| //===-- Single-precision tanpi function -----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/tanpif.h" |
| #include "sincosf_utils.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/cast.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| constexpr size_t N_EXCEPTS = 3; |
| |
| constexpr fputil::ExceptValues<float, N_EXCEPTS> TANPIF_EXCEPTS{{ |
| // (input, RZ output, RU offset, RD offset, RN offset) |
| {0x38F26685, 0x39BE6182, 1, 0, 0}, |
| {0x3E933802, 0x3FA267DD, 1, 0, 0}, |
| {0x3F3663FF, 0xBFA267DD, 0, 1, 0}, |
| }}; |
| #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| |
| LLVM_LIBC_FUNCTION(float, tanpif, (float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| FPBits xbits(x); |
| |
| uint32_t x_u = xbits.uintval(); |
| uint32_t x_abs = x_u & 0x7fff'ffffU; |
| double xd = static_cast<double>(xbits.get_val()); |
| |
| // Handle exceptional values |
| if (LIBC_UNLIKELY(x_abs <= 0x3F3663FF)) { |
| if (LIBC_UNLIKELY(x_abs == 0U)) |
| return x; |
| |
| #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| bool x_sign = x_u >> 31; |
| |
| if (auto r = TANPIF_EXCEPTS.lookup_odd(x_abs, x_sign); |
| LIBC_UNLIKELY(r.has_value())) |
| return r.value(); |
| #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS |
| } |
| |
| // Numbers greater or equal to 2^23 are always integers, or infinity, or NaN |
| if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) { |
| // x is inf or NaN. |
| if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { |
| if (xbits.is_signaling_nan()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::quiet_nan().get_val(); |
| } |
| |
| if (x_abs == 0x7f80'0000U) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| } |
| |
| return x + FPBits::quiet_nan().get_val(); |
| } |
| |
| return FPBits::zero(xbits.sign()).get_val(); |
| } |
| |
| // Range reduction: |
| // For |x| > 1/32, we perform range reduction as follows: |
| // Find k and y such that: |
| // x = (k + y) * 1/32 |
| // k is an integer |
| // |y| < 0.5 |
| // |
| // This is done by performing: |
| // k = round(x * 32) |
| // y = x * 32 - k |
| // |
| // Once k and y are computed, we then deduce the answer by the formula: |
| // tan(x) = sin(x) / cos(x) |
| // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) |
| double sin_k, cos_k, sin_y, cosm1_y; |
| sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y); |
| |
| if (LIBC_UNLIKELY(sin_y == 0 && cos_k == 0)) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_DIVBYZERO); |
| |
| int32_t x_mp5_i = static_cast<int32_t>(xd - 0.5); |
| return FPBits::inf((x_mp5_i & 0x1) ? Sign::NEG : Sign::POS).get_val(); |
| } |
| |
| using fputil::multiply_add; |
| return fputil::cast<float>( |
| multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / |
| multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |