blob: 1fd853d7359508cf2e4accc3857131cd25565c63 [file] [log] [blame]
//===-- Single-precision atan2f function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/math/atan2f.h"
namespace LIBC_NAMESPACE_DECL {
namespace {
using FloatFloat = fputil::FloatFloat;
// atan(i/64) with i = 0..16, generated by Sollya with:
// > for i from 0 to 16 do {
// a = round(atan(i/16), SG, RN);
// b = round(atan(i/16) - a, SG, RN);
// print("{", b, ",", a, "},");
// };
constexpr FloatFloat ATAN_I[17] = {
{0.0f, 0.0f},
{-0x1.1a6042p-30f, 0x1.ff55bcp-5f},
{-0x1.54f424p-30f, 0x1.fd5baap-4f},
{0x1.79cb6p-28f, 0x1.7b97b4p-3f},
{-0x1.b4dfc8p-29f, 0x1.f5b76p-3f},
{-0x1.1f0286p-27f, 0x1.362774p-2f},
{0x1.e4defp-30f, 0x1.6f6194p-2f},
{0x1.e611fep-29f, 0x1.a64eecp-2f},
{0x1.586ed4p-28f, 0x1.dac67p-2f},
{-0x1.6499e6p-26f, 0x1.0657eap-1f},
{0x1.7bdfd6p-26f, 0x1.1e00bap-1f},
{-0x1.98e422p-28f, 0x1.345f02p-1f},
{0x1.934f7p-28f, 0x1.4978fap-1f},
{0x1.c5a6c6p-27f, 0x1.5d5898p-1f},
{0x1.5e118cp-27f, 0x1.700a7cp-1f},
{-0x1.1d4eb6p-26f, 0x1.819d0cp-1f},
{-0x1.777a5cp-26f, 0x1.921fb6p-1f},
};
// Approximate atan(x) for |x| <= 2^-5.
// Using degree-3 Taylor polynomial:
// P = x - x^3/3
// Then the absolute error is bounded by:
// |atan(x) - P(x)| < |x|^5/5 < 2^(-5*5) / 5 < 2^-27.
// And the relative error is bounded by:
// |(atan(x) - P(x))/atan(x)| < |x|^4 / 4 < 2^-22.
// For x = x_hi + x_lo, fully expand the polynomial and drop any terms less than
// ulp(x_hi^3 / 3) gives us:
// P(x) ~ x_hi - x_hi^3/3 + x_lo * (1 - x_hi^2)
FloatFloat atan_eval(const FloatFloat &x) {
FloatFloat p;
p.hi = x.hi;
float x_hi_sq = x.hi * x.hi;
// c0 ~ - x_hi^2 / 3
float c0 = -0x1.555556p-2f * x_hi_sq;
// c1 ~ x_lo * (1 - x_hi^2)
float c1 = fputil::multiply_add(x_hi_sq, -x.lo, x.lo);
// p.lo ~ - x_hi^3 / 3 + x_lo * (1 - x_hi*2)
p.lo = fputil::multiply_add(x.hi, c0, c1);
return p;
}
} // anonymous namespace
// There are several range reduction steps we can take for atan2(y, x) as
// follow:
// * Range reduction 1: signness
// atan2(y, x) will return a number between -PI and PI representing the angle
// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
// In particular, we have that:
// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
// Since atan function is odd, we can use the formula:
// atan(-u) = -atan(u)
// to adjust the above conditions a bit further:
// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
// Which can be simplified to:
// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
// * Range reduction 2: reciprocal
// Now that the argument inside atan is positive, we can use the formula:
// atan(1/x) = pi/2 - atan(x)
// to make the argument inside atan <= 1 as follow:
// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
// * Range reduction 3: look up table.
// After the previous two range reduction steps, we reduce the problem to
// compute atan(u) with 0 <= u <= 1, or to be precise:
// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
// An accurate polynomial approximation for the whole [0, 1] input range will
// require a very large degree. To make it more efficient, we reduce the input
// range further by finding an integer idx such that:
// | n/d - idx/16 | <= 1/32.
// In particular,
// idx := 2^-4 * round(2^4 * n/d)
// Then for the fast pass, we find a polynomial approximation for:
// atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16)
// with Q(x) = x - x^3/3 be the cubic Taylor polynomial of atan(x).
// It's error in float-float precision is estimated in Sollya to be:
// > P = x - x^3/3;
// > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
// 0x1.995...p-28.
LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
using FPBits = typename fputil::FPBits<float>;
constexpr float IS_NEG[2] = {1.0f, -1.0f};
constexpr FloatFloat ZERO = {0.0f, 0.0f};
constexpr FloatFloat MZERO = {-0.0f, -0.0f};
constexpr FloatFloat PI = {-0x1.777a5cp-24f, 0x1.921fb6p1f};
constexpr FloatFloat MPI = {0x1.777a5cp-24f, -0x1.921fb6p1f};
constexpr FloatFloat PI_OVER_4 = {-0x1.777a5cp-26f, 0x1.921fb6p-1f};
constexpr FloatFloat PI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f};
constexpr FloatFloat MPI_OVER_2 = {-0x1.777a5cp-25f, 0x1.921fb6p0f};
constexpr FloatFloat THREE_PI_OVER_4 = {-0x1.99bc5cp-28f, 0x1.2d97c8p1f};
// Adjustment for constant term:
// CONST_ADJ[x_sign][y_sign][recip]
constexpr FloatFloat CONST_ADJ[2][2][2] = {
{{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
{{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
FPBits x_bits(x), y_bits(y);
bool x_sign = x_bits.sign().is_neg();
bool y_sign = y_bits.sign().is_neg();
x_bits = x_bits.abs();
y_bits = y_bits.abs();
uint32_t x_abs = x_bits.uintval();
uint32_t y_abs = y_bits.uintval();
bool recip = x_abs < y_abs;
uint32_t min_abs = recip ? x_abs : y_abs;
uint32_t max_abs = !recip ? x_abs : y_abs;
auto min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
auto max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
float num = FPBits(min_abs).get_val();
float den = FPBits(max_abs).get_val();
// Check for exceptional cases, whether inputs are 0, inf, nan, or close to
// overflow, or close to underflow.
if (LIBC_UNLIKELY(max_exp > 0xffU - 64U || min_exp < 64U)) {
if (x_bits.is_nan() || y_bits.is_nan())
return FPBits::quiet_nan().get_val();
unsigned x_except = x == 0.0f ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
unsigned y_except = y == 0.0f ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
// Exceptional cases:
// EXCEPT[y_except][x_except][x_is_neg]
// with x_except & y_except:
// 0: zero
// 1: finite, non-zero
// 2: infinity
constexpr FloatFloat EXCEPTS[3][3][2] = {
{{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2},
{PI_OVER_2, PI_OVER_2},
{PI_OVER_4, THREE_PI_OVER_4}},
};
if ((x_except != 1) || (y_except != 1)) {
FloatFloat r = EXCEPTS[y_except][x_except][x_sign];
return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
}
bool scale_up = min_exp < 64U;
bool scale_down = max_exp > 0xffU - 64U;
// At least one input is denormal, multiply both numerator and denominator
// by some large enough power of 2 to normalize denormal inputs.
if (scale_up) {
num *= 0x1.0p32f;
if (!scale_down)
den *= 0x1.0p32f;
} else if (scale_down) {
den *= 0x1.0p-32f;
num *= 0x1.0p-32f;
}
min_abs = FPBits(num).uintval();
max_abs = FPBits(den).uintval();
min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
}
float final_sign = IS_NEG[(x_sign != y_sign) != recip];
FloatFloat const_term = CONST_ADJ[x_sign][y_sign][recip];
unsigned exp_diff = max_exp - min_exp;
// We have the following bound for normalized n and d:
// 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
if (LIBC_UNLIKELY(exp_diff > 25))
return fputil::multiply_add(final_sign, const_term.hi,
final_sign * (const_term.lo + num / den));
float k = fputil::nearest_integer(16.0f * num / den);
unsigned idx = static_cast<unsigned>(k);
// k = idx / 16
k *= 0x1.0p-4f;
// Range reduction:
// atan(n/d) - atan(k/64) = atan((n/d - k/16) / (1 + (n/d) * (k/16)))
// = atan((n - d * k/16)) / (d + n * k/16))
FloatFloat num_k = fputil::exact_mult(num, k);
FloatFloat den_k = fputil::exact_mult(den, k);
// num_dd = n - d * k
FloatFloat num_ff = fputil::exact_add(num - den_k.hi, -den_k.lo);
// den_dd = d + n * k
FloatFloat den_ff = fputil::exact_add(den, num_k.hi);
den_ff.lo += num_k.lo;
// q = (n - d * k) / (d + n * k)
FloatFloat q = fputil::div(num_ff, den_ff);
// p ~ atan(q)
FloatFloat p = atan_eval(q);
FloatFloat r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
return final_sign * r.hi;
}
} // namespace LIBC_NAMESPACE_DECL