); |
| |
| static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( |
| "dwarf-sections-as-references", cl::Hidden, |
| cl::desc("Use sections+offset as references rather than labels."), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| static cl::opt<bool> |
| UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, |
| cl::desc("Emit the GNU .debug_macro format with DWARF <5"), |
| cl::init(false)); |
| |
| static cl::opt<DefaultOnOff> DwarfOpConvert( |
| "dwarf-op-convert", cl::Hidden, |
| cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| enum LinkageNameOption { |
| DefaultLinkageNames, |
| AllLinkageNames, |
| AbstractLinkageNames |
| }; |
| |
| static cl::opt<LinkageNameOption> |
| DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, |
| cl::desc("Which DWARF linkage-name attributes to emit."), |
| cl::values(clEnumValN(DefaultLinkageNames, "Default", |
| "Default for platform"), |
| clEnumValN(AllLinkageNames, "All", "All"), |
| clEnumValN(AbstractLinkageNames, "Abstract", |
| "Abstract subprograms")), |
| cl::init(DefaultLinkageNames)); |
| |
| static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( |
| "minimize-addr-in-v5", cl::Hidden, |
| cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " |
| "address pool entry sharing to reduce relocations/object size"), |
| cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", |
| "Default address minimization strategy"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", |
| "Use rnglists for contiguous ranges if that allows " |
| "using a pre-existing base address"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, |
| "Expressions", |
| "Use exprloc addrx+offset expressions for any " |
| "address with a prior base address"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", |
| "Use addrx+offset extension form for any address " |
| "with a prior base address"), |
| clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", |
| "Stuff")), |
| cl::init(DwarfDebug::MinimizeAddrInV5::Default)); |
| |
| static constexpr unsigned ULEB128PadSize = 4; |
| |
| void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { |
| getActiveStreamer().emitInt8( |
| Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) |
| : dwarf::OperationEncodingString(Op)); |
| } |
| |
| void DebugLocDwarfExpression::emitSigned(int64_t Value) { |
| getActiveStreamer().emitSLEB128(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { |
| getActiveStreamer().emitULEB128(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitData1(uint8_t Value) { |
| getActiveStreamer().emitInt8(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { |
| assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); |
| getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); |
| } |
| |
| bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, |
| llvm::Register MachineReg) { |
| // This information is not available while emitting .debug_loc entries. |
| return false; |
| } |
| |
| void DebugLocDwarfExpression::enableTemporaryBuffer() { |
| assert(!IsBuffering && "Already buffering?"); |
| if (!TmpBuf) |
| TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); |
| IsBuffering = true; |
| } |
| |
| void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } |
| |
| unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { |
| return TmpBuf ? TmpBuf->Bytes.size() : 0; |
| } |
| |
| void DebugLocDwarfExpression::commitTemporaryBuffer() { |
| if (!TmpBuf) |
| return; |
| for (auto Byte : enumerate(TmpBuf->Bytes)) { |
| const char *Comment = (Byte.index() < TmpBuf->Comments.size()) |
| ? TmpBuf->Comments[Byte.index()].c_str() |
| : ""; |
| OutBS.emitInt8(Byte.value(), Comment); |
| } |
| TmpBuf->Bytes.clear(); |
| TmpBuf->Comments.clear(); |
| } |
| |
| const DIType *DbgVariable::getType() const { |
| return getVariable()->getType(); |
| } |
| |
| /// Get .debug_loc entry for the instruction range starting at MI. |
| static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { |
| const DIExpression *Expr = MI->getDebugExpression(); |
| auto SingleLocExprOpt = DIExpression::convertToNonVariadicExpression(Expr); |
| const bool IsVariadic = !SingleLocExprOpt; |
| // If we have a variadic debug value instruction that is equivalent to a |
| // non-variadic instruction, then convert it to non-variadic form here. |
| if (!IsVariadic && !MI->isNonListDebugValue()) { |
| assert(MI->getNumDebugOperands() == 1 && |
| "Mismatched DIExpression and debug operands for debug instruction."); |
| Expr = *SingleLocExprOpt; |
| } |
| assert(MI->getNumOperands() >= 3); |
| SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; |
| for (const MachineOperand &Op : MI->debug_operands()) { |
| if (Op.isReg()) { |
| MachineLocation MLoc(Op.getReg(), |
| MI->isNonListDebugValue() && MI->isDebugOffsetImm()); |
| DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); |
| } else if (Op.isTargetIndex()) { |
| DbgValueLocEntries.push_back( |
| DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); |
| } else if (Op.isImm()) |
| DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); |
| else if (Op.isFPImm()) |
| DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); |
| else if (Op.isCImm()) |
| DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); |
| else |
| llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); |
| } |
| return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); |
| } |
| |
| static uint64_t getFragmentOffsetInBits(const DIExpression &Expr) { |
| std::optional<DIExpression::FragmentInfo> Fragment = Expr.getFragmentInfo(); |
| return Fragment ? Fragment->OffsetInBits : 0; |
| } |
| |
| bool llvm::operator<(const FrameIndexExpr &LHS, const FrameIndexExpr &RHS) { |
| return getFragmentOffsetInBits(*LHS.Expr) < |
| getFragmentOffsetInBits(*RHS.Expr); |
| } |
| |
| bool llvm::operator<(const EntryValueInfo &LHS, const EntryValueInfo &RHS) { |
| return getFragmentOffsetInBits(LHS.Expr) < getFragmentOffsetInBits(RHS.Expr); |
| } |
| |
| Loc::Single::Single(DbgValueLoc ValueLoc) |
| : ValueLoc(std::make_unique<DbgValueLoc>(ValueLoc)), |
| Expr(ValueLoc.getExpression()) { |
| if (!Expr->getNumElements()) |
| Expr = nullptr; |
| } |
| |
| Loc::Single::Single(const MachineInstr *DbgValue) |
| : Single(getDebugLocValue(DbgValue)) {} |
| |
| const std::set<FrameIndexExpr> &Loc::MMI::getFrameIndexExprs() const { |
| return FrameIndexExprs; |
| } |
| |
| void Loc::MMI::addFrameIndexExpr(const DIExpression *Expr, int FI) { |
| FrameIndexExprs.insert({FI, Expr}); |
| assert((FrameIndexExprs.size() == 1 || |
| llvm::all_of(FrameIndexExprs, |
| [](const FrameIndexExpr &FIE) { |
| return FIE.Expr && FIE.Expr->isFragment(); |
| })) && |
| "conflicting locations for variable"); |
| } |
| |
| static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, |
| bool GenerateTypeUnits, |
| DebuggerKind Tuning, |
| const Triple &TT) { |
| // Honor an explicit request. |
| if (AccelTables != AccelTableKind::Default) |
| return AccelTables; |
| |
| // Generating DWARF5 acceleration table. |
| // Currently Split dwarf and non ELF format is not supported. |
| if (GenerateTypeUnits && (DwarfVersion < 5 || !TT.isOSBinFormatELF())) |
| return AccelTableKind::None; |
| |
| // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 |
| // always implies debug_names. For lower standard versions we use apple |
| // accelerator tables on apple platforms and debug_names elsewhere. |
| if (DwarfVersion >= 5) |
| return AccelTableKind::Dwarf; |
| if (Tuning == DebuggerKind::LLDB) |
| return TT.isOSBinFormatMachO() ? AccelTableKind::Apple |
| : AccelTableKind::Dwarf; |
| return AccelTableKind::None; |
| } |
| |
| DwarfDebug::DwarfDebug(AsmPrinter *A) |
| : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), |
| InfoHolder(A, "info_string", DIEValueAllocator), |
| SkeletonHolder(A, "skel_string", DIEValueAllocator), |
| IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { |
| const Triple &TT = Asm->TM.getTargetTriple(); |
| |
| // Make sure we know our "debugger tuning". The target option takes |
| // precedence; fall back to triple-based defaults. |
| if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) |
| DebuggerTuning = Asm->TM.Options.DebuggerTuning; |
| else if (IsDarwin) |
| DebuggerTuning = DebuggerKind::LLDB; |
| else if (TT.isPS()) |
| DebuggerTuning = DebuggerKind::SCE; |
| else if (TT.isOSAIX()) |
| DebuggerTuning = DebuggerKind::DBX; |
| else |
| DebuggerTuning = DebuggerKind::GDB; |
| |
| if (DwarfInlinedStrings == Default) |
| UseInlineStrings = TT.isNVPTX() || tuneForDBX(); |
| else |
| UseInlineStrings = DwarfInlinedStrings == Enable; |
| |
| // Always emit .debug_aranges for SCE tuning. |
| UseARangesSection = GenerateARangeSection || tuneForSCE(); |
| |
| HasAppleExtensionAttributes = tuneForLLDB(); |
| |
| // Handle split DWARF. |
| HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); |
| |
| // SCE defaults to linkage names only for abstract subprograms. |
| if (DwarfLinkageNames == DefaultLinkageNames) |
| UseAllLinkageNames = !tuneForSCE(); |
| else |
| UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; |
| |
| unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; |
| unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber |
| : MMI->getModule()->getDwarfVersion(); |
| // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. |
| DwarfVersion = |
| TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); |
| |
| bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. |
| TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. |
| |
| // Support DWARF64 |
| // 1: For ELF when requested. |
| // 2: For XCOFF64: the AIX assembler will fill in debug section lengths |
| // according to the DWARF64 format for 64-bit assembly, so we must use |
| // DWARF64 in the compiler too for 64-bit mode. |
| Dwarf64 &= |
| ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && |
| TT.isOSBinFormatELF()) || |
| TT.isOSBinFormatXCOFF(); |
| |
| if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) |
| report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); |
| |
| UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); |
| |
| // Use sections as references. Force for NVPTX. |
| if (DwarfSectionsAsReferences == Default) |
| UseSectionsAsReferences = TT.isNVPTX(); |
| else |
| UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; |
| |
| // Don't generate type units for unsupported object file formats. |
| GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || |
| A->TM.getTargetTriple().isOSBinFormatWasm()) && |
| GenerateDwarfTypeUnits; |
| |
| TheAccelTableKind = computeAccelTableKind( |
| DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); |
| |
| // Work around a GDB bug. GDB doesn't support the standard opcode; |
| // SCE doesn't support GNU's; LLDB prefers the standard opcode, which |
| // is defined as of DWARF 3. |
| // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 |
| UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; |
| |
| UseDWARF2Bitfields = DwarfVersion < 4; |
| |
| // The DWARF v5 string offsets table has - possibly shared - contributions |
| // from each compile and type unit each preceded by a header. The string |
| // offsets table used by the pre-DWARF v5 split-DWARF implementation uses |
| // a monolithic string offsets table without any header. |
| UseSegmentedStringOffsetsTable = DwarfVersion >= 5; |
| |
| // Emit call-site-param debug info for GDB and LLDB, if the target supports |
| // the debug entry values feature. It can also be enabled explicitly. |
| EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); |
| |
| // It is unclear if the GCC .debug_macro extension is well-specified |
| // for split DWARF. For now, do not allow LLVM to emit it. |
| UseDebugMacroSection = |
| DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); |
| if (DwarfOpConvert == Default) |
| EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); |
| else |
| EnableOpConvert = (DwarfOpConvert == Enable); |
| |
| // Split DWARF would benefit object size significantly by trading reductions |
| // in address pool usage for slightly increased range list encodings. |
| if (DwarfVersion >= 5) |
| MinimizeAddr = MinimizeAddrInV5Option; |
| |
| Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); |
| Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 |
| : dwarf::DWARF32); |
| } |
| |
| // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. |
| DwarfDebug::~DwarfDebug() = default; |
| |
| static bool isObjCClass(StringRef Name) { |
| return Name.starts_with("+") || Name.starts_with("-"); |
| } |
| |
| static bool hasObjCCategory(StringRef Name) { |
| if (!isObjCClass(Name)) |
| return false; |
| |
| return Name.contains(") "); |
| } |
| |
| static void getObjCClassCategory(StringRef In, StringRef &Class, |
| StringRef &Category) { |
| if (!hasObjCCategory(In)) { |
| Class = In.slice(In.find('[') + 1, In.find(' ')); |
| Category = ""; |
| return; |
| } |
| |
| Class = In.slice(In.find('[') + 1, In.find('(')); |
| Category = In.slice(In.find('[') + 1, In.find(' ')); |
| } |
| |
| static StringRef getObjCMethodName(StringRef In) { |
| return In.slice(In.find(' ') + 1, In.find(']')); |
| } |
| |
| // Add the various names to the Dwarf accelerator table names. |
| void DwarfDebug::addSubprogramNames( |
| const DwarfUnit &Unit, |
| const DICompileUnit::DebugNameTableKind NameTableKind, |
| const DISubprogram *SP, DIE &Die) { |
| if (getAccelTableKind() != AccelTableKind::Apple && |
| NameTableKind != DICompileUnit::DebugNameTableKind::Apple && |
| NameTableKind == DICompileUnit::DebugNameTableKind::None) |
| return; |
| |
| if (!SP->isDefinition()) |
| return; |
| |
| if (SP->getName() != "") |
| addAccelName(Unit, NameTableKind, SP->getName(), Die); |
| |
| // If the linkage name is different than the name, go ahead and output that as |
| // well into the name table. Only do that if we are going to actually emit |
| // that name. |
| if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && |
| (useAllLinkageNames() || InfoHolder.getAbstractScopeDIEs().lookup(SP))) |
| addAccelName(Unit, NameTableKind, SP->getLinkageName(), Die); |
| |
| // If this is an Objective-C selector name add it to the ObjC accelerator |
| // too. |
| if (isObjCClass(SP->getName())) { |
| StringRef Class, Category; |
| getObjCClassCategory(SP->getName(), Class, Category); |
| addAccelObjC(Unit, NameTableKind, Class, Die); |
| if (Category != "") |
| addAccelObjC(Unit, NameTableKind, Category, Die); |
| // Also add the base method name to the name table. |
| addAccelName(Unit, NameTableKind, getObjCMethodName(SP->getName()), Die); |
| } |
| } |
| |
| /// Check whether we should create a DIE for the given Scope, return true |
| /// if we don't create a DIE (the corresponding DIE is null). |
| bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { |
| if (Scope->isAbstractScope()) |
| return false; |
| |
| // We don't create a DIE if there is no Range. |
| const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); |
| if (Ranges.empty()) |
| return true; |
| |
| if (Ranges.size() > 1) |
| return false; |
| |
| // We don't create a DIE if we have a single Range and the end label |
| // is null. |
| return !getLabelAfterInsn(Ranges.front().second); |
| } |
| |
| template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { |
| F(CU); |
| if (auto *SkelCU = CU.getSkeleton()) |
| if (CU.getCUNode()->getSplitDebugInlining()) |
| F(*SkelCU); |
| } |
| |
| bool DwarfDebug::shareAcrossDWOCUs() const { |
| return SplitDwarfCrossCuReferences; |
| } |
| |
| void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, |
| LexicalScope *Scope) { |
| assert(Scope && Scope->getScopeNode()); |
| assert(Scope->isAbstractScope()); |
| assert(!Scope->getInlinedAt()); |
| |
| auto *SP = cast<DISubprogram>(Scope->getScopeNode()); |
| |
| // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram |
| // was inlined from another compile unit. |
| if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) |
| // Avoid building the original CU if it won't be used |
| SrcCU.constructAbstractSubprogramScopeDIE(Scope); |
| else { |
| auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); |
| if (auto *SkelCU = CU.getSkeleton()) { |
| (shareAcrossDWOCUs() ? CU : SrcCU) |
| .constructAbstractSubprogramScopeDIE(Scope); |
| if (CU.getCUNode()->getSplitDebugInlining()) |
| SkelCU->constructAbstractSubprogramScopeDIE(Scope); |
| } else |
| CU.constructAbstractSubprogramScopeDIE(Scope); |
| } |
| } |
| |
| /// Represents a parameter whose call site value can be described by applying a |
| /// debug expression to a register in the forwarded register worklist. |
| struct FwdRegParamInfo { |
| /// The described parameter register. |
| uint64_t ParamReg; |
| |
| /// Debug expression that has been built up when walking through the |
| /// instruction chain that produces the parameter's value. |
| const DIExpression *Expr; |
| }; |
| |
| /// Register worklist for finding call site values. |
| using FwdRegWorklist = MapVector<uint64_t, SmallVector<FwdRegParamInfo, 2>>; |
| /// Container for the set of registers known to be clobbered on the path to a |
| /// call site. |
| using ClobberedRegSet = SmallSet<Register, 16>; |
| |
| /// Append the expression \p Addition to \p Original and return the result. |
| static const DIExpression *combineDIExpressions(const DIExpression *Original, |
| const DIExpression *Addition) { |
| std::vector<uint64_t> Elts = Addition->getElements().vec(); |
| // Avoid multiple DW_OP_stack_values. |
| if (Original->isImplicit() && Addition->isImplicit()) |
| llvm::erase(Elts, dwarf::DW_OP_stack_value); |
| const DIExpression *CombinedExpr = |
| (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; |
| return CombinedExpr; |
| } |
| |
| /// Emit call site parameter entries that are described by the given value and |
| /// debug expression. |
| template <typename ValT> |
| static void finishCallSiteParams(ValT Val, const DIExpression *Expr, |
| ArrayRef<FwdRegParamInfo> DescribedParams, |
| ParamSet &Params) { |
| for (auto Param : DescribedParams) { |
| bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; |
| |
| // TODO: Entry value operations can currently not be combined with any |
| // other expressions, so we can't emit call site entries in those cases. |
| if (ShouldCombineExpressions && Expr->isEntryValue()) |
| continue; |
| |
| // If a parameter's call site value is produced by a chain of |
| // instructions we may have already created an expression for the |
| // parameter when walking through the instructions. Append that to the |
| // base expression. |
| const DIExpression *CombinedExpr = |
| ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) |
| : Expr; |
| assert((!CombinedExpr || CombinedExpr->isValid()) && |
| "Combined debug expression is invalid"); |
| |
| DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); |
| DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); |
| Params.push_back(CSParm); |
| ++NumCSParams; |
| } |
| } |
| |
| /// Add \p Reg to the worklist, if it's not already present, and mark that the |
| /// given parameter registers' values can (potentially) be described using |
| /// that register and an debug expression. |
| static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, |
| const DIExpression *Expr, |
| ArrayRef<FwdRegParamInfo> ParamsToAdd) { |
| auto &ParamsForFwdReg = Worklist[Reg]; |
| for (auto Param : ParamsToAdd) { |
| assert(none_of(ParamsForFwdReg, |
| [Param](const FwdRegParamInfo &D) { |
| return D.ParamReg == Param.ParamReg; |
| }) && |
| "Same parameter described twice by forwarding reg"); |
| |
| // If a parameter's call site value is produced by a chain of |
| // instructions we may have already created an expression for the |
| // parameter when walking through the instructions. Append that to the |
| // new expression. |
| const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); |
| ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); |
| } |
| } |
| |
| /// Interpret values loaded into registers by \p CurMI. |
| static void interpretValues(const MachineInstr *CurMI, |
| FwdRegWorklist &ForwardedRegWorklist, |
| ParamSet &Params, |
| ClobberedRegSet &ClobberedRegUnits) { |
| |
| const MachineFunction *MF = CurMI->getMF(); |
| const DIExpression *EmptyExpr = |
| DIExpression::get(MF->getFunction().getContext(), {}); |
| const auto &TRI = *MF->getSubtarget().getRegisterInfo(); |
| const auto &TII = *MF->getSubtarget().getInstrInfo(); |
| const auto &TLI = *MF->getSubtarget().getTargetLowering(); |
| |
| // If an instruction defines more than one item in the worklist, we may run |
| // into situations where a worklist register's value is (potentially) |
| // described by the previous value of another register that is also defined |
| // by that instruction. |
| // |
| // This can for example occur in cases like this: |
| // |
| // $r1 = mov 123 |
| // $r0, $r1 = mvrr $r1, 456 |
| // call @foo, $r0, $r1 |
| // |
| // When describing $r1's value for the mvrr instruction, we need to make sure |
| // that we don't finalize an entry value for $r0, as that is dependent on the |
| // previous value of $r1 (123 rather than 456). |
| // |
| // In order to not have to distinguish between those cases when finalizing |
| // entry values, we simply postpone adding new parameter registers to the |
| // worklist, by first keeping them in this temporary container until the |
| // instruction has been handled. |
| FwdRegWorklist TmpWorklistItems; |
| |
| // If the MI is an instruction defining one or more parameters' forwarding |
| // registers, add those defines. |
| ClobberedRegSet NewClobberedRegUnits; |
| auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, |
| SmallSetVector<unsigned, 4> &Defs) { |
| if (MI.isDebugInstr()) |
| return; |
| |
| for (const MachineOperand &MO : MI.all_defs()) { |
| if (MO.getReg().isPhysical()) { |
| for (auto &FwdReg : ForwardedRegWorklist) |
| if (TRI.regsOverlap(FwdReg.first, MO.getReg())) |
| Defs.insert(FwdReg.first); |
| for (MCRegUnit Unit : TRI.regunits(MO.getReg())) |
| NewClobberedRegUnits.insert(Unit); |
| } |
| } |
| }; |
| |
| // Set of worklist registers that are defined by this instruction. |
| SmallSetVector<unsigned, 4> FwdRegDefs; |
| |
| getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); |
| if (FwdRegDefs.empty()) { |
| // Any definitions by this instruction will clobber earlier reg movements. |
| ClobberedRegUnits.insert(NewClobberedRegUnits.begin(), |
| NewClobberedRegUnits.end()); |
| return; |
| } |
| |
| // It's possible that we find a copy from a non-volatile register to the param |
| // register, which is clobbered in the meantime. Test for clobbered reg unit |
| // overlaps before completing. |
| auto IsRegClobberedInMeantime = [&](Register Reg) -> bool { |
| for (auto &RegUnit : ClobberedRegUnits) |
| if (TRI.hasRegUnit(Reg, RegUnit)) |
| return true; |
| return false; |
| }; |
| |
| for (auto ParamFwdReg : FwdRegDefs) { |
| if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { |
| if (ParamValue->first.isImm()) { |
| int64_t Val = ParamValue->first.getImm(); |
| finishCallSiteParams(Val, ParamValue->second, |
| ForwardedRegWorklist[ParamFwdReg], Params); |
| } else if (ParamValue->first.isReg()) { |
| Register RegLoc = ParamValue->first.getReg(); |
| Register SP = TLI.getStackPointerRegisterToSaveRestore(); |
| Register FP = TRI.getFrameRegister(*MF); |
| bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); |
| if (!IsRegClobberedInMeantime(RegLoc) && |
| (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP)) { |
| MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); |
| finishCallSiteParams(MLoc, ParamValue->second, |
| ForwardedRegWorklist[ParamFwdReg], Params); |
| } else { |
| // ParamFwdReg was described by the non-callee saved register |
| // RegLoc. Mark that the call site values for the parameters are |
| // dependent on that register instead of ParamFwdReg. Since RegLoc |
| // may be a register that will be handled in this iteration, we |
| // postpone adding the items to the worklist, and instead keep them |
| // in a temporary container. |
| addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, |
| ForwardedRegWorklist[ParamFwdReg]); |
| } |
| } |
| } |
| } |
| |
| // Remove all registers that this instruction defines from the worklist. |
| for (auto ParamFwdReg : FwdRegDefs) |
| ForwardedRegWorklist.erase(ParamFwdReg); |
| |
| // Any definitions by this instruction will clobber earlier reg movements. |
| ClobberedRegUnits.insert(NewClobberedRegUnits.begin(), |
| NewClobberedRegUnits.end()); |
| |
| // Now that we are done handling this instruction, add items from the |
| // temporary worklist to the real one. |
| for (auto &New : TmpWorklistItems) |
| addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); |
| TmpWorklistItems.clear(); |
| } |
| |
| static bool interpretNextInstr(const MachineInstr *CurMI, |
| FwdRegWorklist &ForwardedRegWorklist, |
| ParamSet &Params, |
| ClobberedRegSet &ClobberedRegUnits) { |
| // Skip bundle headers. |
| if (CurMI->isBundle()) |
| return true; |
| |
| // If the next instruction is a call we can not interpret parameter's |
| // forwarding registers or we finished the interpretation of all |
| // parameters. |
| if (CurMI->isCall()) |
| return false; |
| |
| if (ForwardedRegWorklist.empty()) |
| return false; |
| |
| // Avoid NOP description. |
| if (CurMI->getNumOperands() == 0) |
| return true; |
| |
| interpretValues(CurMI, ForwardedRegWorklist, Params, ClobberedRegUnits); |
| |
| return true; |
| } |
| |
| /// Try to interpret values loaded into registers that forward parameters |
| /// for \p CallMI. Store parameters with interpreted value into \p Params. |
| static void collectCallSiteParameters(const MachineInstr *CallMI, |
| ParamSet &Params) { |
| const MachineFunction *MF = CallMI->getMF(); |
| const auto &CalleesMap = MF->getCallSitesInfo(); |
| auto CSInfo = CalleesMap.find(CallMI); |
| |
| // There is no information for the call instruction. |
| if (CSInfo == CalleesMap.end()) |
| return; |
| |
| const MachineBasicBlock *MBB = CallMI->getParent(); |
| |
| // Skip the call instruction. |
| auto I = std::next(CallMI->getReverseIterator()); |
| |
| FwdRegWorklist ForwardedRegWorklist; |
| |
| const DIExpression *EmptyExpr = |
| DIExpression::get(MF->getFunction().getContext(), {}); |
| |
| // Add all the forwarding registers into the ForwardedRegWorklist. |
| for (const auto &ArgReg : CSInfo->second.ArgRegPairs) { |
| bool InsertedReg = |
| ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) |
| .second; |
| assert(InsertedReg && "Single register used to forward two arguments?"); |
| (void)InsertedReg; |
| } |
| |
| // Do not emit CSInfo for undef forwarding registers. |
| for (const auto &MO : CallMI->uses()) |
| if (MO.isReg() && MO.isUndef()) |
| ForwardedRegWorklist.erase(MO.getReg()); |
| |
| // We erase, from the ForwardedRegWorklist, those forwarding registers for |
| // which we successfully describe a loaded value (by using |
| // the describeLoadedValue()). For those remaining arguments in the working |
| // list, for which we do not describe a loaded value by |
| // the describeLoadedValue(), we try to generate an entry value expression |
| // for their call site value description, if the call is within the entry MBB. |
| // TODO: Handle situations when call site parameter value can be described |
| // as the entry value within basic blocks other than the first one. |
| bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); |
| |
| // Search for a loading value in forwarding registers inside call delay slot. |
| ClobberedRegSet ClobberedRegUnits; |
| if (CallMI->hasDelaySlot()) { |
| auto Suc = std::next(CallMI->getIterator()); |
| // Only one-instruction delay slot is supported. |
| auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); |
| (void)BundleEnd; |
| assert(std::next(Suc) == BundleEnd && |
| "More than one instruction in call delay slot"); |
| // Try to interpret value loaded by instruction. |
| if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params, ClobberedRegUnits)) |
| return; |
| } |
| |
| // Search for a loading value in forwarding registers. |
| for (; I != MBB->rend(); ++I) { |
| // Try to interpret values loaded by instruction. |
| if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params, ClobberedRegUnits)) |
| return; |
| } |
| |
| // Emit the call site parameter's value as an entry value. |
| if (ShouldTryEmitEntryVals) { |
| // Create an expression where the register's entry value is used. |
| DIExpression *EntryExpr = DIExpression::get( |
| MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); |
| for (auto &RegEntry : ForwardedRegWorklist) { |
| MachineLocation MLoc(RegEntry.first); |
| finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); |
| } |
| } |
| } |
| |
| void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, |
| DwarfCompileUnit &CU, DIE &ScopeDIE, |
| const MachineFunction &MF) { |
| // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if |
| // the subprogram is required to have one. |
| if (!SP.areAllCallsDescribed() || !SP.isDefinition()) |
| return; |
| |
| // Use DW_AT_call_all_calls to express that call site entries are present |
| // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls |
| // because one of its requirements is not met: call site entries for |
| // optimized-out calls are elided. |
| CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); |
| |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| assert(TII && "TargetInstrInfo not found: cannot label tail calls"); |
| |
| // Delay slot support check. |
| auto delaySlotSupported = [&](const MachineInstr &MI) { |
| if (!MI.isBundledWithSucc()) |
| return false; |
| auto Suc = std::next(MI.getIterator()); |
| auto CallInstrBundle = getBundleStart(MI.getIterator()); |
| (void)CallInstrBundle; |
| auto DelaySlotBundle = getBundleStart(Suc); |
| (void)DelaySlotBundle; |
| // Ensure that label after call is following delay slot instruction. |
| // Ex. CALL_INSTRUCTION { |
| // DELAY_SLOT_INSTRUCTION } |
| // LABEL_AFTER_CALL |
| assert(getLabelAfterInsn(&*CallInstrBundle) == |
| getLabelAfterInsn(&*DelaySlotBundle) && |
| "Call and its successor instruction don't have same label after."); |
| return true; |
| }; |
| |
| // Emit call site entries for each call or tail call in the function. |
| for (const MachineBasicBlock &MBB : MF) { |
| for (const MachineInstr &MI : MBB.instrs()) { |
| // Bundles with call in them will pass the isCall() test below but do not |
| // have callee operand information so skip them here. Iterator will |
| // eventually reach the call MI. |
| if (MI.isBundle()) |
| continue; |
| |
| // Skip instructions which aren't calls. Both calls and tail-calling jump |
| // instructions (e.g TAILJMPd64) are classified correctly here. |
| if (!MI.isCandidateForAdditionalCallInfo()) |
| continue; |
| |
| // Skip instructions marked as frame setup, as they are not interesting to |
| // the user. |
| if (MI.getFlag(MachineInstr::FrameSetup)) |
| continue; |
| |
| // Check if delay slot support is enabled. |
| if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) |
| return; |
| |
| // If this is a direct call, find the callee's subprogram. |
| // In the case of an indirect call find the register that holds |
| // the callee. |
| const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); |
| if (!CalleeOp.isGlobal() && |
| (!CalleeOp.isReg() || !CalleeOp.getReg().isPhysical())) |
| continue; |
| |
| unsigned CallReg = 0; |
| const DISubprogram *CalleeSP = nullptr; |
| const Function *CalleeDecl = nullptr; |
| if (CalleeOp.isReg()) { |
| CallReg = CalleeOp.getReg(); |
| if (!CallReg) |
| continue; |
| } else { |
| CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); |
| if (!CalleeDecl || !CalleeDecl->getSubprogram()) |
| continue; |
| CalleeSP = CalleeDecl->getSubprogram(); |
| } |
| |
| // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). |
| |
| bool IsTail = TII->isTailCall(MI); |
| |
| // If MI is in a bundle, the label was created after the bundle since |
| // EmitFunctionBody iterates over top-level MIs. Get that top-level MI |
| // to search for that label below. |
| const MachineInstr *TopLevelCallMI = |
| MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; |
| |
| // For non-tail calls, the return PC is needed to disambiguate paths in |
| // the call graph which could lead to some target function. For tail |
| // calls, no return PC information is needed, unless tuning for GDB in |
| // DWARF4 mode in which case we fake a return PC for compatibility. |
| const MCSymbol *PCAddr = |
| (!IsTail || CU.useGNUAnalogForDwarf5Feature()) |
| ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) |
| : nullptr; |
| |
| // For tail calls, it's necessary to record the address of the branch |
| // instruction so that the debugger can show where the tail call occurred. |
| const MCSymbol *CallAddr = |
| IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; |
| |
| assert((IsTail || PCAddr) && "Non-tail call without return PC"); |
| |
| LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " |
| << (CalleeDecl ? CalleeDecl->getName() |
| : StringRef(MF.getSubtarget() |
| .getRegisterInfo() |
| ->getName(CallReg))) |
| << (IsTail ? " [IsTail]" : "") << "\n"); |
| |
| DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( |
| ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg); |
| |
| // Optionally emit call-site-param debug info. |
| if (emitDebugEntryValues()) { |
| ParamSet Params; |
| // Try to interpret values of call site parameters. |
| collectCallSiteParameters(&MI, Params); |
| CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); |
| } |
| } |
| } |
| } |
| |
| void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { |
| if (!U.hasDwarfPubSections()) |
| return; |
| |
| U.addFlag(D, dwarf::DW_AT_GNU_pubnames); |
| } |
| |
| void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, |
| DwarfCompileUnit &NewCU) { |
| DIE &Die = NewCU.getUnitDie(); |
| StringRef FN = DIUnit->getFilename(); |
| |
| StringRef Producer = DIUnit->getProducer(); |
| StringRef Flags = DIUnit->getFlags(); |
| if (!Flags.empty() && !useAppleExtensionAttributes()) { |
| std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); |
| NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); |
| } else |
| NewCU.addString(Die, dwarf::DW_AT_producer, Producer); |
| |
| NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, |
| DIUnit->getSourceLanguage()); |
| NewCU.addString(Die, dwarf::DW_AT_name, FN); |
| StringRef SysRoot = DIUnit->getSysRoot(); |
| if (!SysRoot.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); |
| StringRef SDK = DIUnit->getSDK(); |
| if (!SDK.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); |
| |
| if (!useSplitDwarf()) { |
| // Add DW_str_offsets_base to the unit DIE, except for split units. |
| if (useSegmentedStringOffsetsTable()) |
| NewCU.addStringOffsetsStart(); |
| |
| NewCU.initStmtList(); |
| |
| // If we're using split dwarf the compilation dir is going to be in the |
| // skeleton CU and so we don't need to duplicate it here. |
| if (!CompilationDir.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); |
| addGnuPubAttributes(NewCU, Die); |
| } |
| |
| if (useAppleExtensionAttributes()) { |
| if (DIUnit->isOptimized()) |
| NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); |
| |
| StringRef Flags = DIUnit->getFlags(); |
| if (!Flags.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); |
| |
| if (unsigned RVer = DIUnit->getRuntimeVersion()) |
| NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, |
| dwarf::DW_FORM_data1, RVer); |
| } |
| |
| if (DIUnit->getDWOId()) { |
| // This CU is either a clang module DWO or a skeleton CU. |
| NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, |
| DIUnit->getDWOId()); |
| if (!DIUnit->getSplitDebugFilename().empty()) { |
| // This is a prefabricated skeleton CU. |
| dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 |
| ? dwarf::DW_AT_dwo_name |
| : dwarf::DW_AT_GNU_dwo_name; |
| NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); |
| } |
| } |
| } |
| // Create new DwarfCompileUnit for the given metadata node with tag |
| // DW_TAG_compile_unit. |
| DwarfCompileUnit & |
| DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { |
| if (auto *CU = CUMap.lookup(DIUnit)) |
| return *CU; |
| |
| if (useSplitDwarf() && |
| !shareAcrossDWOCUs() && |
| (!DIUnit->getSplitDebugInlining() || |
| DIUnit->getEmissionKind() == DICompileUnit::FullDebug) && |
| !CUMap.empty()) { |
| return *CUMap.begin()->second; |
| } |
| CompilationDir = DIUnit->getDirectory(); |
| |
| auto OwnedUnit = std::make_unique<DwarfCompileUnit>( |
| InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); |
| DwarfCompileUnit &NewCU = *OwnedUnit; |
| InfoHolder.addUnit(std::move(OwnedUnit)); |
| |
| // LTO with assembly output shares a single line table amongst multiple CUs. |
| // To avoid the compilation directory being ambiguous, let the line table |
| // explicitly describe the directory of all files, never relying on the |
| // compilation directory. |
| if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) |
| Asm->OutStreamer->emitDwarfFile0Directive( |
| CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), |
| DIUnit->getSource(), NewCU.getUniqueID()); |
| |
| if (useSplitDwarf()) { |
| NewCU.setSkeleton(constructSkeletonCU(NewCU)); |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); |
| } else { |
| finishUnitAttributes(DIUnit, NewCU); |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); |
| } |
| |
| CUMap.insert({DIUnit, &NewCU}); |
| CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); |
| return NewCU; |
| } |
| |
| /// Sort and unique GVEs by comparing their fragment offset. |
| static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & |
| sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { |
| llvm::sort( |
| GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { |
| // Sort order: first null exprs, then exprs without fragment |
| // info, then sort by fragment offset in bits. |
| // FIXME: Come up with a more comprehensive comparator so |
| // the sorting isn't non-deterministic, and so the following |
| // std::unique call works correctly. |
| if (!A.Expr || !B.Expr) |
| return !!B.Expr; |
| auto FragmentA = A.Expr->getFragmentInfo(); |
| auto FragmentB = B.Expr->getFragmentInfo(); |
| if (!FragmentA || !FragmentB) |
| return !!FragmentB; |
| return FragmentA->OffsetInBits < FragmentB->OffsetInBits; |
| }); |
| GVEs.erase(llvm::unique(GVEs, |
| [](DwarfCompileUnit::GlobalExpr A, |
| DwarfCompileUnit::GlobalExpr B) { |
| return A.Expr == B.Expr; |
| }), |
| GVEs.end()); |
| return GVEs; |
| } |
| |
| // Emit all Dwarf sections that should come prior to the content. Create |
| // global DIEs and emit initial debug info sections. This is invoked by |
| // the target AsmPrinter. |
| void DwarfDebug::beginModule(Module *M) { |
| DebugHandlerBase::beginModule(M); |
| |
| if (!Asm) |
| return; |
| |
| unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), |
| M->debug_compile_units_end()); |
| if (NumDebugCUs == 0) |
| return; |
| |
| assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); |
| SingleCU = NumDebugCUs == 1; |
| DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> |
| GVMap; |
| for (const GlobalVariable &Global : M->globals()) { |
| SmallVector<DIGlobalVariableExpression *, 1> GVs; |
| Global.getDebugInfo(GVs); |
| for (auto *GVE : GVs) |
| GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); |
| } |
| |
| // Create the symbol that designates the start of the unit's contribution |
| // to the string offsets table. In a split DWARF scenario, only the skeleton |
| // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). |
| if (useSegmentedStringOffsetsTable()) |
| (useSplitDwarf() ? SkeletonHolder : InfoHolder) |
| .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); |
| |
| |
| // Create the symbols that designates the start of the DWARF v5 range list |
| // and locations list tables. They are located past the table headers. |
| if (getDwarfVersion() >= 5) { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.setRnglistsTableBaseSym( |
| Asm->createTempSymbol("rnglists_table_base")); |
| |
| if (useSplitDwarf()) |
| InfoHolder.setRnglistsTableBaseSym( |
| Asm->createTempSymbol("rnglists_dwo_table_base")); |
| } |
| |
| // Create the symbol that points to the first entry following the debug |
| // address table (.debug_addr) header. |
| AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); |
| DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); |
| |
| for (DICompileUnit *CUNode : M->debug_compile_units()) { |
| if (CUNode->getImportedEntities().empty() && |
| CUNode->getEnumTypes().empty() && CUNode->getRetainedTypes().empty() && |
| CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) |
| continue; |
| |
| DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); |
| |
| // Global Variables. |
| for (auto *GVE : CUNode->getGlobalVariables()) { |
| // Don't bother adding DIGlobalVariableExpressions listed in the CU if we |
| // already know about the variable and it isn't adding a constant |
| // expression. |
| auto &GVMapEntry = GVMap[GVE->getVariable()]; |
| auto *Expr = GVE->getExpression(); |
| if (!GVMapEntry.size() || (Expr && Expr->isConstant())) |
| GVMapEntry.push_back({nullptr, Expr}); |
| } |
| |
| DenseSet<DIGlobalVariable *> Processed; |
| for (auto *GVE : CUNode->getGlobalVariables()) { |
| DIGlobalVariable *GV = GVE->getVariable(); |
| if (Processed.insert(GV).second) |
| CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); |
| } |
| |
| for (auto *Ty : CUNode->getEnumTypes()) |
| CU.getOrCreateTypeDIE(cast<DIType>(Ty)); |
| |
| for (auto *Ty : CUNode->getRetainedTypes()) { |
| // The retained types array by design contains pointers to |
| // MDNodes rather than DIRefs. Unique them here. |
| if (DIType *RT = dyn_cast<DIType>(Ty)) |
| // There is no point in force-emitting a forward declaration. |
| CU.getOrCreateTypeDIE(RT); |
| } |
| } |
| } |
| |
| void DwarfDebug::finishEntityDefinitions() { |
| for (const auto &Entity : ConcreteEntities) { |
| DIE *Die = Entity->getDIE(); |
| assert(Die); |
| // FIXME: Consider the time-space tradeoff of just storing the unit pointer |
| // in the ConcreteEntities list, rather than looking it up again here. |
| // DIE::getUnit isn't simple - it walks parent pointers, etc. |
| DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); |
| assert(Unit); |
| Unit->finishEntityDefinition(Entity.get()); |
| } |
| } |
| |
| void DwarfDebug::finishSubprogramDefinitions() { |
| for (const DISubprogram *SP : ProcessedSPNodes) { |
| assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); |
| forBothCUs( |
| getOrCreateDwarfCompileUnit(SP->getUnit()), |
| [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); |
| } |
| } |
| |
| void DwarfDebug::finalizeModuleInfo() { |
| const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); |
| |
| finishSubprogramDefinitions(); |
| |
| finishEntityDefinitions(); |
| |
| bool HasEmittedSplitCU = false; |
| |
| // Handle anything that needs to be done on a per-unit basis after |
| // all other generation. |
| for (const auto &P : CUMap) { |
| auto &TheCU = *P.second; |
| if (TheCU.getCUNode()->isDebugDirectivesOnly()) |
| continue; |
| // Emit DW_AT_containing_type attribute to connect types with their |
| // vtable holding type. |
| TheCU.constructContainingTypeDIEs(); |
| |
| // Add CU specific attributes if we need to add any. |
| // If we're splitting the dwarf out now that we've got the entire |
| // CU then add the dwo id to it. |
| auto *SkCU = TheCU.getSkeleton(); |
| |
| bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); |
| |
| if (HasSplitUnit) { |
| (void)HasEmittedSplitCU; |
| assert((shareAcrossDWOCUs() || !HasEmittedSplitCU) && |
| "Multiple CUs emitted into a single dwo file"); |
| HasEmittedSplitCU = true; |
| dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 |
| ? dwarf::DW_AT_dwo_name |
| : dwarf::DW_AT_GNU_dwo_name; |
| finishUnitAttributes(TheCU.getCUNode(), TheCU); |
| StringRef DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; |
| TheCU.addString(TheCU.getUnitDie(), attrDWOName, DWOName); |
| SkCU->addString(SkCU->getUnitDie(), attrDWOName, DWOName); |
| // Emit a unique identifier for this CU. Include the DWO file name in the |
| // hash to avoid the case where two (almost) empty compile units have the |
| // same contents. This can happen if link-time optimization removes nearly |
| // all (unused) code from a CU. |
| uint64_t ID = |
| DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); |
| if (getDwarfVersion() >= 5) { |
| TheCU.setDWOId(ID); |
| SkCU->setDWOId(ID); |
| } else { |
| TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, |
| dwarf::DW_FORM_data8, ID); |
| SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, |
| dwarf::DW_FORM_data8, ID); |
| } |
| |
| if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { |
| const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); |
| SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, |
| Sym, Sym); |
| } |
| } else if (SkCU) { |
| finishUnitAttributes(SkCU->getCUNode(), *SkCU); |
| } |
| |
| // If we have code split among multiple sections or non-contiguous |
| // ranges of code then emit a DW_AT_ranges attribute on the unit that will |
| // remain in the .o file, otherwise add a DW_AT_low_pc. |
| // FIXME: We should use ranges allow reordering of code ala |
| // .subsections_via_symbols in mach-o. This would mean turning on |
| // ranges for all subprogram DIEs for mach-o. |
| DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; |
| |
| if (unsigned NumRanges = TheCU.getRanges().size()) { |
| // PTX does not support subtracting labels from the code section in the |
| // debug_loc section. To work around this, the NVPTX backend needs the |
| // compile unit to have no low_pc in order to have a zero base_address |
| // when handling debug_loc in cuda-gdb. |
| if (!(Asm->TM.getTargetTriple().isNVPTX() && tuneForGDB())) { |
| if (NumRanges > 1 && useRangesSection()) |
| // A DW_AT_low_pc attribute may also be specified in combination with |
| // DW_AT_ranges to specify the default base address for use in |
| // location lists (see Section 2.6.2) and range lists (see Section |
| // 2.17.3). |
| U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, |
| 0); |
| else |
| U.setBaseAddress(TheCU.getRanges().front().Begin); |
| U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); |
| } |
| } |
| |
| // We don't keep track of which addresses are used in which CU so this |
| // is a bit pessimistic under LTO. |
| if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) |
| U.addAddrTableBase(); |
| |
| if (getDwarfVersion() >= 5) { |
| if (U.hasRangeLists()) |
| U.addRnglistsBase(); |
| |
| if (!DebugLocs.getLists().empty() && !useSplitDwarf()) { |
| U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, |
| DebugLocs.getSym(), |
| TLOF.getDwarfLoclistsSection()->getBeginSymbol()); |
| } |
| } |
| |
| auto *CUNode = cast<DICompileUnit>(P.first); |
| // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" |
| // attribute. |
| if (CUNode->getMacros()) { |
| if (UseDebugMacroSection) { |
| if (useSplitDwarf()) |
| TheCU.addSectionDelta( |
| TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), |
| TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); |
| else { |
| dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 |
| ? dwarf::DW_AT_macros |
| : dwarf::DW_AT_GNU_macros; |
| U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), |
| TLOF.getDwarfMacroSection()->getBeginSymbol()); |
| } |
| } else { |
| if (useSplitDwarf()) |
| TheCU.addSectionDelta( |
| TheCU.getUnitDie(), dwarf::DW_AT_macro_info, |
| U.getMacroLabelBegin(), |
| TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); |
| else |
| U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, |
| U.getMacroLabelBegin(), |
| TLOF.getDwarfMacinfoSection()->getBeginSymbol()); |
| } |
| } |
| } |
| |
| // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. |
| for (auto *CUNode : MMI->getModule()->debug_compile_units()) |
| if (CUNode->getDWOId()) |
| getOrCreateDwarfCompileUnit(CUNode); |
| |
| // Compute DIE offsets and sizes. |
| InfoHolder.computeSizeAndOffsets(); |
| if (useSplitDwarf()) |
| SkeletonHolder.computeSizeAndOffsets(); |
| |
| // Now that offsets are computed, can replace DIEs in debug_names Entry with |
| // an actual offset. |
| AccelDebugNames.convertDieToOffset(); |
| } |
| |
| // Emit all Dwarf sections that should come after the content. |
| void DwarfDebug::endModule() { |
| // Terminate the pending line table. |
| if (PrevCU) |
| terminateLineTable(PrevCU); |
| PrevCU = nullptr; |
| assert(CurFn == nullptr); |
| assert(CurMI == nullptr); |
| |
| for (const auto &P : CUMap) { |
| const auto *CUNode = cast<DICompileUnit>(P.first); |
| DwarfCompileUnit *CU = &*P.second; |
| |
| // Emit imported entities. |
| for (auto *IE : CUNode->getImportedEntities()) { |
| assert(!isa_and_nonnull<DILocalScope>(IE->getScope()) && |
| "Unexpected function-local entity in 'imports' CU field."); |
| CU->getOrCreateImportedEntityDIE(IE); |
| } |
| for (const auto *D : CU->getDeferredLocalDecls()) { |
| if (auto *IE = dyn_cast<DIImportedEntity>(D)) |
| CU->getOrCreateImportedEntityDIE(IE); |
| else |
| llvm_unreachable("Unexpected local retained node!"); |
| } |
| |
| // Emit base types. |
| CU->createBaseTypeDIEs(); |
| } |
| |
| // If we aren't actually generating debug info (check beginModule - |
| // conditionalized on the presence of the llvm.dbg.cu metadata node) |
| if (!Asm || !Asm->hasDebugInfo()) |
| return; |
| |
| // Finalize the debug info for the module. |
| finalizeModuleInfo(); |
| |
| if (useSplitDwarf()) |
| // Emit debug_loc.dwo/debug_loclists.dwo section. |
| emitDebugLocDWO(); |
| else |
| // Emit debug_loc/debug_loclists section. |
| emitDebugLoc(); |
| |
| // Corresponding abbreviations into a abbrev section. |
| emitAbbreviations(); |
| |
| // Emit all the DIEs into a debug info section. |
| emitDebugInfo(); |
| |
| // Emit info into a debug aranges section. |
| if (UseARangesSection) |
| emitDebugARanges(); |
| |
| // Emit info into a debug ranges section. |
| emitDebugRanges(); |
| |
| if (useSplitDwarf()) |
| // Emit info into a debug macinfo.dwo section. |
| emitDebugMacinfoDWO(); |
| else |
| // Emit info into a debug macinfo/macro section. |
| emitDebugMacinfo(); |
| |
| emitDebugStr(); |
| |
| if (useSplitDwarf()) { |
| emitDebugStrDWO(); |
| emitDebugInfoDWO(); |
| emitDebugAbbrevDWO(); |
| emitDebugLineDWO(); |
| emitDebugRangesDWO(); |
| } |
| |
| emitDebugAddr(); |
| |
| // Emit info into the dwarf accelerator table sections. |
| switch (getAccelTableKind()) { |
| case AccelTableKind::Apple: |
| emitAccelNames(); |
| emitAccelObjC(); |
| emitAccelNamespaces(); |
| emitAccelTypes(); |
| break; |
| case AccelTableKind::Dwarf: |
| emitAccelDebugNames(); |
| break; |
| case AccelTableKind::None: |
| break; |
| case AccelTableKind::Default: |
| llvm_unreachable("Default should have already been resolved."); |
| } |
| |
| // Emit the pubnames and pubtypes sections if requested. |
| emitDebugPubSections(); |
| |
| // clean up. |
| // FIXME: AbstractVariables.clear(); |
| } |
| |
| void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, |
| const DINode *Node, const MDNode *ScopeNode) { |
| if (CU.getExistingAbstractEntity(Node)) |
| return; |
| |
| if (LexicalScope *Scope = |
| LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) |
| CU.createAbstractEntity(Node, Scope); |
| } |
| |
| static const DILocalScope *getRetainedNodeScope(const MDNode *N) { |
| const DIScope *S; |
| if (const auto *LV = dyn_cast<DILocalVariable>(N)) |
| S = LV->getScope(); |
| else if (const auto *L = dyn_cast<DILabel>(N)) |
| S = L->getScope(); |
| else if (const auto *IE = dyn_cast<DIImportedEntity>(N)) |
| S = IE->getScope(); |
| else |
| llvm_unreachable("Unexpected retained node!"); |
| |
| // Ensure the scope is not a DILexicalBlockFile. |
| return cast<DILocalScope>(S)->getNonLexicalBlockFileScope(); |
| } |
| |
| // Collect variable information from side table maintained by MF. |
| void DwarfDebug::collectVariableInfoFromMFTable( |
| DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { |
| SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; |
| LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); |
| for (const auto &VI : Asm->MF->getVariableDbgInfo()) { |
| if (!VI.Var) |
| continue; |
| assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && |
| "Expected inlined-at fields to agree"); |
| |
| InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); |
| Processed.insert(Var); |
| LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); |
| |
| // If variable scope is not found then skip this variable. |
| if (!Scope) { |
| LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() |
| << ", no variable scope found\n"); |
| continue; |
| } |
| |
| ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); |
| |
| // If we have already seen information for this variable, add to what we |
| // already know. |
| if (DbgVariable *PreviousLoc = MFVars.lookup(Var)) { |
| auto *PreviousMMI = std::get_if<Loc::MMI>(PreviousLoc); |
| auto *PreviousEntryValue = std::get_if<Loc::EntryValue>(PreviousLoc); |
| // Previous and new locations are both stack slots (MMI). |
| if (PreviousMMI && VI.inStackSlot()) |
| PreviousMMI->addFrameIndexExpr(VI.Expr, VI.getStackSlot()); |
| // Previous and new locations are both entry values. |
| else if (PreviousEntryValue && VI.inEntryValueRegister()) |
| PreviousEntryValue->addExpr(VI.getEntryValueRegister(), *VI.Expr); |
| else { |
| // Locations differ, this should (rarely) happen in optimized async |
| // coroutines. |
| // Prefer whichever location has an EntryValue. |
| if (PreviousLoc->holds<Loc::MMI>()) |
| PreviousLoc->emplace<Loc::EntryValue>(VI.getEntryValueRegister(), |
| *VI.Expr); |
| LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() |
| << ", conflicting fragment location types\n"); |
| } |
| continue; |
| } |
| |
| auto RegVar = std::make_unique<DbgVariable>( |
| cast<DILocalVariable>(Var.first), Var.second); |
| if (VI.inStackSlot()) |
| RegVar->emplace<Loc::MMI>(VI.Expr, VI.getStackSlot()); |
| else |
| RegVar->emplace<Loc::EntryValue>(VI.getEntryValueRegister(), *VI.Expr); |
| LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() |
| << "\n"); |
| InfoHolder.addScopeVariable(Scope, RegVar.get()); |
| MFVars.insert({Var, RegVar.get()}); |
| ConcreteEntities.push_back(std::move(RegVar)); |
| } |
| } |
| |
| /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its |
| /// enclosing lexical scope. The check ensures there are no other instructions |
| /// in the same lexical scope preceding the DBG_VALUE and that its range is |
| /// either open or otherwise rolls off the end of the scope. |
| static bool validThroughout(LexicalScopes &LScopes, |
| const MachineInstr *DbgValue, |
| const MachineInstr *RangeEnd, |
| const InstructionOrdering &Ordering) { |
| assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); |
| auto MBB = DbgValue->getParent(); |
| auto DL = DbgValue->getDebugLoc(); |
| auto *LScope = LScopes.findLexicalScope(DL); |
| // Scope doesn't exist; this is a dead DBG_VALUE. |
| if (!LScope) |
| return false; |
| auto &LSRange = LScope->getRanges(); |
| if (LSRange.size() == 0) |
| return false; |
| |
| const MachineInstr *LScopeBegin = LSRange.front().first; |
| // If the scope starts before the DBG_VALUE then we may have a negative |
| // result. Otherwise the location is live coming into the scope and we |
| // can skip the following checks. |
| if (!Ordering.isBefore(DbgValue, LScopeBegin)) { |
| // Exit if the lexical scope begins outside of the current block. |
| if (LScopeBegin->getParent() != MBB) |
| return false; |
| |
| MachineBasicBlock::const_reverse_iterator Pred(DbgValue); |
| for (++Pred; Pred != MBB->rend(); ++Pred) { |
| if (Pred->getFlag(MachineInstr::FrameSetup)) |
| break; |
| auto PredDL = Pred->getDebugLoc(); |
| if (!PredDL || Pred->isMetaInstruction()) |
| continue; |
| // Check whether the instruction preceding the DBG_VALUE is in the same |
| // (sub)scope as the DBG_VALUE. |
| if (DL->getScope() == PredDL->getScope()) |
| return false; |
| auto *PredScope = LScopes.findLexicalScope(PredDL); |
| if (!PredScope || LScope->dominates(PredScope)) |
| return false; |
| } |
| } |
| |
| // If the range of the DBG_VALUE is open-ended, report success. |
| if (!RangeEnd) |
| return true; |
| |
| // Single, constant DBG_VALUEs in the prologue are promoted to be live |
| // throughout the function. This is a hack, presumably for DWARF v2 and not |
| // necessarily correct. It would be much better to use a dbg.declare instead |
| // if we know the constant is live throughout the scope. |
| if (MBB->pred_empty() && |
| all_of(DbgValue->debug_operands(), |
| [](const MachineOperand &Op) { return Op.isImm(); })) |
| return true; |
| |
| // Test if the location terminates before the end of the scope. |
| const MachineInstr *LScopeEnd = LSRange.back().second; |
| if (Ordering.isBefore(RangeEnd, LScopeEnd)) |
| return false; |
| |
| // There's a single location which starts at the scope start, and ends at or |
| // after the scope end. |
| return true; |
| } |
| |
| /// Build the location list for all DBG_VALUEs in the function that |
| /// describe the same variable. The resulting DebugLocEntries will have |
| /// strict monotonically increasing begin addresses and will never |
| /// overlap. If the resulting list has only one entry that is valid |
| /// throughout variable's scope return true. |
| // |
| // See the definition of DbgValueHistoryMap::Entry for an explanation of the |
| // different kinds of history map entries. One thing to be aware of is that if |
| // a debug value is ended by another entry (rather than being valid until the |
| // end of the function), that entry's instruction may or may not be included in |
| // the range, depending on if the entry is a clobbering entry (it has an |
| // instruction that clobbers one or more preceding locations), or if it is an |
| // (overlapping) debug value entry. This distinction can be seen in the example |
| // below. The first debug value is ended by the clobbering entry 2, and the |
| // second and third debug values are ended by the overlapping debug value entry |
| // 4. |
| // |
| // Input: |
| // |
| // History map entries [type, end index, mi] |
| // |
| // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] |
| // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] |
| // 2 | | [Clobber, $reg0 = [...], -, -] |
| // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] |
| // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] |
| // |
| // Output [start, end) [Value...]: |
| // |
| // [0-1) [(reg0, fragment 0, 32)] |
| // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] |
| // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] |
| // [4-) [(@g, fragment 0, 96)] |
| bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, |
| const DbgValueHistoryMap::Entries &Entries) { |
| using OpenRange = |
| std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; |
| SmallVector<OpenRange, 4> OpenRanges; |
| bool isSafeForSingleLocation = true; |
| const MachineInstr *StartDebugMI = nullptr; |
| const MachineInstr *EndMI = nullptr; |
| |
| for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { |
| const MachineInstr *Instr = EI->getInstr(); |
| |
| // Remove all values that are no longer live. |
| size_t Index = std::distance(EB, EI); |
| erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); |
| |
| // If we are dealing with a clobbering entry, this iteration will result in |
| // a location list entry starting after the clobbering instruction. |
| const MCSymbol *StartLabel = |
| EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); |
| assert(StartLabel && |
| "Forgot label before/after instruction starting a range!"); |
| |
| const MCSymbol *EndLabel; |
| if (std::next(EI) == Entries.end()) { |
| const MachineBasicBlock &EndMBB = Asm->MF->back(); |
| EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionID()].EndLabel; |
| if (EI->isClobber()) |
| EndMI = EI->getInstr(); |
| } |
| else if (std::next(EI)->isClobber()) |
| EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); |
| else |
| EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); |
| assert(EndLabel && "Forgot label after instruction ending a range!"); |
| |
| if (EI->isDbgValue()) |
| LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); |
| |
| // If this history map entry has a debug value, add that to the list of |
| // open ranges and check if its location is valid for a single value |
| // location. |
| if (EI->isDbgValue()) { |
| // Do not add undef debug values, as they are redundant information in |
| // the location list entries. An undef debug results in an empty location |
| // description. If there are any non-undef fragments then padding pieces |
| // with empty location descriptions will automatically be inserted, and if |
| // all fragments are undef then the whole location list entry is |
| // redundant. |
| if (!Instr->isUndefDebugValue()) { |
| auto Value = getDebugLocValue(Instr); |
| OpenRanges.emplace_back(EI->getEndIndex(), Value); |
| |
| // TODO: Add support for single value fragment locations. |
| if (Instr->getDebugExpression()->isFragment()) |
| isSafeForSingleLocation = false; |
| |
| if (!StartDebugMI) |
| StartDebugMI = Instr; |
| } else { |
| isSafeForSingleLocation = false; |
| } |
| } |
| |
| // Location list entries with empty location descriptions are redundant |
| // information in DWARF, so do not emit those. |
| if (OpenRanges.empty()) |
| continue; |
| |
| // Omit entries with empty ranges as they do not have any effect in DWARF. |
| if (StartLabel == EndLabel) { |
| LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); |
| continue; |
| } |
| |
| SmallVector<DbgValueLoc, 4> Values; |
| for (auto &R : OpenRanges) |
| Values.push_back(R.second); |
| |
| // With Basic block sections, it is posssible that the StartLabel and the |
| // Instr are not in the same section. This happens when the StartLabel is |
| // the function begin label and the dbg value appears in a basic block |
| // that is not the entry. In this case, the range needs to be split to |
| // span each individual section in the range from StartLabel to EndLabel. |
| if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && |
| !Instr->getParent()->sameSection(&Asm->MF->front())) { |
| for (const auto &[MBBSectionId, MBBSectionRange] : |
| Asm->MBBSectionRanges) { |
| if (Instr->getParent()->getSectionID() == MBBSectionId) { |
| DebugLoc.emplace_back(MBBSectionRange.BeginLabel, EndLabel, Values); |
| break; |
| } |
| DebugLoc.emplace_back(MBBSectionRange.BeginLabel, |
| MBBSectionRange.EndLabel, Values); |
| } |
| } else { |
| DebugLoc.emplace_back(StartLabel, EndLabel, Values); |
| } |
| |
| // Attempt to coalesce the ranges of two otherwise identical |
| // DebugLocEntries. |
| auto CurEntry = DebugLoc.rbegin(); |
| LLVM_DEBUG({ |
| dbgs() << CurEntry->getValues().size() << " Values:\n"; |
| for (auto &Value : CurEntry->getValues()) |
| Value.dump(); |
| dbgs() << "-----\n"; |
| }); |
| |
| auto PrevEntry = std::next(CurEntry); |
| if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) |
| DebugLoc.pop_back(); |
| } |
| |
| if (!isSafeForSingleLocation || |
| !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) |
| return false; |
| |
| if (DebugLoc.size() == 1) |
| return true; |
| |
| if (!Asm->MF->hasBBSections()) |
| return false; |
| |
| // Check here to see if loclist can be merged into a single range. If not, |
| // we must keep the split loclists per section. This does exactly what |
| // MergeRanges does without sections. We don't actually merge the ranges |
| // as the split ranges must be kept intact if this cannot be collapsed |
| // into a single range. |
| const MachineBasicBlock *RangeMBB = nullptr; |
| if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) |
| RangeMBB = &Asm->MF->front(); |
| else |
| RangeMBB = Entries.begin()->getInstr()->getParent(); |
| auto RangeIt = Asm->MBBSectionRanges.find(RangeMBB->getSectionID()); |
| assert(RangeIt != Asm->MBBSectionRanges.end() && |
| "Range MBB not found in MBBSectionRanges!"); |
| auto *CurEntry = DebugLoc.begin(); |
| auto *NextEntry = std::next(CurEntry); |
| auto NextRangeIt = std::next(RangeIt); |
| while (NextEntry != DebugLoc.end()) { |
| if (NextRangeIt == Asm->MBBSectionRanges.end()) |
| return false; |
| // CurEntry should end the current section and NextEntry should start |
| // the next section and the Values must match for these two ranges to be |
| // merged. Do not match the section label end if it is the entry block |
| // section. This is because the end label for the Debug Loc and the |
| // Function end label could be different. |
| if ((RangeIt->second.EndLabel != Asm->getFunctionEnd() && |
| CurEntry->getEndSym() != RangeIt->second.EndLabel) || |
| NextEntry->getBeginSym() != NextRangeIt->second.BeginLabel || |
| CurEntry->getValues() != NextEntry->getValues()) |
| return false; |
| RangeIt = NextRangeIt; |
| NextRangeIt = std::next(RangeIt); |
| CurEntry = NextEntry; |
| NextEntry = std::next(CurEntry); |
| } |
| return true; |
| } |
| |
| DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, |
| LexicalScope &Scope, |
| const DINode *Node, |
| const DILocation *Location, |
| const MCSymbol *Sym) { |
| ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); |
| if (isa<const DILocalVariable>(Node)) { |
| ConcreteEntities.push_back( |
| std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), |
| Location)); |
| InfoHolder.addScopeVariable(&Scope, |
| cast<DbgVariable>(ConcreteEntities.back().get())); |
| } else if (isa<const DILabel>(Node)) { |
| ConcreteEntities.push_back( |
| std::make_unique<DbgLabel>(cast<const DILabel>(Node), |
| Location, Sym)); |
| InfoHolder.addScopeLabel(&Scope, |
| cast<DbgLabel>(ConcreteEntities.back().get())); |
| } |
| return ConcreteEntities.back().get(); |
| } |
| |
| // Find variables for each lexical scope. |
| void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, |
| const DISubprogram *SP, |
| DenseSet<InlinedEntity> &Processed) { |
| // Grab the variable info that was squirreled away in the MMI side-table. |
| collectVariableInfoFromMFTable(TheCU, Processed); |
| |
| for (const auto &I : DbgValues) { |
| InlinedEntity IV = I.first; |
| if (Processed.count(IV)) |
| continue; |
| |
| // Instruction ranges, specifying where IV is accessible. |
| const auto &HistoryMapEntries = I.second; |
| |
| // Try to find any non-empty variable location. Do not create a concrete |
| // entity if there are no locations. |
| if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) |
| continue; |
| |
| LexicalScope *Scope = nullptr; |
| const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); |
| if (const DILocation *IA = IV.second) |
| Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); |
| else |
| Scope = LScopes.findLexicalScope(LocalVar->getScope()); |
| // If variable scope is not found then skip this variable. |
| if (!Scope) |
| continue; |
| |
| Processed.insert(IV); |
| DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, |
| *Scope, LocalVar, IV.second)); |
| |
| const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); |
| assert(MInsn->isDebugValue() && "History must begin with debug value"); |
| |
| // Check if there is a single DBG_VALUE, valid throughout the var's scope. |
| // If the history map contains a single debug value, there may be an |
| // additional entry which clobbers the debug value. |
| size_t HistSize = HistoryMapEntries.size(); |
| bool SingleValueWithClobber = |
| HistSize == 2 && HistoryMapEntries[1].isClobber(); |
| if (HistSize == 1 || SingleValueWithClobber) { |
| const auto *End = |
| SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; |
| if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { |
| RegVar->emplace<Loc::Single>(MInsn); |
| continue; |
| } |
| } |
| |
| // Handle multiple DBG_VALUE instructions describing one variable. |
| DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar); |
| |
| // Build the location list for this variable. |
| SmallVector<DebugLocEntry, 8> Entries; |
| bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); |
| |
| // Check whether buildLocationList managed to merge all locations to one |
| // that is valid throughout the variable's scope. If so, produce single |
| // value location. |
| if (isValidSingleLocation) { |
| RegVar->emplace<Loc::Single>(Entries[0].getValues()[0]); |
| continue; |
| } |
| |
| // If the variable has a DIBasicType, extract it. Basic types cannot have |
| // unique identifiers, so don't bother resolving the type with the |
| // identifier map. |
| const DIBasicType *BT = dyn_cast<DIBasicType>( |
| static_cast<const Metadata *>(LocalVar->getType())); |
| |
| // Finalize the entry by lowering it into a DWARF bytestream. |
| for (auto &Entry : Entries) |
| Entry.finalize(*Asm, List, BT, TheCU); |
| } |
| |
| // For each InlinedEntity collected from DBG_LABEL instructions, convert to |
| // DWARF-related DbgLabel. |
| for (const auto &I : DbgLabels) { |
| InlinedEntity IL = I.first; |
| const MachineInstr *MI = I.second; |
| if (MI == nullptr) |
| continue; |
| |
| LexicalScope *Scope = nullptr; |
| const DILabel *Label = cast<DILabel>(IL.first); |
| // The scope could have an extra lexical block file. |
| const DILocalScope *LocalScope = |
| Label->getScope()->getNonLexicalBlockFileScope(); |
| // Get inlined DILocation if it is inlined label. |
| if (const DILocation *IA = IL.second) |
| Scope = LScopes.findInlinedScope(LocalScope, IA); |
| else |
| Scope = LScopes.findLexicalScope(LocalScope); |
| // If label scope is not found then skip this label. |
| if (!Scope) |
| continue; |
| |
| Processed.insert(IL); |
| /// At this point, the temporary label is created. |
| /// Save the temporary label to DbgLabel entity to get the |
| /// actually address when generating Dwarf DIE. |
| MCSymbol *Sym = getLabelBeforeInsn(MI); |
| createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); |
| } |
| |
| // Collect info for retained nodes. |
| for (const DINode *DN : SP->getRetainedNodes()) { |
| const auto *LS = getRetainedNodeScope(DN); |
| if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) { |
| if (!Processed.insert(InlinedEntity(DN, nullptr)).second) |
| continue; |
| LexicalScope *LexS = LScopes.findLexicalScope(LS); |
| if (LexS) |
| createConcreteEntity(TheCU, *LexS, DN, nullptr); |
| } else { |
| LocalDeclsPerLS[LS].insert(DN); |
| } |
| } |
| } |
| |
| // Process beginning of an instruction. |
| void DwarfDebug::beginInstruction(const MachineInstr *MI) { |
| const MachineFunction &MF = *MI->getMF(); |
| const auto *SP = MF.getFunction().getSubprogram(); |
| bool NoDebug = |
| !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; |
| |
| // Delay slot support check. |
| auto delaySlotSupported = [](const MachineInstr &MI) { |
| if (!MI.isBundledWithSucc()) |
| return false; |
| auto Suc = std::next(MI.getIterator()); |
| (void)Suc; |
| // Ensure that delay slot instruction is successor of the call instruction. |
| // Ex. CALL_INSTRUCTION { |
| // DELAY_SLOT_INSTRUCTION } |
| assert(Suc->isBundledWithPred() && |
| "Call bundle instructions are out of order"); |
| return true; |
| }; |
| |
| // When describing calls, we need a label for the call instruction. |
| if (!NoDebug && SP->areAllCallsDescribed() && |
| MI->isCandidateForAdditionalCallInfo(MachineInstr::AnyInBundle) && |
| (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| bool IsTail = TII->isTailCall(*MI); |
| // For tail calls, we need the address of the branch instruction for |
| // DW_AT_call_pc. |
| if (IsTail) |
| requestLabelBeforeInsn(MI); |
| // For non-tail calls, we need the return address for the call for |
| // DW_AT_call_return_pc. Under GDB tuning, this information is needed for |
| // tail calls as well. |
| requestLabelAfterInsn(MI); |
| } |
| |
| DebugHandlerBase::beginInstruction(MI); |
| if (!CurMI) |
| return; |
| |
| if (NoDebug) |
| return; |
| |
| // Check if source location changes, but ignore DBG_VALUE and CFI locations. |
| // If the instruction is part of the function frame setup code, do not emit |
| // any line record, as there is no correspondence with any user code. |
| if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) |
| return; |
| const DebugLoc &DL = MI->getDebugLoc(); |
| unsigned Flags = 0; |
| |
| if (MI->getFlag(MachineInstr::FrameDestroy) && DL) { |
| const MachineBasicBlock *MBB = MI->getParent(); |
| if (MBB && (MBB != EpilogBeginBlock)) { |
| // First time FrameDestroy has been seen in this basic block |
| EpilogBeginBlock = MBB; |
| Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; |
| } |
| } |
| |
| auto RecordSourceLine = [&](auto &DL, auto Flags) { |
| SmallString<128> LocationString; |
| raw_svector_ostream OS(LocationString); |
| DL.print(OS); |
| |
| const MDNode *Scope = DL.getScope(); |
| recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags, LocationString); |
| }; |
| // When we emit a line-0 record, we don't update PrevInstLoc; so look at |
| // the last line number actually emitted, to see if it was line 0. |
| unsigned LastAsmLine = |
| Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); |
| |
| if (!DL && MI == PrologEndLoc) { |
| // In rare situations, we might want to place the end of the prologue |
| // somewhere that doesn't have a source location already. It should be in |
| // the entry block. |
| assert(MI->getParent() == &*MI->getMF()->begin()); |
| recordSourceLine(SP->getScopeLine(), 0, SP, |
| DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT); |
| return; |
| } |
| |
| bool PrevInstInSameSection = |
| (!PrevInstBB || |
| PrevInstBB->getSectionID() == MI->getParent()->getSectionID()); |
| bool ForceIsStmt = ForceIsStmtInstrs.contains(MI); |
| if (DL == PrevInstLoc && PrevInstInSameSection && !ForceIsStmt) { |
| // If we have an ongoing unspecified location, nothing to do here. |
| if (!DL) |
| return; |
| // We have an explicit location, same as the previous location. |
| // But we might be coming back to it after a line 0 record. |
| if ((LastAsmLine == 0 && DL.getLine() != 0) || Flags) { |
| // Reinstate the source location but not marked as a statement. |
| RecordSourceLine(DL, Flags); |
| } |
| return; |
| } |
| |
| if (!DL) { |
| // We have an unspecified location, which might want to be line 0. |
| // If we have already emitted a line-0 record, don't repeat it. |
| if (LastAsmLine == 0) |
| return; |
| // If user said Don't Do That, don't do that. |
| if (UnknownLocations == Disable) |
| return; |
| // See if we have a reason to emit a line-0 record now. |
| // Reasons to emit a line-0 record include: |
| // - User asked for it (UnknownLocations). |
| // - Instruction has a label, so it's referenced from somewhere else, |
| // possibly debug information; we want it to have a source location. |
| // - Instruction is at the top of a block; we don't want to inherit the |
| // location from the physically previous (maybe unrelated) block. |
| if (UnknownLocations == Enable || PrevLabel || |
| (PrevInstBB && PrevInstBB != MI->getParent())) { |
| // Preserve the file and column numbers, if we can, to save space in |
| // the encoded line table. |
| // Do not update PrevInstLoc, it remembers the last non-0 line. |
| const MDNode *Scope = nullptr; |
| unsigned Column = 0; |
| if (PrevInstLoc) { |
| Scope = PrevInstLoc.getScope(); |
| Column = PrevInstLoc.getCol(); |
| } |
| recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); |
| } |
| return; |
| } |
| |
| // We have an explicit location, different from the previous location. |
| // Don't repeat a line-0 record, but otherwise emit the new location. |
| // (The new location might be an explicit line 0, which we do emit.) |
| if (DL.getLine() == 0 && LastAsmLine == 0) |
| return; |
| if (MI == PrologEndLoc) { |
| Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; |
| PrologEndLoc = nullptr; |
| } |
| // If the line changed, we call that a new statement; unless we went to |
| // line 0 and came back, in which case it is not a new statement. |
| unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; |
| if (DL.getLine() && (DL.getLine() != OldLine || ForceIsStmt)) |
| Flags |= DWARF2_FLAG_IS_STMT; |
| |
| RecordSourceLine(DL, Flags); |
| |
| // If we're not at line 0, remember this location. |
| if (DL.getLine()) |
| PrevInstLoc = DL; |
| } |
| |
| static std::pair<const MachineInstr *, bool> |
| findPrologueEndLoc(const MachineFunction *MF) { |
| // First known non-DBG_VALUE and non-frame setup location marks |
| // the beginning of the function body. |
| const auto &TII = *MF->getSubtarget().getInstrInfo(); |
| const MachineInstr *NonTrivialInst = nullptr; |
| const Function &F = MF->getFunction(); |
| |
| // Some instructions may be inserted into prologue after this function. Must |
| // keep prologue for these cases. |
| bool IsEmptyPrologue = |
| !(F.hasPrologueData() || F.getMetadata(LLVMContext::MD_func_sanitize)); |
| |
| // Helper lambda to examine each instruction and potentially return it |
| // as the prologue_end point. |
| auto ExamineInst = [&](const MachineInstr &MI) |
| -> std::optional<std::pair<const MachineInstr *, bool>> { |
| // Is this instruction trivial data shuffling or frame-setup? |
| bool isCopy = (TII.isCopyInstr(MI) ? true : false); |
| bool isTrivRemat = TII.isTriviallyReMaterializable(MI); |
| bool isFrameSetup = MI.getFlag(MachineInstr::FrameSetup); |
| |
| if (!isFrameSetup && MI.getDebugLoc()) { |
| // Scan forward to try to find a non-zero line number. The |
| // prologue_end marks the first breakpoint in the function after the |
| // frame setup, and a compiler-generated line 0 location is not a |
| // meaningful breakpoint. If none is found, return the first |
| // location after the frame setup. |
| if (MI.getDebugLoc().getLine()) |
| return std::make_pair(&MI, IsEmptyPrologue); |
| } |
| |
| // Keep track of the first "non-trivial" instruction seen, i.e. anything |
| // that doesn't involve shuffling data around or is a frame-setup. |
| if (!isCopy && !isTrivRemat && !isFrameSetup && !NonTrivialInst) |
| NonTrivialInst = &MI; |
| |
| IsEmptyPrologue = false; |
| return std::nullopt; |
| }; |
| |
| // Examine all the instructions at the start of the function. This doesn't |
| // necessarily mean just the entry block: unoptimised code can fall-through |
| // into an initial loop, and it makes sense to put the initial breakpoint on |
| // the first instruction of such a loop. However, if we pass branches, we're |
| // better off synthesising an early prologue_end. |
| auto CurBlock = MF->begin(); |
| auto CurInst = CurBlock->begin(); |
| |
| // Find the initial instruction, we're guaranteed one by the caller, but not |
| // which block it's in. |
| while (CurBlock->empty()) |
| CurInst = (++CurBlock)->begin(); |
| assert(CurInst != CurBlock->end()); |
| |
| // Helper function for stepping through the initial sequence of |
| // unconditionally executed instructions. |
| auto getNextInst = [&CurBlock, &CurInst, MF]() -> bool { |
| // We've reached the end of the block. Did we just look at a terminator? |
| if (CurInst->isTerminator()) { |
| // Some kind of "real" control flow is occurring. At the very least |
| // we would have to start exploring the CFG, a good signal that the |
| // prologue is over. |
| return false; |
| } |
| |
| // If we've already fallen through into a loop, don't fall through |
| // further, use a backup-location. |
| if (CurBlock->pred_size() > 1) |
| return false; |
| |
| // Fall-through from entry to the next block. This is common at -O0 when |
| // there's no initialisation in the function. Bail if we're also at the |
| // end of the function, or the remaining blocks have no instructions. |
| // Skip empty blocks, in rare cases the entry can be empty, and |
| // other optimisations may add empty blocks that the control flow falls |
| // through. |
| do { |
| ++CurBlock; |
| if (CurBlock == MF->end()) |
| return false; |
| } while (CurBlock->empty()); |
| CurInst = CurBlock->begin(); |
| return true; |
| }; |
| |
| while (true) { |
| // Check whether this non-meta instruction a good position for prologue_end. |
| if (!CurInst->isMetaInstruction()) { |
| auto FoundInst = ExamineInst(*CurInst); |
| if (FoundInst) |
| return *FoundInst; |
| } |
| |
| // Try to continue searching, but use a backup-location if substantive |
| // computation is happening. |
| auto NextInst = std::next(CurInst); |
| if (NextInst != CurInst->getParent()->end()) { |
| // Continue examining the current block. |
| CurInst = NextInst; |
| continue; |
| } |
| |
| if (!getNextInst()) |
| break; |
| } |
| |
| // We couldn't find any source-location, suggesting all meaningful information |
| // got optimised away. Set the prologue_end to be the first non-trivial |
| // instruction, which will get the scope line number. This is better than |
| // nothing. |
| // Only do this in the entry block, as we'll be giving it the scope line for |
| // the function. Return IsEmptyPrologue==true if we've picked the first |
| // instruction. |
| if (NonTrivialInst && NonTrivialInst->getParent() == &*MF->begin()) { |
| IsEmptyPrologue = NonTrivialInst == &*MF->begin()->begin(); |
| return std::make_pair(NonTrivialInst, IsEmptyPrologue); |
| } |
| |
| // If the entry path is empty, just don't have a prologue_end at all. |
| return std::make_pair(nullptr, IsEmptyPrologue); |
| } |
| |
| /// Register a source line with debug info. Returns the unique label that was |
| /// emitted and which provides correspondence to the source line list. |
| static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, |
| const MDNode *S, unsigned Flags, unsigned CUID, |
| uint16_t DwarfVersion, |
| ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs, |
| StringRef Comment = {}) { |
| StringRef Fn; |
| unsigned FileNo = 1; |
| unsigned Discriminator = 0; |
| if (auto *Scope = cast_or_null<DIScope>(S)) { |
| Fn = Scope->getFilename(); |
| if (Line != 0 && DwarfVersion >= 4) |
| if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) |
| Discriminator = LBF->getDiscriminator(); |
| |
| FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) |
| .getOrCreateSourceID(Scope->getFile()); |
| } |
| Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, |
| Discriminator, Fn, Comment); |
| } |
| |
| const MachineInstr * |
| DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, unsigned CUID) { |
| // Don't deal with functions that have no instructions. |
| if (llvm::all_of(MF, [](const MachineBasicBlock &MBB) { return MBB.empty(); })) |
| return nullptr; |
| |
| std::pair<const MachineInstr *, bool> PrologEnd = findPrologueEndLoc(&MF); |
| const MachineInstr *PrologEndLoc = PrologEnd.first; |
| bool IsEmptyPrologue = PrologEnd.second; |
| |
| // If the prolog is empty, no need to generate scope line for the proc. |
| if (IsEmptyPrologue) { |
| // If there's nowhere to put a prologue_end flag, emit a scope line in case |
| // there are simply no source locations anywhere in the function. |
| if (PrologEndLoc) { |
| // Avoid trying to assign prologue_end to a line-zero location. |
| // Instructions with no DebugLoc at all are fine, they'll be given the |
| // scope line nuumber. |
| const DebugLoc &DL = PrologEndLoc->getDebugLoc(); |
| if (!DL || DL->getLine() != 0) |
| return PrologEndLoc; |
| |
| // Later, don't place the prologue_end flag on this line-zero location. |
| PrologEndLoc = nullptr; |
| } |
| } |
| |
| // Ensure the compile unit is created if the function is called before |
| // beginFunction(). |
| DISubprogram *SP = MF.getFunction().getSubprogram(); |
| (void)getOrCreateDwarfCompileUnit(SP->getUnit()); |
| // We'd like to list the prologue as "not statements" but GDB behaves |
| // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. |
| ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, |
| CUID, getDwarfVersion(), getUnits()); |
| return PrologEndLoc; |
| } |
| |
| /// For the function \p MF, finds the set of instructions which may represent a |
| /// change in line number from one or more of the preceding MBBs. Stores the |
| /// resulting set of instructions, which should have is_stmt set, in |
| /// ForceIsStmtInstrs. |
| void DwarfDebug::findForceIsStmtInstrs(const MachineFunction *MF) { |
| ForceIsStmtInstrs.clear(); |
| |
| // For this function, we try to find MBBs where the last source line in every |
| // block predecessor matches the first line seen in the block itself; for |
| // every such MBB, we set is_stmt=false on the first line in the block, and |
| // for every other block we set is_stmt=true on the first line. |
| // For example, if we have the block %bb.3, which has 2 predecesors %bb.1 and |
| // %bb.2: |
| // bb.1: |
| // $r3 = MOV64ri 12, debug-location !DILocation(line: 4) |
| // JMP %bb.3, debug-location !DILocation(line: 5) |
| // bb.2: |
| // $r3 = MOV64ri 24, debug-location !DILocation(line: 5) |
| // JMP %bb.3 |
| // bb.3: |
| // $r2 = MOV64ri 1 |
| // $r1 = ADD $r2, $r3, debug-location !DILocation(line: 5) |
| // When we examine %bb.3, we first check to see if it contains any |
| // instructions with debug locations, and select the first such instruction; |
| // in this case, the ADD, with line=5. We then examine both of its |
| // predecessors to see what the last debug-location in them is. For each |
| // predecessor, if they do not contain any debug-locations, or if the last |
| // debug-location before jumping to %bb.3 does not have line=5, then the ADD |
| // in %bb.3 must use IsStmt. In this case, all predecessors have a |
| // debug-location with line=5 as the last debug-location before jumping to |
| // %bb.3, so we do not set is_stmt for the ADD instruction - we know that |
| // whichever MBB we have arrived from, the line has not changed. |
| |
| const auto *TII = MF->getSubtarget().getInstrInfo(); |
| |
| // We only need to the predecessors of MBBs that could have is_stmt set by |
| // this logic. |
| SmallDenseSet<MachineBasicBlock *, 4> PredMBBsToExamine; |
| SmallDenseMap<MachineBasicBlock *, MachineInstr *> PotentialIsStmtMBBInstrs; |
| // We use const_cast even though we won't actually modify MF, because some |
| // methods we need take a non-const MBB. |
| for (auto &MBB : *const_cast<MachineFunction *>(MF)) { |
| if (MBB.empty() || MBB.pred_empty()) |
| continue; |
| for (auto &MI : MBB) { |
| if (MI.getDebugLoc() && MI.getDebugLoc()->getLine()) { |
| for (auto *Pred : MBB.predecessors()) |
| PredMBBsToExamine.insert(Pred); |
| PotentialIsStmtMBBInstrs.insert({&MBB, &MI}); |
| break; |
| } |
| } |
| } |
| |
| // For each predecessor MBB, we examine the last line seen before each branch |
| // or logical fallthrough. We use analyzeBranch to handle cases where |
| // different branches have different outgoing lines (i.e. if there are |
| // multiple branches that each have their own source location); otherwise we |
| // just use the last line in the block. |
| for (auto *MBB : PredMBBsToExamine) { |
| auto CheckMBBEdge = [&](MachineBasicBlock *Succ, unsigned OutgoingLine) { |
| auto MBBInstrIt = PotentialIsStmtMBBInstrs.find(Succ); |
| if (MBBInstrIt == PotentialIsStmtMBBInstrs.end()) |
| return; |
| MachineInstr *MI = MBBInstrIt->second; |
| if (MI->getDebugLoc()->getLine() == OutgoingLine) |
| return; |
| PotentialIsStmtMBBInstrs.erase(MBBInstrIt); |
| ForceIsStmtInstrs.insert(MI); |
| }; |
| // If this block is empty, we conservatively assume that its fallthrough |
| // successor needs is_stmt; we could check MBB's predecessors to see if it |
| // has a consistent entry line, but this seems unlikely to be worthwhile. |
| if (MBB->empty()) { |
| for (auto *Succ : MBB->successors()) |
| CheckMBBEdge(Succ, 0); |
| continue; |
| } |
| // If MBB has no successors that are in the "potential" set, due to one or |
| // more of them having confirmed is_stmt, we can skip this check early. |
| if (none_of(MBB->successors(), [&](auto *SuccMBB) { |
| return PotentialIsStmtMBBInstrs.contains(SuccMBB); |
| })) |
| continue; |
| // If we can't determine what DLs this branch's successors use, just treat |
| // all the successors as coming from the last DebugLoc. |
| SmallVector<MachineBasicBlock *, 2> SuccessorBBs; |
| auto MIIt = MBB->rbegin(); |
| { |
| MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| SmallVector<MachineOperand, 4> Cond; |
| bool AnalyzeFailed = TII->analyzeBranch(*MBB, TBB, FBB, Cond); |
| // For a conditional branch followed by unconditional branch where the |
| // unconditional branch has a DebugLoc, that loc is the outgoing loc to |
| // the the false destination only; otherwise, both destinations share an |
| // outgoing loc. |
| if (!AnalyzeFailed && !Cond.empty() && FBB != nullptr && |
| MBB->back().getDebugLoc() && MBB->back().getDebugLoc()->getLine()) { |
| unsigned FBBLine = MBB->back().getDebugLoc()->getLine(); |
| assert(MIIt->isBranch() && "Bad result from analyzeBranch?"); |
| CheckMBBEdge(FBB, FBBLine); |
| ++MIIt; |
| SuccessorBBs.push_back(TBB); |
| } else { |
| // For all other cases, all successors share the last outgoing DebugLoc. |
| SuccessorBBs.assign(MBB->succ_begin(), MBB->succ_end()); |
| } |
| } |
| |
| // If we don't find an outgoing loc, this block will start with a line 0. |
| // It is possible that we have a block that has no DebugLoc, but acts as a |
| // simple passthrough between two blocks that end and start with the same |
| // line, e.g.: |
| // bb.1: |
| // JMP %bb.2, debug-location !10 |
| // bb.2: |
| // JMP %bb.3 |
| // bb.3: |
| // $r1 = ADD $r2, $r3, debug-location !10 |
| // If these blocks were merged into a single block, we would not attach |
| // is_stmt to the ADD, but with this logic that only checks the immediate |
| // predecessor, we will; we make this tradeoff because doing a full dataflow |
| // analysis would be expensive, and these situations are probably not common |
| // enough for this to be worthwhile. |
| unsigned LastLine = 0; |
| while (MIIt != MBB->rend()) { |
| if (auto DL = MIIt->getDebugLoc(); DL && DL->getLine()) { |
| LastLine = DL->getLine(); |
| break; |
| } |
| ++MIIt; |
| } |
| for (auto *Succ : SuccessorBBs) |
| CheckMBBEdge(Succ, LastLine); |
| } |
| } |
| |
| // Gather pre-function debug information. Assumes being called immediately |
| // after the function entry point has been emitted. |
| void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { |
| CurFn = MF; |
| |
| auto *SP = MF->getFunction().getSubprogram(); |
| assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); |
| if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) |
| return; |
| |
| DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); |
| FunctionLineTableLabel = CU.emitFuncLineTableOffsets() |
| ? Asm->OutStreamer->emitLineTableLabel() |
| : nullptr; |
| |
| Asm->OutStreamer->getContext().setDwarfCompileUnitID( |
| getDwarfCompileUnitIDForLineTable(CU)); |
| |
| // Record beginning of function. |
| PrologEndLoc = emitInitialLocDirective( |
| *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); |
| |
| findForceIsStmtInstrs(MF); |
| } |
| |
| unsigned |
| DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) { |
| // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function |
| // belongs to so that we add to the correct per-cu line table in the |
| // non-asm case. |
| if (Asm->OutStreamer->hasRawTextSupport()) |
| // Use a single line table if we are generating assembly. |
| return 0; |
| else |
| return CU.getUniqueID(); |
| } |
| |
| void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) { |
| const auto &CURanges = CU->getRanges(); |
| auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable( |
| getDwarfCompileUnitIDForLineTable(*CU)); |
| // Add the last range label for the given CU. |
| LineTable.getMCLineSections().addEndEntry( |
| const_cast<MCSymbol *>(CURanges.back().End)); |
| } |
| |
| void DwarfDebug::skippedNonDebugFunction() { |
| // If we don't have a subprogram for this function then there will be a hole |
| // in the range information. Keep note of this by setting the previously used |
| // section to nullptr. |
| // Terminate the pending line table. |
| if (PrevCU) |
| terminateLineTable(PrevCU); |
| PrevCU = nullptr; |
| CurFn = nullptr; |
| } |
| |
| // Gather and emit post-function debug information. |
| void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { |
| const DISubprogram *SP = MF->getFunction().getSubprogram(); |
| |
| assert(CurFn == MF && |
| "endFunction should be called with the same function as beginFunction"); |
| |
| // Set DwarfDwarfCompileUnitID in MCContext to default value. |
| Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); |
| |
| LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); |
| assert(!FnScope || SP == FnScope->getScopeNode()); |
| DwarfCompileUnit &TheCU = getOrCreateDwarfCompileUnit(SP->getUnit()); |
| if (TheCU.getCUNode()->isDebugDirectivesOnly()) { |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| return; |
| } |
| |
| DenseSet<InlinedEntity> Processed; |
| collectEntityInfo(TheCU, SP, Processed); |
| |
| // Add the range of this function to the list of ranges for the CU. |
| // With basic block sections, add ranges for all basic block sections. |
| for (const auto &R : Asm->MBBSectionRanges) |
| TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); |
| |
| // Under -gmlt, skip building the subprogram if there are no inlined |
| // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram |
| // is still needed as we need its source location. |
| if (!TheCU.getCUNode()->getDebugInfoForProfiling() && |
| TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && |
| LScopes.getAbstractScopesList().empty() && !IsDarwin) { |
| for (const auto &R : Asm->MBBSectionRanges) |
| addArangeLabel(SymbolCU(&TheCU, R.second.BeginLabel)); |
| |
| assert(InfoHolder.getScopeVariables().empty()); |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| return; |
| } |
| |
| #ifndef NDEBUG |
| size_t NumAbstractSubprograms = LScopes.getAbstractScopesList().size(); |
| #endif |
| for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { |
| const auto *SP = cast<DISubprogram>(AScope->getScopeNode()); |
| for (const DINode *DN : SP->getRetainedNodes()) { |
| const auto *LS = getRetainedNodeScope(DN); |
| // Ensure LexicalScope is created for the scope of this node. |
| auto *LexS = LScopes.getOrCreateAbstractScope(LS); |
| assert(LexS && "Expected the LexicalScope to be created."); |
| if (isa<DILocalVariable>(DN) || isa<DILabel>(DN)) { |
| // Collect info for variables/labels that were optimized out. |
| if (!Processed.insert(InlinedEntity(DN, nullptr)).second || |
| TheCU.getExistingAbstractEntity(DN)) |
| continue; |
| TheCU.createAbstractEntity(DN, LexS); |
| } else { |
| // Remember the node if this is a local declarations. |
| LocalDeclsPerLS[LS].insert(DN); |
| } |
| assert( |
| LScopes.getAbstractScopesList().size() == NumAbstractSubprograms && |
| "getOrCreateAbstractScope() inserted an abstract subprogram scope"); |
| } |
| constructAbstractSubprogramScopeDIE(TheCU, AScope); |
| } |
| |
| ProcessedSPNodes.insert(SP); |
| DIE &ScopeDIE = |
| TheCU.constructSubprogramScopeDIE(SP, FnScope, FunctionLineTableLabel); |
| if (auto *SkelCU = TheCU.getSkeleton()) |
| if (!LScopes.getAbstractScopesList().empty() && |
| TheCU.getCUNode()->getSplitDebugInlining()) |
| SkelCU->constructSubprogramScopeDIE(SP, FnScope, FunctionLineTableLabel); |
| |
| FunctionLineTableLabel = nullptr; |
| |
| // Construct call site entries. |
| constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); |
| |
| // Clear debug info |
| // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the |
| // DbgVariables except those that are also in AbstractVariables (since they |
| // can be used cross-function) |
| InfoHolder.getScopeVariables().clear(); |
| InfoHolder.getScopeLabels().clear(); |
| LocalDeclsPerLS.clear(); |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| } |
| |
| // Register a source line with debug info. Returns the unique label that was |
| // emitted and which provides correspondence to the source line list. |
| void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, |
| unsigned Flags, StringRef Location) { |
| ::recordSourceLine(*Asm, Line, Col, S, Flags, |
| Asm->OutStreamer->getContext().getDwarfCompileUnitID(), |
| getDwarfVersion(), getUnits(), Location); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Emit Methods |
| //===----------------------------------------------------------------------===// |
| |
| // Emit the debug info section. |
| void DwarfDebug::emitDebugInfo() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.emitUnits(/* UseOffsets */ false); |
| } |
| |
| // Emit the abbreviation section. |
| void DwarfDebug::emitAbbreviations() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| |
| Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); |
| } |
| |
| void DwarfDebug::emitStringOffsetsTableHeader() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.getStringPool().emitStringOffsetsTableHeader( |
| *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), |
| Holder.getStringOffsetsStartSym()); |
| } |
| |
| template <typename AccelTableT> |
| void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, |
| StringRef TableName) { |
| Asm->OutStreamer->switchSection(Section); |
| |
| // Emit the full data. |
| emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); |
| } |
| |
| void DwarfDebug::emitAccelDebugNames() { |
| // Don't emit anything if we have no compilation units to index. |
| if (getUnits().empty()) |
| return; |
| |
| emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); |
| } |
| |
| // Emit visible names into a hashed accelerator table section. |
| void DwarfDebug::emitAccelNames() { |
| emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), |
| "Names"); |
| } |
| |
| // Emit objective C classes and categories into a hashed accelerator table |
| // section. |
| void DwarfDebug::emitAccelObjC() { |
| emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), |
| "ObjC"); |
| } |
| |
| // Emit namespace dies into a hashed accelerator table. |
| void DwarfDebug::emitAccelNamespaces() { |
| emitAccel(AccelNamespace, |
| Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), |
| "namespac"); |
| } |
| |
| // Emit type dies into a hashed accelerator table. |
| void DwarfDebug::emitAccelTypes() { |
| emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), |
| "types"); |
| } |
| |
| // Public name handling. |
| // The format for the various pubnames: |
| // |
| // dwarf pubnames - offset/name pairs where the offset is the offset into the CU |
| // for the DIE that is named. |
| // |
| // gnu pubnames - offset/index value/name tuples where the offset is the offset |
| // into the CU and the index value is computed according to the type of value |
| // for the DIE that is named. |
| // |
| // For type units the offset is the offset of the skeleton DIE. For split dwarf |
| // it's the offset within the debug_info/debug_types dwo section, however, the |
| // reference in the pubname header doesn't change. |
| |
| /// computeIndexValue - Compute the gdb index value for the DIE and CU. |
| static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, |
| const DIE *Die) { |
| // Entities that ended up only in a Type Unit reference the CU instead (since |
| // the pub entry has offsets within the CU there's no real offset that can be |
| // provided anyway). As it happens all such entities (namespaces and types, |
| // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out |
| // not to be true it would be necessary to persist this information from the |
| // point at which the entry is added to the index data structure - since by |
| // the time the index is built from that, the original type/namespace DIE in a |
| // type unit has already been destroyed so it can't be queried for properties |
| // like tag, etc. |
| if (Die->getTag() == dwarf::DW_TAG_compile_unit) |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, |
| dwarf::GIEL_EXTERNAL); |
| dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; |
| |
| // We could have a specification DIE that has our most of our knowledge, |
| // look for that now. |
| if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { |
| DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); |
| if (SpecDIE.findAttribute(dwarf::DW_AT_external)) |
| Linkage = dwarf::GIEL_EXTERNAL; |
| } else if (Die->findAttribute(dwarf::DW_AT_external)) |
| Linkage = dwarf::GIEL_EXTERNAL; |
| |
| switch (Die->getTag()) { |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| case dwarf::DW_TAG_union_type: |
| case dwarf::DW_TAG_enumeration_type: |
| return dwarf::PubIndexEntryDescriptor( |
| dwarf::GIEK_TYPE, |
| dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) |
| ? dwarf::GIEL_EXTERNAL |
| : dwarf::GIEL_STATIC); |
| case dwarf::DW_TAG_typedef: |
| case dwarf::DW_TAG_base_type: |
| case dwarf::DW_TAG_subrange_type: |
| case dwarf::DW_TAG_template_alias: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); |
| case dwarf::DW_TAG_namespace: |
| return dwarf::GIEK_TYPE; |
| case dwarf::DW_TAG_subprogram: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); |
| case dwarf::DW_TAG_variable: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); |
| case dwarf::DW_TAG_enumerator: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, |
| dwarf::GIEL_STATIC); |
| default: |
| return dwarf::GIEK_NONE; |
| } |
| } |
| |
| /// emitDebugPubSections - Emit visible names and types into debug pubnames and |
| /// pubtypes sections. |
| void DwarfDebug::emitDebugPubSections() { |
| for (const auto &NU : CUMap) { |
| DwarfCompileUnit *TheU = NU.second; |
| if (!TheU->hasDwarfPubSections()) |
| continue; |
| |
| bool GnuStyle = TheU->getCUNode()->getNameTableKind() == |
| DICompileUnit::DebugNameTableKind::GNU; |
| |
| Asm->OutStreamer->switchSection( |
| GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() |
| : Asm->getObjFileLowering().getDwarfPubNamesSection()); |
| emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); |
| |
| Asm->OutStreamer->switchSection( |
| GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() |
| : Asm->getObjFileLowering().getDwarfPubTypesSection()); |
| emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); |
| } |
| } |
| |
| void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { |
| if (useSectionsAsReferences()) |
| Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), |
| CU.getDebugSectionOffset()); |
| else |
| Asm->emitDwarfSymbolReference(CU.getLabelBegin()); |
| } |
| |
| void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, |
| DwarfCompileUnit *TheU, |
| const StringMap<const DIE *> &Globals) { |
| if (auto *Skeleton = TheU->getSkeleton()) |
| TheU = Skeleton; |
| |
| // Emit the header. |
| MCSymbol *EndLabel = Asm->emitDwarfUnitLength( |
| "pub" + Name, "Length of Public " + Name + " Info"); |
| |
| Asm->OutStreamer->AddComment("DWARF Version"); |
| Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); |
| |
| Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); |
| emitSectionReference(*TheU); |
| |
| Asm->OutStreamer->AddComment("Compilation Unit Length"); |
| Asm->emitDwarfLengthOrOffset(TheU->getLength()); |
| |
| // Emit the pubnames for this compilation unit. |
| SmallVector<std::pair<StringRef, const DIE *>, 0> Vec; |
| for (const auto &GI : Globals) |
| Vec.emplace_back(GI.first(), GI.second); |
| llvm::sort(Vec, [](auto &A, auto &B) { |
| return A.second->getOffset() < B.second->getOffset(); |
| }); |
| for (const auto &[Name, Entity] : Vec) { |
| Asm->OutStreamer->AddComment("DIE offset"); |
| Asm->emitDwarfLengthOrOffset(Entity->getOffset()); |
| |
| if (GnuStyle) { |
| dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); |
| Asm->OutStreamer->AddComment( |
| Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + |
| ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); |
| Asm->emitInt8(Desc.toBits()); |
| } |
| |
| Asm->OutStreamer->AddComment("External Name"); |
| Asm->OutStreamer->emitBytes(StringRef(Name.data(), Name.size() + 1)); |
| } |
| |
| Asm->OutStreamer->AddComment("End Mark"); |
| Asm->emitDwarfLengthOrOffset(0); |
| Asm->OutStreamer->emitLabel(EndLabel); |
| } |
| |
| /// Emit null-terminated strings into a debug str section. |
| void DwarfDebug::emitDebugStr() { |
| MCSection *StringOffsetsSection = nullptr; |
| if (useSegmentedStringOffsetsTable()) { |
| emitStringOffsetsTableHeader(); |
| StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); |
| } |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), |
| StringOffsetsSection, /* UseRelativeOffsets = */ true); |
| } |
| |
| void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, |
| const DebugLocStream::Entry &Entry, |
| const DwarfCompileUnit *CU) { |
| auto &&Comments = DebugLocs.getComments(Entry); |
| auto Comment = Comments.begin(); |
| auto End = Comments.end(); |
| |
| // The expressions are inserted into a byte stream rather early (see |
| // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that |
| // need to reference a base_type DIE the offset of that DIE is not yet known. |
| // To deal with this we instead insert a placeholder early and then extract |
| // it here and replace it with the real reference. |
| unsigned PtrSize = Asm->MAI->getCodePointerSize(); |
| DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), |
| DebugLocs.getBytes(Entry).size()), |
| Asm->getDataLayout().isLittleEndian(), PtrSize); |
| DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); |
| |
| using Encoding = DWARFExpression::Operation::Encoding; |
| uint64_t Offset = 0; |
| for (const auto &Op : Expr) { |
| assert(Op.getCode() != dwarf::DW_OP_const_type && |
| "3 operand ops not yet supported"); |
| assert(!Op.getSubCode() && "SubOps not yet supported"); |
| Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); |
| Offset++; |
| for (unsigned I = 0; I < Op.getDescription().Op.size(); ++I) { |
| if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { |
| unsigned Length = |
| Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die); |
| // Make sure comments stay aligned. |
| for (unsigned J = 0; J < Length; ++J) |
| if (Comment != End) |
| Comment++; |
| } else { |
| for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) |
| Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); |
| } |
| Offset = Op.getOperandEndOffset(I); |
| } |
| assert(Offset == Op.getEndOffset()); |
| } |
| } |
| |
| void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, |
| const DbgValueLoc &Value, |
| DwarfExpression &DwarfExpr) { |
| auto *DIExpr = Value.getExpression(); |
| DIExpressionCursor ExprCursor(DIExpr); |
| DwarfExpr.addFragmentOffset(DIExpr); |
| |
| // If the DIExpr is an Entry Value, we want to follow the same code path |
| // regardless of whether the DBG_VALUE is variadic or not. |
| if (DIExpr && DIExpr->isEntryValue()) { |
| // Entry values can only be a single register with no additional DIExpr, |
| // so just add it directly. |
| assert(Value.getLocEntries().size() == 1); |
| assert(Value.getLocEntries()[0].isLocation()); |
| MachineLocation Location = Value.getLocEntries()[0].getLoc(); |
| DwarfExpr.setLocation(Location, DIExpr); |
| |
| DwarfExpr.beginEntryValueExpression(ExprCursor); |
| |
| const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); |
| if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) |
| return; |
| return DwarfExpr.addExpression(std::move(ExprCursor)); |
| } |
| |
| // Regular entry. |
| auto EmitValueLocEntry = [&DwarfExpr, &BT, |
| &AP](const DbgValueLocEntry &Entry, |
| DIExpressionCursor &Cursor) -> bool { |
| if (Entry.isInt()) { |
| if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || |
| BT->getEncoding() == dwarf::DW_ATE_signed_char)) |
| DwarfExpr.addSignedConstant(Entry.getInt()); |
| else |
| DwarfExpr.addUnsignedConstant(Entry.getInt()); |
| } else if (Entry.isLocation()) { |
| MachineLocation Location = Entry.getLoc(); |
| if (Location.isIndirect()) |
| DwarfExpr.setMemoryLocationKind(); |
| |
| const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); |
| if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) |
| return false; |
| } else if (Entry.isTargetIndexLocation()) { |
| TargetIndexLocation Loc = Entry.getTargetIndexLocation(); |
| // TODO TargetIndexLocation is a target-independent. Currently only the |
| // WebAssembly-specific encoding is supported. |
| assert(AP.TM.getTargetTriple().isWasm()); |
| DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); |
| } else if (Entry.isConstantFP()) { |
| if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && |
| !Cursor) { |
| DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); |
| } else if (Entry.getConstantFP() |
| ->getValueAPF() |
| .bitcastToAPInt() |
| .getBitWidth() <= 64 /*bits*/) { |
| DwarfExpr.addUnsignedConstant( |
| Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); |
| } else { |
| LLVM_DEBUG( |
| dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" |
| << Entry.getConstantFP() |
| ->getValueAPF() |
| .bitcastToAPInt() |
| .getBitWidth() |
| << " bits\n"); |
| return false; |
| } |
| } |
| return true; |
| }; |
| |
| if (!Value.isVariadic()) { |
| if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) |
| return; |
| DwarfExpr.addExpression(std::move(ExprCursor)); |
| return; |
| } |
| |
| // If any of the location entries are registers with the value 0, then the |
| // location is undefined. |
| if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { |
| return Entry.isLocation() && !Entry.getLoc().getReg(); |
| })) |
| return; |
| |
| DwarfExpr.addExpression( |
| std::move(ExprCursor), |
| [EmitValueLocEntry, &Value](unsigned Idx, |
| DIExpressionCursor &Cursor) -> bool { |
| return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); |
| }); |
| } |
| |
| void DebugLocEntry::finalize(const AsmPrinter &AP, |
| DebugLocStream::ListBuilder &List, |
| const DIBasicType *BT, |
| DwarfCompileUnit &TheCU) { |
| assert(!Values.empty() && |
| "location list entries without values are redundant"); |
| assert(Begin != End && "unexpected location list entry with empty range"); |
| DebugLocStream::EntryBuilder Entry(List, Begin, End); |
| BufferByteStreamer Streamer = Entry.getStreamer(); |
| DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); |
| const DbgValueLoc &Value = Values[0]; |
| if (Value.isFragment()) { |
| // Emit all fragments that belong to the same variable and range. |
| assert(llvm::all_of(Values, [](DbgValueLoc P) { |
| return P.isFragment(); |
| }) && "all values are expected to be fragments"); |
| assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); |
| |
| for (const auto &Fragment : Values) |
| DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); |
| |
| } else { |
| assert(Values.size() == 1 && "only fragments may have >1 value"); |
| DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); |
| } |
| DwarfExpr.finalize(); |
| if (DwarfExpr.TagOffset) |
| List.setTagOffset(*DwarfExpr.TagOffset); |
| } |
| |
| void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, |
| const DwarfCompileUnit *CU) { |
| // Emit the size. |
| Asm->OutStreamer->AddComment("Loc expr size"); |
| if (getDwarfVersion() >= 5) |
| Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); |
| else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) |
| Asm->emitInt16(DebugLocs.getBytes(Entry).size()); |
| else { |
| // The entry is too big to fit into 16 bit, drop it as there is nothing we |
| // can do. |
| Asm->emitInt16(0); |
| return; |
| } |
| // Emit the entry. |
| APByteStreamer Streamer(*Asm); |
| emitDebugLocEntry(Streamer, Entry, CU); |
| } |
| |
| // Emit the header of a DWARF 5 range list table list table. Returns the symbol |
| // that designates the end of the table for the caller to emit when the table is |
| // complete. |
| static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, |
| const DwarfFile &Holder) { |
| MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); |
| |
| Asm->OutStreamer->AddComment("Offset entry count"); |
| Asm->emitInt32(Holder.getRangeLists().size()); |
| Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); |
| |
| for (const RangeSpanList &List : Holder.getRangeLists()) |
| Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), |
| Asm->getDwarfOffsetByteSize()); |
| |
| return TableEnd; |
| } |
| |
| // Emit the header of a DWARF 5 locations list table. Returns the symbol that |
| // designates the end of the table for the caller to emit when the table is |
| // complete. |
| static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, |
| const DwarfDebug &DD) { |
| MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); |
| |
| const auto &DebugLocs = DD.getDebugLocs(); |
| |
| Asm->OutStreamer->AddComment("Offset entry count"); |
| Asm->emitInt32(DebugLocs.getLists().size()); |
| Asm->OutStreamer->emitLabel(DebugLocs.getSym()); |
| |
| for (const auto &List : DebugLocs.getLists()) |
| Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), |
| Asm->getDwarfOffsetByteSize()); |
| |
| return TableEnd; |
| } |
| |
| template <typename Ranges, typename PayloadEmitter> |
| static void emitRangeList( |
| DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, |
| const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, |
| unsigned StartxLength, unsigned EndOfList, |
| StringRef (*StringifyEnum)(unsigned), |
| bool ShouldUseBaseAddress, |
| PayloadEmitter EmitPayload) { |
| |
| auto Size = Asm->MAI->getCodePointerSize(); |
| bool UseDwarf5 = DD.getDwarfVersion() >= 5; |
| |
| // Emit our symbol so we can find the beginning of the range. |
| Asm->OutStreamer->emitLabel(Sym); |
| |
| // Gather all the ranges that apply to the same section so they can share |
| // a base address entry. |
| SmallMapVector<const MCSection *, std::vector<decltype(&*R.begin())>, 16> |
| SectionRanges; |
| |
| for (const auto &Range : R) |
| SectionRanges[&Range.Begin->getSection()].push_back(&Range); |
| |
| const MCSymbol *CUBase = CU.getBaseAddress(); |
| bool BaseIsSet = false; |
| for (const auto &P : SectionRanges) { |
| auto *Base = CUBase; |
| if ((Asm->TM.getTargetTriple().isNVPTX() && DD.tuneForGDB())) { |
| // PTX does not support subtracting labels from the code section in the |
| // debug_loc section. To work around this, the NVPTX backend needs the |
| // compile unit to have no low_pc in order to have a zero base_address |
| // when handling debug_loc in cuda-gdb. Additionally, cuda-gdb doesn't |
| // seem to handle setting a per-variable base to zero. To make cuda-gdb |
| // happy, just emit labels with no base while having no compile unit |
| // low_pc. |
| BaseIsSet = false; |
| Base = nullptr; |
| } else if (!Base && ShouldUseBaseAddress) { |
| const MCSymbol *Begin = P.second.front()->Begin; |
| const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); |
| if (!UseDwarf5) { |
| Base = NewBase; |
| BaseIsSet = true; |
| Asm->OutStreamer->emitIntValue(-1, Size); |
| Asm->OutStreamer->AddComment(" base address"); |
| Asm->OutStreamer->emitSymbolValue(Base, Size); |
| } else if (NewBase != Begin || P.second.size() > 1) { |
| // Only use a base address if |
| // * the existing pool address doesn't match (NewBase != Begin) |
| // * or, there's more than one entry to share the base address |
| Base = NewBase; |
| BaseIsSet = true; |
| Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); |
| Asm->emitInt8(BaseAddressx); |
| Asm->OutStreamer->AddComment(" base address index"); |
| Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); |
| } |
| } else if (BaseIsSet && !UseDwarf5) { |
| BaseIsSet = false; |
| assert(!Base); |
| Asm->OutStreamer->emitIntValue(-1, Size); |
| Asm->OutStreamer->emitIntValue(0, Size); |
| } |
| |
| for (const auto *RS : P.second) { |
| const MCSymbol *Begin = RS->Begin; |
| const MCSymbol *End = RS->End; |
| assert(Begin && "Range without a begin symbol?"); |
| assert(End && "Range without an end symbol?"); |
| if (Base) { |
| if (UseDwarf5) { |
| // Emit offset_pair when we have a base. |
| Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); |
| Asm->emitInt8(OffsetPair); |
| Asm->OutStreamer->AddComment(" starting offset"); |
| Asm->emitLabelDifferenceAsULEB128(Begin, Base); |
| Asm->OutStreamer->AddComment(" ending offset"); |
| Asm->emitLabelDifferenceAsULEB128(End, Base); |
| } else { |
| Asm->emitLabelDifference(Begin, Base, Size); |
| Asm->emitLabelDifference(End, Base, Size); |
| } |
| } else if (UseDwarf5) { |
| Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); |
| Asm->emitInt8(StartxLength); |
| Asm->OutStreamer->AddComment(" start index"); |
| Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); |
| Asm->OutStreamer->AddComment(" length"); |
| Asm->emitLabelDifferenceAsULEB128(End, Begin); |
| } else { |
| Asm->OutStreamer->emitSymbolValue(Begin, Size); |
| Asm->OutStreamer->emitSymbolValue(End, Size); |
| } |
| EmitPayload(*RS); |
| } |
| } |
| |
| if (UseDwarf5) { |
| Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); |
| Asm->emitInt8(EndOfList); |
| } else { |
| // Terminate the list with two 0 values. |
| Asm->OutStreamer->emitIntValue(0, Size); |
| Asm->OutStreamer->emitIntValue(0, Size); |
| } |
| } |
| |
| // Handles emission of both debug_loclist / debug_loclist.dwo |
| static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { |
| emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), |
| *List.CU, dwarf::DW_LLE_base_addressx, |
| dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, |
| dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, |
| /* ShouldUseBaseAddress */ true, |
| [&](const DebugLocStream::Entry &E) { |
| DD.emitDebugLocEntryLocation(E, List.CU); |
| }); |
| } |
| |
| void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { |
| if (DebugLocs.getLists().empty()) |
| return; |
| |
| Asm->OutStreamer->switchSection(Sec); |
| |
| MCSymbol *TableEnd = nullptr; |
| if (getDwarfVersion() >= 5) |
| TableEnd = emitLoclistsTableHeader(Asm, *this); |
| |
| for (const auto &List : DebugLocs.getLists()) |
| emitLocList(*this, Asm, List); |
| |
| if (TableEnd) |
| Asm->OutStreamer->emitLabel(TableEnd); |
| } |
| |
| // Emit locations into the .debug_loc/.debug_loclists section. |
| void DwarfDebug::emitDebugLoc() { |
| emitDebugLocImpl( |
| getDwarfVersion() >= 5 |
| ? Asm->getObjFileLowering().getDwarfLoclistsSection() |
| : Asm->getObjFileLowering().getDwarfLocSection()); |
| } |
| |
| // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. |
| void DwarfDebug::emitDebugLocDWO() { |
| if (getDwarfVersion() >= 5) { |
| emitDebugLocImpl( |
| Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); |
| |
| return; |
| } |
| |
| for (const auto &List : DebugLocs.getLists()) { |
| Asm->OutStreamer->switchSection( |
| Asm->getObjFileLowering().getDwarfLocDWOSection()); |
| Asm->OutStreamer->emitLabel(List.Label); |
| |
| for (const auto &Entry : DebugLocs.getEntries(List)) { |
| // GDB only supports startx_length in pre-standard split-DWARF. |
| // (in v5 standard loclists, it currently* /only/ supports base_address + |
| // offset_pair, so the implementations can't really share much since they |
| // need to use different representations) |
| // * as of October 2018, at least |
| // |
| // In v5 (see emitLocList), this uses SectionLabels to reuse existing |
| // addresses in the address pool to minimize object size/relocations. |
| Asm->emitInt8(dwarf::DW_LLE_startx_length); |
| unsigned idx = AddrPool.getIndex(Entry.Begin); |
| Asm->emitULEB128(idx); |
| // Also the pre-standard encoding is slightly different, emitting this as |
| // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. |
| Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); |
| emitDebugLocEntryLocation(Entry, List.CU); |
| } |
| Asm->emitInt8(dwarf::DW_LLE_end_of_list); |
| } |
| } |
| |
| struct ArangeSpan { |
| const MCSymbol *Start, *End; |
| }; |
| |
| // Emit a debug aranges section, containing a CU lookup for any |
| // address we can tie back to a CU. |
| void DwarfDebug::emitDebugARanges() { |
| if (ArangeLabels.empty()) |
| return; |
| |
| // Provides a unique id per text section. |
| MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; |
| |
| // Filter labels by section. |
| for (const SymbolCU &SCU : ArangeLabels) { |
| if (SCU.Sym->isInSection()) { |
| // Make a note of this symbol and it's section. |
| MCSection *Section = &SCU.Sym->getSection(); |
| SectionMap[Section].push_back(SCU); |
| } else { |
| // Some symbols (e.g. common/bss on mach-o) can have no section but still |
| // appear in the output. This sucks as we rely on sections to build |
| // arange spans. We can do it without, but it's icky. |
| SectionMap[nullptr].push_back(SCU); |
| } |
| } |
| |
| DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; |
| |
| for (auto &I : SectionMap) { |
| MCSection *Section = I.first; |
| SmallVector<SymbolCU, 8> &List = I.second; |
| assert(!List.empty()); |
| |
| // If we have no section (e.g. common), just write out |
| // individual spans for each symbol. |
| if (!Section) { |
| for (const SymbolCU &Cur : List) { |
| ArangeSpan Span; |
| Span.Start = Cur.Sym; |
| Span.End = nullptr; |
| assert(Cur.CU); |
| Spans[Cur.CU].push_back(Span); |
| } |
| continue; |
| } |
| |
| // Insert a final terminator. |
| List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); |
| |
| // Build spans between each label. |
| const MCSymbol *StartSym = List[0].Sym; |
| for (size_t n = 1, e = List.size(); n < e; n++) { |
| const SymbolCU &Prev = List[n - 1]; |
| const SymbolCU &Cur = List[n]; |
| |
| // Try and build the longest span we can within the same CU. |
| if (Cur.CU != Prev.CU) { |
| ArangeSpan Span; |
| Span.Start = StartSym; |
| Span.End = Cur.Sym; |
| assert(Prev.CU); |
| Spans[Prev.CU].push_back(Span); |
| StartSym = Cur.Sym; |
| } |
| } |
| } |
| |
| // Start the dwarf aranges section. |
| Asm->OutStreamer->switchSection( |
| Asm->getObjFileLowering().getDwarfARangesSection()); |
| |
| unsigned PtrSize = Asm->MAI->getCodePointerSize(); |
| |
| // Build a list of CUs used. |
| std::vector<DwarfCompileUnit *> CUs; |
| for (const auto &it : Spans) { |
| DwarfCompileUnit *CU = it.first; |
| CUs.push_back(CU); |
| } |
| |
| // Sort the CU list (again, to ensure consistent output order). |
| llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { |
| return A->getUniqueID() < B->getUniqueID(); |
| }); |
| |
| // Emit an arange table for each CU we used. |
| for (DwarfCompileUnit *CU : CUs) { |
| std::vector<ArangeSpan> &List = Spans[CU]; |
| |
| // Describe the skeleton CU's offset and length, not the dwo file's. |
| if (auto *Skel = CU->getSkeleton()) |
| CU = Skel; |
| |
| // Emit size of content not including length itself. |
| unsigned ContentSize = |
| sizeof(int16_t) + // DWARF ARange version number |
| Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info |
| // section |
| sizeof(int8_t) + // Pointer Size (in bytes) |
| sizeof(int8_t); // Segment Size (in bytes) |
| |
| unsigned TupleSize = PtrSize * 2; |
| |
| // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. |
| unsigned Padding = offsetToAlignment( |
| Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); |
| |
| ContentSize += Padding; |
| ContentSize += (List.size() + 1) * TupleSize; |
| |
| // For each compile unit, write the list of spans it covers. |
| Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); |
| Asm->OutStreamer->AddComment("DWARF Arange version number"); |
| Asm->emitInt16(dwarf::DW_ARANGES_VERSION); |
| Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); |
| emitSectionReference(*CU); |
| Asm->OutStreamer->AddComment("Address Size (in bytes)"); |
| Asm->emitInt8(PtrSize); |
| Asm->OutStreamer->AddComment("Segment Size (in bytes)"); |
| Asm->emitInt8(0); |
| |
| Asm->OutStreamer->emitFill(Padding, 0xff); |
| |
| for (const ArangeSpan &Span : List) { |
| Asm->emitLabelReference(Span.Start, PtrSize); |
| |
| // Calculate the size as being from the span start to its end. |
| // |
| // If the size is zero, then round it up to one byte. The DWARF |
| // specification requires that entries in this table have nonzero |
| // lengths. |
| auto SizeRef = SymSize.find(Span.Start); |
| if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) { |
| Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); |
| } else { |
| // For symbols without an end marker (e.g. common), we |
| // write a single arange entry containing just that one symbol. |
| uint64_t Size; |
| if (SizeRef == SymSize.end() || SizeRef->second == 0) |
| Size = 1; |
| else |
| Size = SizeRef->second; |
| |
| Asm->OutStreamer->emitIntValue(Size, PtrSize); |
| } |
| } |
| |
| Asm->OutStreamer->AddComment("ARange terminator"); |
| Asm->OutStreamer->emitIntValue(0, PtrSize); |
| Asm->OutStreamer->emitIntValue(0, PtrSize); |
| } |
| } |
| |
| /// Emit a single range list. We handle both DWARF v5 and earlier. |
| static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, |
| const RangeSpanList &List) { |
| emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, |
| dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, |
| dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, |
| llvm::dwarf::RangeListEncodingString, |
| List.CU->getCUNode()->getRangesBaseAddress() || |
| DD.getDwarfVersion() >= 5, |
| [](auto) {}); |
| } |
| |
| void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { |
| if (Holder.getRangeLists().empty()) |
| return; |
| |
| assert(useRangesSection()); |
| assert(!CUMap.empty()); |
| assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { |
| return !Pair.second->getCUNode()->isDebugDirectivesOnly(); |
| })); |
| |
| Asm->OutStreamer->switchSection(Section); |
| |
| MCSymbol *TableEnd = nullptr; |
| if (getDwarfVersion() >= 5) |
| TableEnd = emitRnglistsTableHeader(Asm, Holder); |
| |
| for (const RangeSpanList &List : Holder.getRangeLists()) |
| emitRangeList(*this, Asm, List); |
| |
| if (TableEnd) |
| Asm->OutStreamer->emitLabel(TableEnd); |
| } |
| |
| /// Emit address ranges into the .debug_ranges section or into the DWARF v5 |
| /// .debug_rnglists section. |
| void DwarfDebug::emitDebugRanges() { |
| const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| |
| emitDebugRangesImpl(Holder, |
| getDwarfVersion() >= 5 |
| ? Asm->getObjFileLowering().getDwarfRnglistsSection() |
| : Asm->getObjFileLowering().getDwarfRangesSection()); |
| } |
| |
| void DwarfDebug::emitDebugRangesDWO() { |
| emitDebugRangesImpl(InfoHolder, |
| Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); |
| } |
| |
| /// Emit the header of a DWARF 5 macro section, or the GNU extension for |
| /// DWARF 4. |
| static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, |
| const DwarfCompileUnit &CU, uint16_t DwarfVersion) { |
| enum HeaderFlagMask { |
| #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, |
| #include "llvm/BinaryFormat/Dwarf.def" |
| }; |
| Asm->OutStreamer->AddComment("Macro information version"); |
| Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); |
| // We emit the line offset flag unconditionally here, since line offset should |
| // be mostly present. |
| if (Asm->isDwarf64()) { |
| Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); |
| Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); |
| } else { |
| Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); |
| Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); |
| } |
| Asm->OutStreamer->AddComment("debug_line_offset"); |
| if (DD.useSplitDwarf()) |
| Asm->emitDwarfLengthOrOffset(0); |
| else |
| Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); |
| } |
| |
| void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { |
| for (auto *MN : Nodes) { |
| if (auto *M = dyn_cast<DIMacro>(MN)) |
| emitMacro(*M); |
| else if (auto *F = dyn_cast<DIMacroFile>(MN)) |
| emitMacroFile(*F, U); |
| else |
| llvm_unreachable("Unexpected DI type!"); |
| } |
| } |
| |
| void DwarfDebug::emitMacro(DIMacro &M) { |
| StringRef Name = M.getName(); |
| StringRef Value = M.getValue(); |
| |
| // There should be one space between the macro name and the macro value in |
| // define entries. In undef entries, only the macro name is emitted. |
| std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); |
| |
| if (UseDebugMacroSection) { |
| if (getDwarfVersion() >= 5) { |
| unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define |
| ? dwarf::DW_MACRO_define_strx |
| : dwarf::DW_MACRO_undef_strx; |
| Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); |
| Asm->emitULEB128(Type); |
| Asm->OutStreamer->AddComment("Line Number"); |
| Asm->emitULEB128(M.getLine()); |
| Asm->OutStreamer->AddComment("Macro String"); |
| Asm->emitULEB128( |
| InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); |
| } else { |
| unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define |
| ? dwarf::DW_MACRO_GNU_define_indirect |
| : dwarf::DW_MACRO_GNU_undef_indirect; |
| Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); |
| Asm->emitULEB128(Type); |
| Asm->OutStreamer->AddComment("Line Number"); |
| Asm->emitULEB128(M.getLine()); |
| Asm->OutStreamer->AddComment("Macro String"); |
| Asm->emitDwarfSymbolReference( |
| InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); |
| } |
| } else { |
| Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); |
| Asm->emitULEB128(M.getMacinfoType()); |
| Asm->OutStreamer->AddComment("Line Number"); |
| Asm->emitULEB128(M.getLine()); |
| Asm->OutStreamer->AddComment("Macro String"); |
| Asm->OutStreamer->emitBytes(Str); |
| Asm->emitInt8('\0'); |
| } |
| } |
| |
| void DwarfDebug::emitMacroFileImpl( |
| DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, |
| StringRef (*MacroFormToString)(unsigned Form)) { |
| |
| Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); |
| Asm->emitULEB128(StartFile); |
| Asm->OutStreamer->AddComment("Line Number"); |
| Asm->emitULEB128(MF.getLine()); |
| Asm->OutStreamer->AddComment("File Number"); |
| DIFile &F = *MF.getFile(); |
| if (useSplitDwarf()) |
| Asm->emitULEB128(getDwoLineTable(U)->getFile( |
| F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), |
| Asm->OutContext.getDwarfVersion(), F.getSource())); |
| else |
| Asm->emitULEB128(U.getOrCreateSourceID(&F)); |
| handleMacroNodes(MF.getElements(), U); |
| Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); |
| Asm->emitULEB128(EndFile); |
| } |
| |
| void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { |
| // DWARFv5 macro and DWARFv4 macinfo share some common encodings, |
| // so for readibility/uniformity, We are explicitly emitting those. |
| assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); |
| if (UseDebugMacroSection) |
| emitMacroFileImpl( |
| F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, |
| (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); |
| else |
| emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, |
| dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); |
| } |
| |
| void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { |
| for (const auto &P : CUMap) { |
| auto &TheCU = *P.second; |
| auto *SkCU = TheCU.getSkeleton(); |
| DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; |
| auto *CUNode = cast<DICompileUnit>(P.first); |
| DIMacroNodeArray Macros = CUNode->getMacros(); |
| if (Macros.empty()) |
| continue; |
| Asm->OutStreamer->switchSection(Section); |
| Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); |
| if (UseDebugMacroSection) |
| emitMacroHeader(Asm, *this, U, getDwarfVersion()); |
| handleMacroNodes(Macros, U); |
| Asm->OutStreamer->AddComment("End Of Macro List Mark"); |
| Asm->emitInt8(0); |
| } |
| } |
| |
| /// Emit macros into a debug macinfo/macro section. |
| void DwarfDebug::emitDebugMacinfo() { |
| auto &ObjLower = Asm->getObjFileLowering(); |
| emitDebugMacinfoImpl(UseDebugMacroSection |
| ? ObjLower.getDwarfMacroSection() |
| : ObjLower.getDwarfMacinfoSection()); |
| } |
| |
| void DwarfDebug::emitDebugMacinfoDWO() { |
| auto &ObjLower = Asm->getObjFileLowering(); |
| emitDebugMacinfoImpl(UseDebugMacroSection |
| ? ObjLower.getDwarfMacroDWOSection() |
| : ObjLower.getDwarfMacinfoDWOSection()); |
| } |
| |
| // DWARF5 Experimental Separate Dwarf emitters. |
| |
| void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, |
| std::unique_ptr<DwarfCompileUnit> NewU) { |
| |
| if (!CompilationDir.empty()) |
| NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); |
| addGnuPubAttributes(*NewU, Die); |
| |
| SkeletonHolder.addUnit(std::move(NewU)); |
| } |
| |
| DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { |
| |
| auto OwnedUnit = std::make_unique<DwarfCompileUnit>( |
| CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, |
| UnitKind::Skeleton); |
| DwarfCompileUnit &NewCU = *OwnedUnit; |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); |
| |
| NewCU.initStmtList(); |
| |
| if (useSegmentedStringOffsetsTable()) |
| NewCU.addStringOffsetsStart(); |
| |
| initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); |
| |
| return NewCU; |
| } |
| |
| // Emit the .debug_info.dwo section for separated dwarf. This contains the |
| // compile units that would normally be in debug_info. |
| void DwarfDebug::emitDebugInfoDWO() { |
| assert(useSplitDwarf() && "No split dwarf debug info?"); |
| // Don't emit relocations into the dwo file. |
| InfoHolder.emitUnits(/* UseOffsets */ true); |
| } |
| |
| // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the |
| // abbreviations for the .debug_info.dwo section. |
| void DwarfDebug::emitDebugAbbrevDWO() { |
| assert(useSplitDwarf() && "No split dwarf?"); |
| InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); |
| } |
| |
| void DwarfDebug::emitDebugLineDWO() { |
| assert(useSplitDwarf() && "No split dwarf?"); |
| SplitTypeUnitFileTable.Emit( |
| *Asm->OutStreamer, MCDwarfLineTableParams(), |
| Asm->getObjFileLowering().getDwarfLineDWOSection()); |
| } |
| |
| void DwarfDebug::emitStringOffsetsTableHeaderDWO() { |
| assert(useSplitDwarf() && "No split dwarf?"); |
| InfoHolder.getStringPool().emitStringOffsetsTableHeader( |
| *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), |
| InfoHolder.getStringOffsetsStartSym()); |
| } |
| |
| // Emit the .debug_str.dwo section for separated dwarf. This contains the |
| // string section and is identical in format to traditional .debug_str |
| // sections. |
| void DwarfDebug::emitDebugStrDWO() { |
| if (useSegmentedStringOffsetsTable()) |
| emitStringOffsetsTableHeaderDWO(); |
| assert(useSplitDwarf() && "No split dwarf?"); |
| MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); |
| InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), |
| OffSec, /* UseRelativeOffsets = */ false); |
| } |
| |
| // Emit address pool. |
| void DwarfDebug::emitDebugAddr() { |
| AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); |
| } |
| |
| MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { |
| if (!useSplitDwarf()) |
| return nullptr; |
| const DICompileUnit *DIUnit = CU.getCUNode(); |
| SplitTypeUnitFileTable.maybeSetRootFile( |
| DIUnit->getDirectory(), DIUnit->getFilename(), |
| getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); |
| return &SplitTypeUnitFileTable; |
| } |
| |
| uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { |
| MD5 Hash; |
| Hash.update(Identifier); |
| // ... take the least significant 8 bytes and return those. Our MD5 |
| // implementation always returns its results in little endian, so we actually |
| // need the "high" word. |
| MD5::MD5Result Result; |
| Hash.final(Result); |
| return Result.high(); |
| } |
| |
| void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, |
| StringRef Identifier, DIE &RefDie, |
| const DICompositeType *CTy) { |
| // Fast path if we're building some type units and one has already used the |
| // address pool we know we're going to throw away all this work anyway, so |
| // don't bother building dependent types. |
| if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) |
| return; |
| |
| auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); |
| if (!Ins.second) { |
| CU.addDIETypeSignature(RefDie, Ins.first->second); |
| return; |
| } |
| |
| setCurrentDWARF5AccelTable(DWARF5AccelTableKind::TU); |
| bool TopLevelType = TypeUnitsUnderConstruction.empty(); |
| AddrPool.resetUsedFlag(); |
| |
| auto OwnedUnit = std::make_unique<DwarfTypeUnit>( |
| CU, Asm, this, &InfoHolder, NumTypeUnitsCreated++, getDwoLineTable(CU)); |
| DwarfTypeUnit &NewTU = *OwnedUnit; |
| DIE &UnitDie = NewTU.getUnitDie(); |
| TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); |
| |
| NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, |
| CU.getLanguage()); |
| |
| uint64_t Signature = makeTypeSignature(Identifier); |
| NewTU.setTypeSignature(Signature); |
| Ins.first->second = Signature; |
| |
| if (useSplitDwarf()) { |
| // Although multiple type units can have the same signature, they are not |
| // guranteed to be bit identical. When LLDB uses .debug_names it needs to |
| // know from which CU a type unit came from. These two attrbutes help it to |
| // figure that out. |
| if (getDwarfVersion() >= 5) { |
| if (!CompilationDir.empty()) |
| NewTU.addString(UnitDie, dwarf::DW_AT_comp_dir, CompilationDir); |
| NewTU.addString(UnitDie, dwarf::DW_AT_dwo_name, |
| Asm->TM.Options.MCOptions.SplitDwarfFile); |
| } |
| MCSection *Section = |
| getDwarfVersion() <= 4 |
| ? Asm->getObjFileLowering().getDwarfTypesDWOSection() |
| : Asm->getObjFileLowering().getDwarfInfoDWOSection(); |
| NewTU.setSection(Section); |
| } else { |
| MCSection *Section = |
| getDwarfVersion() <= 4 |
| ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) |
| : Asm->getObjFileLowering().getDwarfInfoSection(Signature); |
| NewTU.setSection(Section); |
| // Non-split type units reuse the compile unit's line table. |
| CU.applyStmtList(UnitDie); |
| } |
| |
| // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type |
| // units. |
| if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) |
| NewTU.addStringOffsetsStart(); |
| |
| NewTU.setType(NewTU.createTypeDIE(CTy)); |
| |
| if (TopLevelType) { |
| auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); |
| TypeUnitsUnderConstruction.clear(); |
| |
| // Types referencing entries in the address table cannot be placed in type |
| // units. |
| if (AddrPool.hasBeenUsed()) { |
| AccelTypeUnitsDebugNames.clear(); |
| // Remove all the types built while building this type. |
| // This is pessimistic as some of these types might not be dependent on |
| // the type that used an address. |
| for (const auto &TU : TypeUnitsToAdd) |
| TypeSignatures.erase(TU.second); |
| |
| // Construct this type in the CU directly. |
| // This is inefficient because all the dependent types will be rebuilt |
| // from scratch, including building them in type units, discovering that |
| // they depend on addresses, throwing them out and rebuilding them. |
| setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU); |
| CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); |
| CU.updateAcceleratorTables(CTy->getScope(), CTy, RefDie); |
| return; |
| } |
| |
| // If the type wasn't dependent on fission addresses, finish adding the type |
| // and all its dependent types. |
| for (auto &TU : TypeUnitsToAdd) { |
| InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); |
| InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); |
| if (getDwarfVersion() >= 5 && |
| getAccelTableKind() == AccelTableKind::Dwarf) { |
| if (useSplitDwarf()) |
| AccelDebugNames.addTypeUnitSignature(*TU.first); |
| else |
| AccelDebugNames.addTypeUnitSymbol(*TU.first); |
| } |
| } |
| AccelTypeUnitsDebugNames.convertDieToOffset(); |
| AccelDebugNames.addTypeEntries(AccelTypeUnitsDebugNames); |
| AccelTypeUnitsDebugNames.clear(); |
| setCurrentDWARF5AccelTable(DWARF5AccelTableKind::CU); |
| } |
| CU.addDIETypeSignature(RefDie, Signature); |
| } |
| |
| // Add the Name along with its companion DIE to the appropriate accelerator |
| // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for |
| // AccelTableKind::Apple, we use the table we got as an argument). If |
| // accelerator tables are disabled, this function does nothing. |
| template <typename DataT> |
| void DwarfDebug::addAccelNameImpl( |
| const DwarfUnit &Unit, |
| const DICompileUnit::DebugNameTableKind NameTableKind, |
| AccelTable<DataT> &AppleAccel, StringRef Name, const DIE &Die) { |
| if (getAccelTableKind() == AccelTableKind::None || |
| Unit.getUnitDie().getTag() == dwarf::DW_TAG_skeleton_unit || Name.empty()) |
| return; |
| |
| if (getAccelTableKind() != AccelTableKind::Apple && |
| NameTableKind != DICompileUnit::DebugNameTableKind::Apple && |
| NameTableKind != DICompileUnit::DebugNameTableKind::Default) |
| return; |
| |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); |
| |
| switch (getAccelTableKind()) { |
| case AccelTableKind::Apple: |
| AppleAccel.addName(Ref, Die); |
| break; |
| case AccelTableKind::Dwarf: { |
| DWARF5AccelTable &Current = getCurrentDWARF5AccelTable(); |
| assert(((&Current == &AccelTypeUnitsDebugNames) || |
| ((&Current == &AccelDebugNames) && |
| (Unit.getUnitDie().getTag() != dwarf::DW_TAG_type_unit))) && |
| "Kind is CU but TU is being processed."); |
| assert(((&Current == &AccelDebugNames) || |
| ((&Current == &AccelTypeUnitsDebugNames) && |
| (Unit.getUnitDie().getTag() == dwarf::DW_TAG_type_unit))) && |
| "Kind is TU but CU is being processed."); |
| // The type unit can be discarded, so need to add references to final |
| // acceleration table once we know it's complete and we emit it. |
| Current.addName(Ref, Die, Unit.getUniqueID(), |
| Unit.getUnitDie().getTag() == dwarf::DW_TAG_type_unit); |
| break; |
| } |
| case AccelTableKind::Default: |
| llvm_unreachable("Default should have already been resolved."); |
| case AccelTableKind::None: |
| llvm_unreachable("None handled above"); |
| } |
| } |
| |
| void DwarfDebug::addAccelName( |
| const DwarfUnit &Unit, |
| const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, |
| const DIE &Die) { |
| addAccelNameImpl(Unit, NameTableKind, AccelNames, Name, Die); |
| } |
| |
| void DwarfDebug::addAccelObjC( |
| const DwarfUnit &Unit, |
| const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, |
| const DIE &Die) { |
| // ObjC names go only into the Apple accelerator tables. |
| if (getAccelTableKind() == AccelTableKind::Apple) |
| addAccelNameImpl(Unit, NameTableKind, AccelObjC, Name, Die); |
| } |
| |
| void DwarfDebug::addAccelNamespace( |
| const DwarfUnit &Unit, |
| const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, |
| const DIE &Die) { |
| addAccelNameImpl(Unit, NameTableKind, AccelNamespace, Name, Die); |
| } |
| |
| void DwarfDebug::addAccelType( |
| const DwarfUnit &Unit, |
| const DICompileUnit::DebugNameTableKind NameTableKind, StringRef Name, |
| const DIE &Die, char Flags) { |
| addAccelNameImpl(Unit, NameTableKind, AccelTypes, Name, Die); |
| } |
| |
| uint16_t DwarfDebug::getDwarfVersion() const { |
| return Asm->OutStreamer->getContext().getDwarfVersion(); |
| } |
| |
| dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { |
| if (Asm->getDwarfVersion() >= 4) |
| return dwarf::Form::DW_FORM_sec_offset; |
| assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && |
| "DWARF64 is not defined prior DWARFv3"); |
| return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 |
| : dwarf::Form::DW_FORM_data4; |
| } |
| |
| const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { |
| return SectionLabels.lookup(S); |
| } |
| |
| void DwarfDebug::insertSectionLabel(const MCSymbol *S) { |
| if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) |
| if (useSplitDwarf() || getDwarfVersion() >= 5) |
| AddrPool.getIndex(S); |
| } |
| |
| std::optional<MD5::MD5Result> |
| DwarfDebug::getMD5AsBytes(const DIFile *File) const { |
| assert(File); |
| if (getDwarfVersion() < 5) |
| return std::nullopt; |
| std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); |
| if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) |
| return std::nullopt; |
| |
| // Convert the string checksum to an MD5Result for the streamer. |
| // The verifier validates the checksum so we assume it's okay. |
| // An MD5 checksum is 16 bytes. |
| std::string ChecksumString = fromHex(Checksum->Value); |
| MD5::MD5Result CKMem; |
| std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data()); |
| return CKMem; |
| } |
| |
| bool DwarfDebug::alwaysUseRanges(const DwarfCompileUnit &CU) const { |
| if (MinimizeAddr == MinimizeAddrInV5::Ranges) |
| return true; |
| if (MinimizeAddr != MinimizeAddrInV5::Default) |
| return false; |
| if (useSplitDwarf()) |
| return true; |
| return false; |
| } |
| |
| void DwarfDebug::beginCodeAlignment(const MachineBasicBlock &MBB) { |
| if (MBB.getAlignment() == Align(1)) |
| return; |
| |
| auto *SP = MBB.getParent()->getFunction().getSubprogram(); |
| bool NoDebug = |
| !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; |
| |
| if (NoDebug) |
| return; |
| |
| auto PrevLoc = Asm->OutStreamer->getContext().getCurrentDwarfLoc(); |
| if (PrevLoc.getLine()) { |
| Asm->OutStreamer->emitDwarfLocDirective( |
| PrevLoc.getFileNum(), 0, PrevLoc.getColumn(), 0, 0, 0, StringRef()); |
| MCDwarfLineEntry::make(Asm->OutStreamer.get(), |
| Asm->OutStreamer->getCurrentSectionOnly()); |
| } |
| } |