| //===-- Single-precision atan2f function ----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/double_double.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/nearest_integer.h" |
| #include "src/__support/FPUtil/rounding_mode.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/math/atan2f.h" |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| namespace { |
| |
| using FloatFloat = fputil::FloatFloat; |
| |
| // atan(i/64) with i = 0..16, generated by Sollya with: |
| // > for i from 0 to 16 do { |
| // a = round(atan(i/16), SG, RN); |
| // b = round(atan(i/16) - a, SG, RN); |
| // print("{", b, ",", a, "},"); |
| // }; |
| constexpr FloatFloat ATAN_I[17] = { |
| {0.0f, 0.0f}, |
| {-0x1.1a6042p-30f, 0x1.ff55bcp-5f}, |
| {-0x1.54f424p-30f, 0x1.fd5baap-4f}, |
| {0x1.79cb6p-28f, 0x1.7b97b4p-3f}, |
| {-0x1.b4dfc8p-29f, 0x1.f5b76p-3f}, |
| {-0x1.1f0286p-27f, 0x1.362774p-2f}, |
| {0x1.e4defp-30f, 0x1.6f6194p-2f}, |
| {0x1.e611fep-29f, 0x1.a64eecp-2f}, |
| {0x1.586ed4p-28f, 0x1.dac67p-2f}, |
| {-0x1.6499e6p-26f, 0x1.0657eap-1f}, |
| {0x1.7bdfd6p-26f, 0x1.1e00bap-1f}, |
| {-0x1.98e422p-28f, 0x1.345f02p-1f}, |
| {0x1.934f7p-28f, 0x1.4978fap-1f}, |
| {0x1.c5a6c6p-27f, 0x1.5d5898p-1f}, |
| {0x1.5e118cp-27f, 0x1.700a7cp-1f}, |
| {-0x1.1d4eb6p-26f, 0x1.819d0cp-1f}, |
| {-0x1.777a5cp-26f, 0x1.921fb6p-1f}, |
| }; |
| |
| // Approximate atan(x) for |x| <= 2^-5. |
| // Using degree-3 Taylor polynomial: |
| // P = x - x^3/3 |
| // Then the absolute error is bounded by: |
| // |atan(x) - P(x)| < |x|^5/5 < 2^(-5*5) / 5 < 2^-27. |
| // And the relative error is bounded by: |
| // |(atan(x) - P(x))/atan(x)| < |x|^4 / 4 < 2^-22. |
| // For x = x_hi + x_lo, fully expand the polynomial and drop any terms less than |
| // ulp(x_hi^3 / 3) gives us: |
| // P(x) ~ x_hi - x_hi^3/3 + x_lo * (1 - x_hi^2) |
| FloatFloat atan_eval(const FloatFloat &x) { |
| FloatFloat p; |
| p.hi = x.hi; |
| float x_hi_sq = x.hi * x.hi; |
| // c0 ~ - x_hi^2 / 3 |
| float c0 = -0x1.555556p-2f * x_hi_sq; |
| // c1 ~ x_lo * (1 - x_hi^2) |
| float c1 = fputil::multiply_add(x_hi_sq, -x.lo, x.lo); |
| // p.lo ~ - x_hi^3 / 3 + x_lo * (1 - x_hi*2) |
| p.lo = fputil::multiply_add(x.hi, c0, c1); |
| return p; |
| } |
| |
| } // anonymous namespace |
| |
| // There are several range reduction steps we can take for atan2(y, x) as |
| // follow: |
| |
| // * Range reduction 1: signness |
| // atan2(y, x) will return a number between -PI and PI representing the angle |
| // forming by the 0x axis and the vector (x, y) on the 0xy-plane. |
| // In particular, we have that: |
| // atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant) |
| // = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant) |
| // = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant) |
| // = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant) |
| // Since atan function is odd, we can use the formula: |
| // atan(-u) = -atan(u) |
| // to adjust the above conditions a bit further: |
| // atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant) |
| // = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant) |
| // = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant) |
| // = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant) |
| // Which can be simplified to: |
| // atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0 |
| // = sign(y) * (pi - atan( |y|/|x| )) if x < 0 |
| |
| // * Range reduction 2: reciprocal |
| // Now that the argument inside atan is positive, we can use the formula: |
| // atan(1/x) = pi/2 - atan(x) |
| // to make the argument inside atan <= 1 as follow: |
| // atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x |
| // = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y| |
| // = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x |
| // = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y| |
| |
| // * Range reduction 3: look up table. |
| // After the previous two range reduction steps, we reduce the problem to |
| // compute atan(u) with 0 <= u <= 1, or to be precise: |
| // atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|). |
| // An accurate polynomial approximation for the whole [0, 1] input range will |
| // require a very large degree. To make it more efficient, we reduce the input |
| // range further by finding an integer idx such that: |
| // | n/d - idx/16 | <= 1/32. |
| // In particular, |
| // idx := 2^-4 * round(2^4 * n/d) |
| // Then for the fast pass, we find a polynomial approximation for: |
| // atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16) |
| // with Q(x) = x - x^3/3 be the cubic Taylor polynomial of atan(x). |
| // It's error in float-float precision is estimated in Sollya to be: |
| // > P = x - x^3/3; |
| // > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]); |
| // 0x1.995...p-28. |
| |
| LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| constexpr float IS_NEG[2] = {1.0f, -1.0f}; |
| constexpr FloatFloat ZERO = {0.0f, 0.0f}; |
| constexpr FloatFloat MZERO = {-0.0f, -0.0f}; |
| constexpr FloatFloat PI = {-0x1.777a5cp-24f, 0x1.921fb6p1f}; |
| constexpr FloatFloat MPI = {0x1.777a5cp-24f, -0x1.921fb6p1f}; |
| constexpr FloatFloat PI_OVER_4 = {-0x1.777a5cp-26f, 0x1.921fb6p-1f}; |
| constexpr FloatFloat PI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f}; |
| constexpr FloatFloat MPI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f}; |
| constexpr FloatFloat THREE_PI_OVER_4 = {-0x1.99bc5cp-28f, 0x1.2d97c8p1f}; |
| // Adjustment for constant term: |
| // CONST_ADJ[x_sign][y_sign][recip] |
| constexpr FloatFloat CONST_ADJ[2][2][2] = { |
| {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}}, |
| {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}}; |
| |
| FPBits x_bits(x), y_bits(y); |
| bool x_sign = x_bits.sign().is_neg(); |
| bool y_sign = y_bits.sign().is_neg(); |
| x_bits = x_bits.abs(); |
| y_bits = y_bits.abs(); |
| uint32_t x_abs = x_bits.uintval(); |
| uint32_t y_abs = y_bits.uintval(); |
| bool recip = x_abs < y_abs; |
| uint32_t min_abs = recip ? x_abs : y_abs; |
| uint32_t max_abs = !recip ? x_abs : y_abs; |
| auto min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN); |
| auto max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN); |
| |
| float num = FPBits(min_abs).get_val(); |
| float den = FPBits(max_abs).get_val(); |
| |
| // Check for exceptional cases, whether inputs are 0, inf, nan, or close to |
| // overflow, or close to underflow. |
| if (LIBC_UNLIKELY(max_exp > 0xffU - 64U || min_exp < 64U)) { |
| if (x_bits.is_nan() || y_bits.is_nan()) |
| return FPBits::quiet_nan().get_val(); |
| unsigned x_except = x == 0.0f ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1); |
| unsigned y_except = y == 0.0f ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1); |
| |
| // Exceptional cases: |
| // EXCEPT[y_except][x_except][x_is_neg] |
| // with x_except & y_except: |
| // 0: zero |
| // 1: finite, non-zero |
| // 2: infinity |
| constexpr FloatFloat EXCEPTS[3][3][2] = { |
| {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}}, |
| {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}}, |
| {{PI_OVER_2, PI_OVER_2}, |
| {PI_OVER_2, PI_OVER_2}, |
| {PI_OVER_4, THREE_PI_OVER_4}}, |
| }; |
| |
| if ((x_except != 1) || (y_except != 1)) { |
| FloatFloat r = EXCEPTS[y_except][x_except][x_sign]; |
| return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo); |
| } |
| bool scale_up = min_exp < 64U; |
| bool scale_down = max_exp > 0xffU - 64U; |
| // At least one input is denormal, multiply both numerator and denominator |
| // by some large enough power of 2 to normalize denormal inputs. |
| if (scale_up) { |
| num *= 0x1.0p32f; |
| if (!scale_down) |
| den *= 0x1.0p32f; |
| } else if (scale_down) { |
| den *= 0x1.0p-32f; |
| num *= 0x1.0p-32f; |
| } |
| |
| min_abs = FPBits(num).uintval(); |
| max_abs = FPBits(den).uintval(); |
| min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN); |
| max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN); |
| } |
| |
| float final_sign = IS_NEG[(x_sign != y_sign) != recip]; |
| FloatFloat const_term = CONST_ADJ[x_sign][y_sign][recip]; |
| unsigned exp_diff = max_exp - min_exp; |
| // We have the following bound for normalized n and d: |
| // 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1). |
| if (LIBC_UNLIKELY(exp_diff > 25)) |
| return fputil::multiply_add(final_sign, const_term.hi, |
| final_sign * (const_term.lo + num / den)); |
| |
| float k = fputil::nearest_integer(16.0f * num / den); |
| unsigned idx = static_cast<unsigned>(k); |
| // k = idx / 16 |
| k *= 0x1.0p-4f; |
| |
| // Range reduction: |
| // atan(n/d) - atan(k/64) = atan((n/d - k/16) / (1 + (n/d) * (k/16))) |
| // = atan((n - d * k/16)) / (d + n * k/16)) |
| FloatFloat num_k = fputil::exact_mult(num, k); |
| FloatFloat den_k = fputil::exact_mult(den, k); |
| |
| // num_dd = n - d * k |
| FloatFloat num_ff = fputil::exact_add(num - den_k.hi, -den_k.lo); |
| // den_dd = d + n * k |
| FloatFloat den_ff = fputil::exact_add(den, num_k.hi); |
| den_ff.lo += num_k.lo; |
| |
| // q = (n - d * k) / (d + n * k) |
| FloatFloat q = fputil::div(num_ff, den_ff); |
| // p ~ atan(q) |
| FloatFloat p = atan_eval(q); |
| |
| FloatFloat r = fputil::add(const_term, fputil::add(ATAN_I[idx], p)); |
| return final_sign * r.hi; |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |