|  | //===--- Expr.cpp - Expression AST Node Implementation --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Expr class and subclasses. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/APValue.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/ComputeDependence.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/DependenceFlags.h" | 
|  | #include "clang/AST/EvaluatedExprVisitor.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/IgnoreExpr.h" | 
|  | #include "clang/AST/Mangle.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/CharInfo.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Lex/Lexer.h" | 
|  | #include "clang/Lex/LiteralSupport.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <optional> | 
|  | using namespace clang; | 
|  |  | 
|  | const Expr *Expr::getBestDynamicClassTypeExpr() const { | 
|  | const Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParenBaseCasts(); | 
|  |  | 
|  | // Follow the RHS of a comma operator. | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | E = BO->getRHS(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Step into initializer for materialized temporaries. | 
|  | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = MTE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E; | 
|  | } | 
|  |  | 
|  | const CXXRecordDecl *Expr::getBestDynamicClassType() const { | 
|  | const Expr *E = getBestDynamicClassTypeExpr(); | 
|  | QualType DerivedType = E->getType(); | 
|  | if (const PointerType *PTy = DerivedType->getAs<PointerType>()) | 
|  | DerivedType = PTy->getPointeeType(); | 
|  |  | 
|  | if (DerivedType->isDependentType()) | 
|  | return nullptr; | 
|  |  | 
|  | const RecordType *Ty = DerivedType->castAs<RecordType>(); | 
|  | Decl *D = Ty->getDecl(); | 
|  | return cast<CXXRecordDecl>(D); | 
|  | } | 
|  |  | 
|  | const Expr *Expr::skipRValueSubobjectAdjustments( | 
|  | SmallVectorImpl<const Expr *> &CommaLHSs, | 
|  | SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { | 
|  | const Expr *E = this; | 
|  | while (true) { | 
|  | E = E->IgnoreParens(); | 
|  |  | 
|  | if (const auto *CE = dyn_cast<CastExpr>(E)) { | 
|  | if ((CE->getCastKind() == CK_DerivedToBase || | 
|  | CE->getCastKind() == CK_UncheckedDerivedToBase) && | 
|  | E->getType()->isRecordType()) { | 
|  | E = CE->getSubExpr(); | 
|  | const auto *Derived = | 
|  | cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); | 
|  | Adjustments.push_back(SubobjectAdjustment(CE, Derived)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (CE->getCastKind() == CK_NoOp) { | 
|  | E = CE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } else if (const auto *ME = dyn_cast<MemberExpr>(E)) { | 
|  | if (!ME->isArrow()) { | 
|  | assert(ME->getBase()->getType()->getAsRecordDecl()); | 
|  | if (const auto *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { | 
|  | if (!Field->isBitField() && !Field->getType()->isReferenceType()) { | 
|  | E = ME->getBase(); | 
|  | Adjustments.push_back(SubobjectAdjustment(Field)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (const auto *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_PtrMemD) { | 
|  | assert(BO->getRHS()->isPRValue()); | 
|  | E = BO->getLHS(); | 
|  | const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>(); | 
|  | Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); | 
|  | continue; | 
|  | } | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | CommaLHSs.push_back(BO->getLHS()); | 
|  | E = BO->getRHS(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Nothing changed. | 
|  | break; | 
|  | } | 
|  | return E; | 
|  | } | 
|  |  | 
|  | bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { | 
|  | const Expr *E = IgnoreParens(); | 
|  |  | 
|  | // If this value has _Bool type, it is obvious 0/1. | 
|  | if (E->getType()->isBooleanType()) return true; | 
|  | // If this is a non-scalar-integer type, we don't care enough to try. | 
|  | if (!E->getType()->isIntegralOrEnumerationType()) return false; | 
|  |  | 
|  | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | 
|  | switch (UO->getOpcode()) { | 
|  | case UO_Plus: | 
|  | return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); | 
|  | case UO_LNot: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only look through implicit casts.  If the user writes | 
|  | // '(int) (a && b)' treat it as an arbitrary int. | 
|  | // FIXME: Should we look through any cast expression in !Semantic mode? | 
|  | if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) | 
|  | return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); | 
|  |  | 
|  | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | switch (BO->getOpcode()) { | 
|  | default: return false; | 
|  | case BO_LT:   // Relational operators. | 
|  | case BO_GT: | 
|  | case BO_LE: | 
|  | case BO_GE: | 
|  | case BO_EQ:   // Equality operators. | 
|  | case BO_NE: | 
|  | case BO_LAnd: // AND operator. | 
|  | case BO_LOr:  // Logical OR operator. | 
|  | return true; | 
|  |  | 
|  | case BO_And:  // Bitwise AND operator. | 
|  | case BO_Xor:  // Bitwise XOR operator. | 
|  | case BO_Or:   // Bitwise OR operator. | 
|  | // Handle things like (x==2)|(y==12). | 
|  | return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && | 
|  | BO->getRHS()->isKnownToHaveBooleanValue(Semantic); | 
|  |  | 
|  | case BO_Comma: | 
|  | case BO_Assign: | 
|  | return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) | 
|  | return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && | 
|  | CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); | 
|  |  | 
|  | if (isa<ObjCBoolLiteralExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) | 
|  | return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); | 
|  |  | 
|  | if (const FieldDecl *FD = E->getSourceBitField()) | 
|  | if (!Semantic && FD->getType()->isUnsignedIntegerType() && | 
|  | !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Expr::isFlexibleArrayMemberLike( | 
|  | const ASTContext &Ctx, | 
|  | LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, | 
|  | bool IgnoreTemplateOrMacroSubstitution) const { | 
|  | const Expr *E = IgnoreParens(); | 
|  | const Decl *D = nullptr; | 
|  |  | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(E)) | 
|  | D = ME->getMemberDecl(); | 
|  | else if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | D = DRE->getDecl(); | 
|  | else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) | 
|  | D = IRE->getDecl(); | 
|  |  | 
|  | return Decl::isFlexibleArrayMemberLike(Ctx, D, E->getType(), | 
|  | StrictFlexArraysLevel, | 
|  | IgnoreTemplateOrMacroSubstitution); | 
|  | } | 
|  |  | 
|  | const ValueDecl * | 
|  | Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { | 
|  | Expr::EvalResult Eval; | 
|  |  | 
|  | if (EvaluateAsConstantExpr(Eval, Context)) { | 
|  | APValue &Value = Eval.Val; | 
|  |  | 
|  | if (Value.isMemberPointer()) | 
|  | return Value.getMemberPointerDecl(); | 
|  |  | 
|  | if (Value.isLValue() && Value.getLValueOffset().isZero()) | 
|  | return Value.getLValueBase().dyn_cast<const ValueDecl *>(); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Amusing macro metaprogramming hack: check whether a class provides | 
|  | // a more specific implementation of getExprLoc(). | 
|  | // | 
|  | // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. | 
|  | namespace { | 
|  | /// This implementation is used when a class provides a custom | 
|  | /// implementation of getExprLoc. | 
|  | template <class E, class T> | 
|  | SourceLocation getExprLocImpl(const Expr *expr, | 
|  | SourceLocation (T::*v)() const) { | 
|  | return static_cast<const E*>(expr)->getExprLoc(); | 
|  | } | 
|  |  | 
|  | /// This implementation is used when a class doesn't provide | 
|  | /// a custom implementation of getExprLoc.  Overload resolution | 
|  | /// should pick it over the implementation above because it's | 
|  | /// more specialized according to function template partial ordering. | 
|  | template <class E> | 
|  | SourceLocation getExprLocImpl(const Expr *expr, | 
|  | SourceLocation (Expr::*v)() const) { | 
|  | return static_cast<const E *>(expr)->getBeginLoc(); | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const { | 
|  | if (isa<EnumType>(getType())) | 
|  | return getType(); | 
|  | if (const auto *ECD = getEnumConstantDecl()) { | 
|  | const auto *ED = cast<EnumDecl>(ECD->getDeclContext()); | 
|  | if (ED->isCompleteDefinition()) | 
|  | return Ctx.getTypeDeclType(ED); | 
|  | } | 
|  | return getType(); | 
|  | } | 
|  |  | 
|  | SourceLocation Expr::getExprLoc() const { | 
|  | switch (getStmtClass()) { | 
|  | case Stmt::NoStmtClass: llvm_unreachable("statement without class"); | 
|  | #define ABSTRACT_STMT(type) | 
|  | #define STMT(type, base) \ | 
|  | case Stmt::type##Class: break; | 
|  | #define EXPR(type, base) \ | 
|  | case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | } | 
|  | llvm_unreachable("unknown expression kind"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Primary Expressions. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static void AssertResultStorageKind(ConstantResultStorageKind Kind) { | 
|  | assert((Kind == ConstantResultStorageKind::APValue || | 
|  | Kind == ConstantResultStorageKind::Int64 || | 
|  | Kind == ConstantResultStorageKind::None) && | 
|  | "Invalid StorageKind Value"); | 
|  | (void)Kind; | 
|  | } | 
|  |  | 
|  | ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { | 
|  | switch (Value.getKind()) { | 
|  | case APValue::None: | 
|  | case APValue::Indeterminate: | 
|  | return ConstantResultStorageKind::None; | 
|  | case APValue::Int: | 
|  | if (!Value.getInt().needsCleanup()) | 
|  | return ConstantResultStorageKind::Int64; | 
|  | [[fallthrough]]; | 
|  | default: | 
|  | return ConstantResultStorageKind::APValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstantResultStorageKind | 
|  | ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { | 
|  | if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) | 
|  | return ConstantResultStorageKind::Int64; | 
|  | return ConstantResultStorageKind::APValue; | 
|  | } | 
|  |  | 
|  | ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind, | 
|  | bool IsImmediateInvocation) | 
|  | : FullExpr(ConstantExprClass, SubExpr) { | 
|  | ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); | 
|  | ConstantExprBits.APValueKind = APValue::None; | 
|  | ConstantExprBits.IsUnsigned = false; | 
|  | ConstantExprBits.BitWidth = 0; | 
|  | ConstantExprBits.HasCleanup = false; | 
|  | ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; | 
|  |  | 
|  | if (StorageKind == ConstantResultStorageKind::APValue) | 
|  | ::new (getTrailingObjects<APValue>()) APValue(); | 
|  | } | 
|  |  | 
|  | ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, | 
|  | ConstantResultStorageKind StorageKind, | 
|  | bool IsImmediateInvocation) { | 
|  | assert(!isa<ConstantExpr>(E)); | 
|  | AssertResultStorageKind(StorageKind); | 
|  |  | 
|  | unsigned Size = totalSizeToAlloc<APValue, uint64_t>( | 
|  | StorageKind == ConstantResultStorageKind::APValue, | 
|  | StorageKind == ConstantResultStorageKind::Int64); | 
|  | void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); | 
|  | return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); | 
|  | } | 
|  |  | 
|  | ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, | 
|  | const APValue &Result) { | 
|  | ConstantResultStorageKind StorageKind = getStorageKind(Result); | 
|  | ConstantExpr *Self = Create(Context, E, StorageKind); | 
|  | Self->SetResult(Result, Context); | 
|  | return Self; | 
|  | } | 
|  |  | 
|  | ConstantExpr::ConstantExpr(EmptyShell Empty, | 
|  | ConstantResultStorageKind StorageKind) | 
|  | : FullExpr(ConstantExprClass, Empty) { | 
|  | ConstantExprBits.ResultKind = llvm::to_underlying(StorageKind); | 
|  |  | 
|  | if (StorageKind == ConstantResultStorageKind::APValue) | 
|  | ::new (getTrailingObjects<APValue>()) APValue(); | 
|  | } | 
|  |  | 
|  | ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, | 
|  | ConstantResultStorageKind StorageKind) { | 
|  | AssertResultStorageKind(StorageKind); | 
|  |  | 
|  | unsigned Size = totalSizeToAlloc<APValue, uint64_t>( | 
|  | StorageKind == ConstantResultStorageKind::APValue, | 
|  | StorageKind == ConstantResultStorageKind::Int64); | 
|  | void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); | 
|  | return new (Mem) ConstantExpr(EmptyShell(), StorageKind); | 
|  | } | 
|  |  | 
|  | void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { | 
|  | assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && | 
|  | "Invalid storage for this value kind"); | 
|  | ConstantExprBits.APValueKind = Value.getKind(); | 
|  | switch (getResultStorageKind()) { | 
|  | case ConstantResultStorageKind::None: | 
|  | return; | 
|  | case ConstantResultStorageKind::Int64: | 
|  | Int64Result() = *Value.getInt().getRawData(); | 
|  | ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); | 
|  | ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); | 
|  | return; | 
|  | case ConstantResultStorageKind::APValue: | 
|  | if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { | 
|  | ConstantExprBits.HasCleanup = true; | 
|  | Context.addDestruction(&APValueResult()); | 
|  | } | 
|  | APValueResult() = std::move(Value); | 
|  | return; | 
|  | } | 
|  | llvm_unreachable("Invalid ResultKind Bits"); | 
|  | } | 
|  |  | 
|  | llvm::APSInt ConstantExpr::getResultAsAPSInt() const { | 
|  | switch (getResultStorageKind()) { | 
|  | case ConstantResultStorageKind::APValue: | 
|  | return APValueResult().getInt(); | 
|  | case ConstantResultStorageKind::Int64: | 
|  | return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), | 
|  | ConstantExprBits.IsUnsigned); | 
|  | default: | 
|  | llvm_unreachable("invalid Accessor"); | 
|  | } | 
|  | } | 
|  |  | 
|  | APValue ConstantExpr::getAPValueResult() const { | 
|  |  | 
|  | switch (getResultStorageKind()) { | 
|  | case ConstantResultStorageKind::APValue: | 
|  | return APValueResult(); | 
|  | case ConstantResultStorageKind::Int64: | 
|  | return APValue( | 
|  | llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), | 
|  | ConstantExprBits.IsUnsigned)); | 
|  | case ConstantResultStorageKind::None: | 
|  | if (ConstantExprBits.APValueKind == APValue::Indeterminate) | 
|  | return APValue::IndeterminateValue(); | 
|  | return APValue(); | 
|  | } | 
|  | llvm_unreachable("invalid ResultKind"); | 
|  | } | 
|  |  | 
|  | DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, | 
|  | bool RefersToEnclosingVariableOrCapture, QualType T, | 
|  | ExprValueKind VK, SourceLocation L, | 
|  | const DeclarationNameLoc &LocInfo, | 
|  | NonOdrUseReason NOUR) | 
|  | : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { | 
|  | DeclRefExprBits.HasQualifier = false; | 
|  | DeclRefExprBits.HasTemplateKWAndArgsInfo = false; | 
|  | DeclRefExprBits.HasFoundDecl = false; | 
|  | DeclRefExprBits.HadMultipleCandidates = false; | 
|  | DeclRefExprBits.RefersToEnclosingVariableOrCapture = | 
|  | RefersToEnclosingVariableOrCapture; | 
|  | DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; | 
|  | DeclRefExprBits.NonOdrUseReason = NOUR; | 
|  | DeclRefExprBits.IsImmediateEscalating = false; | 
|  | DeclRefExprBits.Loc = L; | 
|  | setDependence(computeDependence(this, Ctx)); | 
|  | } | 
|  |  | 
|  | DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TemplateKWLoc, ValueDecl *D, | 
|  | bool RefersToEnclosingVariableOrCapture, | 
|  | const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, | 
|  | const TemplateArgumentListInfo *TemplateArgs, | 
|  | QualType T, ExprValueKind VK, NonOdrUseReason NOUR) | 
|  | : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), | 
|  | DNLoc(NameInfo.getInfo()) { | 
|  | DeclRefExprBits.Loc = NameInfo.getLoc(); | 
|  | DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; | 
|  | if (QualifierLoc) | 
|  | new (getTrailingObjects<NestedNameSpecifierLoc>()) | 
|  | NestedNameSpecifierLoc(QualifierLoc); | 
|  | DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; | 
|  | if (FoundD) | 
|  | *getTrailingObjects<NamedDecl *>() = FoundD; | 
|  | DeclRefExprBits.HasTemplateKWAndArgsInfo | 
|  | = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; | 
|  | DeclRefExprBits.RefersToEnclosingVariableOrCapture = | 
|  | RefersToEnclosingVariableOrCapture; | 
|  | DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; | 
|  | DeclRefExprBits.NonOdrUseReason = NOUR; | 
|  | if (TemplateArgs) { | 
|  | auto Deps = TemplateArgumentDependence::None; | 
|  | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), | 
|  | Deps); | 
|  | assert(!(Deps & TemplateArgumentDependence::Dependent) && | 
|  | "built a DeclRefExpr with dependent template args"); | 
|  | } else if (TemplateKWLoc.isValid()) { | 
|  | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc); | 
|  | } | 
|  | DeclRefExprBits.IsImmediateEscalating = false; | 
|  | DeclRefExprBits.HadMultipleCandidates = 0; | 
|  | setDependence(computeDependence(this, Ctx)); | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TemplateKWLoc, ValueDecl *D, | 
|  | bool RefersToEnclosingVariableOrCapture, | 
|  | SourceLocation NameLoc, QualType T, | 
|  | ExprValueKind VK, NamedDecl *FoundD, | 
|  | const TemplateArgumentListInfo *TemplateArgs, | 
|  | NonOdrUseReason NOUR) { | 
|  | return Create(Context, QualifierLoc, TemplateKWLoc, D, | 
|  | RefersToEnclosingVariableOrCapture, | 
|  | DeclarationNameInfo(D->getDeclName(), NameLoc), | 
|  | T, VK, FoundD, TemplateArgs, NOUR); | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TemplateKWLoc, ValueDecl *D, | 
|  | bool RefersToEnclosingVariableOrCapture, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, ExprValueKind VK, | 
|  | NamedDecl *FoundD, | 
|  | const TemplateArgumentListInfo *TemplateArgs, | 
|  | NonOdrUseReason NOUR) { | 
|  | // Filter out cases where the found Decl is the same as the value refenenced. | 
|  | if (D == FoundD) | 
|  | FoundD = nullptr; | 
|  |  | 
|  | bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); | 
|  | std::size_t Size = | 
|  | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, | 
|  | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( | 
|  | QualifierLoc ? 1 : 0, FoundD ? 1 : 0, | 
|  | HasTemplateKWAndArgsInfo ? 1 : 0, | 
|  | TemplateArgs ? TemplateArgs->size() : 0); | 
|  |  | 
|  | void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); | 
|  | return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, | 
|  | RefersToEnclosingVariableOrCapture, NameInfo, | 
|  | FoundD, TemplateArgs, T, VK, NOUR); | 
|  | } | 
|  |  | 
|  | DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, | 
|  | bool HasQualifier, | 
|  | bool HasFoundDecl, | 
|  | bool HasTemplateKWAndArgsInfo, | 
|  | unsigned NumTemplateArgs) { | 
|  | assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); | 
|  | std::size_t Size = | 
|  | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, | 
|  | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( | 
|  | HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, | 
|  | NumTemplateArgs); | 
|  | void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); | 
|  | return new (Mem) DeclRefExpr(EmptyShell()); | 
|  | } | 
|  |  | 
|  | void DeclRefExpr::setDecl(ValueDecl *NewD) { | 
|  | D = NewD; | 
|  | if (getType()->isUndeducedType()) | 
|  | setType(NewD->getType()); | 
|  | setDependence(computeDependence(this, NewD->getASTContext())); | 
|  | } | 
|  |  | 
|  | SourceLocation DeclRefExpr::getEndLoc() const { | 
|  | if (hasExplicitTemplateArgs()) | 
|  | return getRAngleLoc(); | 
|  | return getNameInfo().getEndLoc(); | 
|  | } | 
|  |  | 
|  | SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, | 
|  | SourceLocation LParen, | 
|  | SourceLocation RParen, | 
|  | QualType ResultTy, | 
|  | TypeSourceInfo *TSI) | 
|  | : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), | 
|  | OpLoc(OpLoc), LParen(LParen), RParen(RParen) { | 
|  | setTypeSourceInfo(TSI); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, | 
|  | QualType ResultTy) | 
|  | : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} | 
|  |  | 
|  | SYCLUniqueStableNameExpr * | 
|  | SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, | 
|  | SourceLocation LParen, SourceLocation RParen, | 
|  | TypeSourceInfo *TSI) { | 
|  | QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); | 
|  | return new (Ctx) | 
|  | SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); | 
|  | } | 
|  |  | 
|  | SYCLUniqueStableNameExpr * | 
|  | SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { | 
|  | QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst()); | 
|  | return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); | 
|  | } | 
|  |  | 
|  | std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { | 
|  | return SYCLUniqueStableNameExpr::ComputeName(Context, | 
|  | getTypeSourceInfo()->getType()); | 
|  | } | 
|  |  | 
|  | std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, | 
|  | QualType Ty) { | 
|  | auto MangleCallback = [](ASTContext &Ctx, | 
|  | const NamedDecl *ND) -> UnsignedOrNone { | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) | 
|  | return RD->getDeviceLambdaManglingNumber(); | 
|  | return std::nullopt; | 
|  | }; | 
|  |  | 
|  | std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( | 
|  | Context, Context.getDiagnostics(), MangleCallback)}; | 
|  |  | 
|  | std::string Buffer; | 
|  | Buffer.reserve(128); | 
|  | llvm::raw_string_ostream Out(Buffer); | 
|  | Ctx->mangleCanonicalTypeName(Ty, Out); | 
|  |  | 
|  | return Buffer; | 
|  | } | 
|  |  | 
|  | PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, | 
|  | PredefinedIdentKind IK, bool IsTransparent, | 
|  | StringLiteral *SL) | 
|  | : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { | 
|  | PredefinedExprBits.Kind = llvm::to_underlying(IK); | 
|  | assert((getIdentKind() == IK) && | 
|  | "IdentKind do not fit in PredefinedExprBitfields!"); | 
|  | bool HasFunctionName = SL != nullptr; | 
|  | PredefinedExprBits.HasFunctionName = HasFunctionName; | 
|  | PredefinedExprBits.IsTransparent = IsTransparent; | 
|  | PredefinedExprBits.Loc = L; | 
|  | if (HasFunctionName) | 
|  | setFunctionName(SL); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) | 
|  | : Expr(PredefinedExprClass, Empty) { | 
|  | PredefinedExprBits.HasFunctionName = HasFunctionName; | 
|  | } | 
|  |  | 
|  | PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, | 
|  | QualType FNTy, PredefinedIdentKind IK, | 
|  | bool IsTransparent, StringLiteral *SL) { | 
|  | bool HasFunctionName = SL != nullptr; | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), | 
|  | alignof(PredefinedExpr)); | 
|  | return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); | 
|  | } | 
|  |  | 
|  | PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, | 
|  | bool HasFunctionName) { | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), | 
|  | alignof(PredefinedExpr)); | 
|  | return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); | 
|  | } | 
|  |  | 
|  | StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) { | 
|  | switch (IK) { | 
|  | case PredefinedIdentKind::Func: | 
|  | return "__func__"; | 
|  | case PredefinedIdentKind::Function: | 
|  | return "__FUNCTION__"; | 
|  | case PredefinedIdentKind::FuncDName: | 
|  | return "__FUNCDNAME__"; | 
|  | case PredefinedIdentKind::LFunction: | 
|  | return "L__FUNCTION__"; | 
|  | case PredefinedIdentKind::PrettyFunction: | 
|  | return "__PRETTY_FUNCTION__"; | 
|  | case PredefinedIdentKind::FuncSig: | 
|  | return "__FUNCSIG__"; | 
|  | case PredefinedIdentKind::LFuncSig: | 
|  | return "L__FUNCSIG__"; | 
|  | case PredefinedIdentKind::PrettyFunctionNoVirtual: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unknown ident kind for PredefinedExpr"); | 
|  | } | 
|  |  | 
|  | // FIXME: Maybe this should use DeclPrinter with a special "print predefined | 
|  | // expr" policy instead. | 
|  | std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK, | 
|  | const Decl *CurrentDecl, | 
|  | bool ForceElaboratedPrinting) { | 
|  | ASTContext &Context = CurrentDecl->getASTContext(); | 
|  |  | 
|  | if (IK == PredefinedIdentKind::FuncDName) { | 
|  | if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { | 
|  | std::unique_ptr<MangleContext> MC; | 
|  | MC.reset(Context.createMangleContext()); | 
|  |  | 
|  | if (MC->shouldMangleDeclName(ND)) { | 
|  | SmallString<256> Buffer; | 
|  | llvm::raw_svector_ostream Out(Buffer); | 
|  | GlobalDecl GD; | 
|  | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) | 
|  | GD = GlobalDecl(CD, Ctor_Base); | 
|  | else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) | 
|  | GD = GlobalDecl(DD, Dtor_Base); | 
|  | else if (auto FD = dyn_cast<FunctionDecl>(ND)) { | 
|  | GD = FD->isReferenceableKernel() ? GlobalDecl(FD) : GlobalDecl(ND); | 
|  | } else | 
|  | GD = GlobalDecl(ND); | 
|  | MC->mangleName(GD, Out); | 
|  |  | 
|  | if (!Buffer.empty() && Buffer.front() == '\01') | 
|  | return std::string(Buffer.substr(1)); | 
|  | return std::string(Buffer); | 
|  | } | 
|  | return std::string(ND->getIdentifier()->getName()); | 
|  | } | 
|  | return ""; | 
|  | } | 
|  | if (isa<BlockDecl>(CurrentDecl)) { | 
|  | // For blocks we only emit something if it is enclosed in a function | 
|  | // For top-level block we'd like to include the name of variable, but we | 
|  | // don't have it at this point. | 
|  | auto DC = CurrentDecl->getDeclContext(); | 
|  | if (DC->isFileContext()) | 
|  | return ""; | 
|  |  | 
|  | SmallString<256> Buffer; | 
|  | llvm::raw_svector_ostream Out(Buffer); | 
|  | if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) | 
|  | // For nested blocks, propagate up to the parent. | 
|  | Out << ComputeName(IK, DCBlock); | 
|  | else if (auto *DCDecl = dyn_cast<Decl>(DC)) | 
|  | Out << ComputeName(IK, DCDecl) << "_block_invoke"; | 
|  | return std::string(Out.str()); | 
|  | } | 
|  | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { | 
|  | const auto &LO = Context.getLangOpts(); | 
|  | bool IsFuncOrFunctionInNonMSVCCompatEnv = | 
|  | ((IK == PredefinedIdentKind::Func || | 
|  | IK == PredefinedIdentKind ::Function) && | 
|  | !LO.MSVCCompat); | 
|  | bool IsLFunctionInMSVCCommpatEnv = | 
|  | IK == PredefinedIdentKind::LFunction && LO.MSVCCompat; | 
|  | bool IsFuncOrFunctionOrLFunctionOrFuncDName = | 
|  | IK != PredefinedIdentKind::PrettyFunction && | 
|  | IK != PredefinedIdentKind::PrettyFunctionNoVirtual && | 
|  | IK != PredefinedIdentKind::FuncSig && | 
|  | IK != PredefinedIdentKind::LFuncSig; | 
|  | if ((ForceElaboratedPrinting && | 
|  | (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) || | 
|  | (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName)) | 
|  | return FD->getNameAsString(); | 
|  |  | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  |  | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual) | 
|  | Out << "virtual "; | 
|  | if (MD->isStatic() && !ForceElaboratedPrinting) | 
|  | Out << "static "; | 
|  | } | 
|  |  | 
|  | class PrettyCallbacks final : public PrintingCallbacks { | 
|  | public: | 
|  | PrettyCallbacks(const LangOptions &LO) : LO(LO) {} | 
|  | std::string remapPath(StringRef Path) const override { | 
|  | SmallString<128> p(Path); | 
|  | LO.remapPathPrefix(p); | 
|  | return std::string(p); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const LangOptions &LO; | 
|  | }; | 
|  | PrintingPolicy Policy(Context.getLangOpts()); | 
|  | PrettyCallbacks PrettyCB(Context.getLangOpts()); | 
|  | Policy.Callbacks = &PrettyCB; | 
|  | if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting) | 
|  | Policy.SuppressTagKeyword = !LO.MSVCCompat; | 
|  | std::string Proto; | 
|  | llvm::raw_string_ostream POut(Proto); | 
|  |  | 
|  | const FunctionDecl *Decl = FD; | 
|  | if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) | 
|  | Decl = Pattern; | 
|  |  | 
|  | // Bail out if the type of the function has not been set yet. | 
|  | // This can notably happen in the trailing return type of a lambda | 
|  | // expression. | 
|  | const Type *Ty = Decl->getType().getTypePtrOrNull(); | 
|  | if (!Ty) | 
|  | return ""; | 
|  |  | 
|  | const FunctionType *AFT = Ty->getAs<FunctionType>(); | 
|  | const FunctionProtoType *FT = nullptr; | 
|  | if (FD->hasWrittenPrototype()) | 
|  | FT = dyn_cast<FunctionProtoType>(AFT); | 
|  |  | 
|  | if (IK == PredefinedIdentKind::FuncSig || | 
|  | IK == PredefinedIdentKind::LFuncSig) { | 
|  | switch (AFT->getCallConv()) { | 
|  | case CC_C: POut << "__cdecl "; break; | 
|  | case CC_X86StdCall: POut << "__stdcall "; break; | 
|  | case CC_X86FastCall: POut << "__fastcall "; break; | 
|  | case CC_X86ThisCall: POut << "__thiscall "; break; | 
|  | case CC_X86VectorCall: POut << "__vectorcall "; break; | 
|  | case CC_X86RegCall: POut << "__regcall "; break; | 
|  | // Only bother printing the conventions that MSVC knows about. | 
|  | default: break; | 
|  | } | 
|  | } | 
|  |  | 
|  | FD->printQualifiedName(POut, Policy); | 
|  |  | 
|  | if (IK == PredefinedIdentKind::Function) { | 
|  | Out << Proto; | 
|  | return std::string(Name); | 
|  | } | 
|  |  | 
|  | POut << "("; | 
|  | if (FT) { | 
|  | for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { | 
|  | if (i) POut << ", "; | 
|  | POut << Decl->getParamDecl(i)->getType().stream(Policy); | 
|  | } | 
|  |  | 
|  | if (FT->isVariadic()) { | 
|  | if (FD->getNumParams()) POut << ", "; | 
|  | POut << "..."; | 
|  | } else if ((IK == PredefinedIdentKind::FuncSig || | 
|  | IK == PredefinedIdentKind::LFuncSig || | 
|  | !Context.getLangOpts().CPlusPlus) && | 
|  | !Decl->getNumParams()) { | 
|  | POut << "void"; | 
|  | } | 
|  | } | 
|  | POut << ")"; | 
|  |  | 
|  | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | assert(FT && "We must have a written prototype in this case."); | 
|  | if (FT->isConst()) | 
|  | POut << " const"; | 
|  | if (FT->isVolatile()) | 
|  | POut << " volatile"; | 
|  | RefQualifierKind Ref = MD->getRefQualifier(); | 
|  | if (Ref == RQ_LValue) | 
|  | POut << " &"; | 
|  | else if (Ref == RQ_RValue) | 
|  | POut << " &&"; | 
|  | } | 
|  |  | 
|  | typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; | 
|  | SpecsTy Specs; | 
|  | const DeclContext *Ctx = FD->getDeclContext(); | 
|  | while (isa_and_nonnull<NamedDecl>(Ctx)) { | 
|  | const ClassTemplateSpecializationDecl *Spec | 
|  | = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); | 
|  | if (Spec && !Spec->isExplicitSpecialization()) | 
|  | Specs.push_back(Spec); | 
|  | Ctx = Ctx->getParent(); | 
|  | } | 
|  |  | 
|  | std::string TemplateParams; | 
|  | llvm::raw_string_ostream TOut(TemplateParams); | 
|  | for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) { | 
|  | const TemplateParameterList *Params = | 
|  | D->getSpecializedTemplate()->getTemplateParameters(); | 
|  | const TemplateArgumentList &Args = D->getTemplateArgs(); | 
|  | assert(Params->size() == Args.size()); | 
|  | for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { | 
|  | StringRef Param = Params->getParam(i)->getName(); | 
|  | if (Param.empty()) continue; | 
|  | TOut << Param << " = "; | 
|  | Args.get(i).print(Policy, TOut, | 
|  | TemplateParameterList::shouldIncludeTypeForArgument( | 
|  | Policy, Params, i)); | 
|  | TOut << ", "; | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionTemplateSpecializationInfo *FSI | 
|  | = FD->getTemplateSpecializationInfo(); | 
|  | if (FSI && !FSI->isExplicitSpecialization()) { | 
|  | const TemplateParameterList* Params | 
|  | = FSI->getTemplate()->getTemplateParameters(); | 
|  | const TemplateArgumentList* Args = FSI->TemplateArguments; | 
|  | assert(Params->size() == Args->size()); | 
|  | for (unsigned i = 0, e = Params->size(); i != e; ++i) { | 
|  | StringRef Param = Params->getParam(i)->getName(); | 
|  | if (Param.empty()) continue; | 
|  | TOut << Param << " = "; | 
|  | Args->get(i).print(Policy, TOut, /*IncludeType*/ true); | 
|  | TOut << ", "; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TemplateParams.empty()) { | 
|  | // remove the trailing comma and space | 
|  | TemplateParams.resize(TemplateParams.size() - 2); | 
|  | POut << " [" << TemplateParams << "]"; | 
|  | } | 
|  |  | 
|  | // Print "auto" for all deduced return types. This includes C++1y return | 
|  | // type deduction and lambdas. For trailing return types resolve the | 
|  | // decltype expression. Otherwise print the real type when this is | 
|  | // not a constructor or destructor. | 
|  | if (isLambdaMethod(FD)) | 
|  | Proto = "auto " + Proto; | 
|  | else if (FT && FT->getReturnType()->getAs<DecltypeType>()) | 
|  | FT->getReturnType() | 
|  | ->getAs<DecltypeType>() | 
|  | ->getUnderlyingType() | 
|  | .getAsStringInternal(Proto, Policy); | 
|  | else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) | 
|  | AFT->getReturnType().getAsStringInternal(Proto, Policy); | 
|  |  | 
|  | Out << Proto; | 
|  |  | 
|  | return std::string(Name); | 
|  | } | 
|  | if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { | 
|  | for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) | 
|  | // Skip to its enclosing function or method, but not its enclosing | 
|  | // CapturedDecl. | 
|  | if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { | 
|  | const Decl *D = Decl::castFromDeclContext(DC); | 
|  | return ComputeName(IK, D); | 
|  | } | 
|  | llvm_unreachable("CapturedDecl not inside a function or method"); | 
|  | } | 
|  | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { | 
|  | SmallString<256> Name; | 
|  | llvm::raw_svector_ostream Out(Name); | 
|  | Out << (MD->isInstanceMethod() ? '-' : '+'); | 
|  | Out << '['; | 
|  |  | 
|  | // For incorrect code, there might not be an ObjCInterfaceDecl.  Do | 
|  | // a null check to avoid a crash. | 
|  | if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) | 
|  | Out << *ID; | 
|  |  | 
|  | if (const ObjCCategoryImplDecl *CID = | 
|  | dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) | 
|  | Out << '(' << *CID << ')'; | 
|  |  | 
|  | Out <<  ' '; | 
|  | MD->getSelector().print(Out); | 
|  | Out <<  ']'; | 
|  |  | 
|  | return std::string(Name); | 
|  | } | 
|  | if (isa<TranslationUnitDecl>(CurrentDecl) && | 
|  | IK == PredefinedIdentKind::PrettyFunction) { | 
|  | // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. | 
|  | return "top level"; | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | void APNumericStorage::setIntValue(const ASTContext &C, | 
|  | const llvm::APInt &Val) { | 
|  | if (hasAllocation()) | 
|  | C.Deallocate(pVal); | 
|  |  | 
|  | BitWidth = Val.getBitWidth(); | 
|  | unsigned NumWords = Val.getNumWords(); | 
|  | const uint64_t* Words = Val.getRawData(); | 
|  | if (NumWords > 1) { | 
|  | pVal = new (C) uint64_t[NumWords]; | 
|  | std::copy(Words, Words + NumWords, pVal); | 
|  | } else if (NumWords == 1) | 
|  | VAL = Words[0]; | 
|  | else | 
|  | VAL = 0; | 
|  | } | 
|  |  | 
|  | IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, | 
|  | QualType type, SourceLocation l) | 
|  | : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { | 
|  | assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); | 
|  | assert(V.getBitWidth() == C.getIntWidth(type) && | 
|  | "Integer type is not the correct size for constant."); | 
|  | setValue(C, V); | 
|  | setDependence(ExprDependence::None); | 
|  | } | 
|  |  | 
|  | IntegerLiteral * | 
|  | IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, | 
|  | QualType type, SourceLocation l) { | 
|  | return new (C) IntegerLiteral(C, V, type, l); | 
|  | } | 
|  |  | 
|  | IntegerLiteral * | 
|  | IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) IntegerLiteral(Empty); | 
|  | } | 
|  |  | 
|  | FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, | 
|  | QualType type, SourceLocation l, | 
|  | unsigned Scale) | 
|  | : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), | 
|  | Scale(Scale) { | 
|  | assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); | 
|  | assert(V.getBitWidth() == C.getTypeInfo(type).Width && | 
|  | "Fixed point type is not the correct size for constant."); | 
|  | setValue(C, V); | 
|  | setDependence(ExprDependence::None); | 
|  | } | 
|  |  | 
|  | FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, | 
|  | const llvm::APInt &V, | 
|  | QualType type, | 
|  | SourceLocation l, | 
|  | unsigned Scale) { | 
|  | return new (C) FixedPointLiteral(C, V, type, l, Scale); | 
|  | } | 
|  |  | 
|  | FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, | 
|  | EmptyShell Empty) { | 
|  | return new (C) FixedPointLiteral(Empty); | 
|  | } | 
|  |  | 
|  | std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { | 
|  | // Currently the longest decimal number that can be printed is the max for an | 
|  | // unsigned long _Accum: 4294967295.99999999976716935634613037109375 | 
|  | // which is 43 characters. | 
|  | SmallString<64> S; | 
|  | FixedPointValueToString( | 
|  | S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); | 
|  | return std::string(S); | 
|  | } | 
|  |  | 
|  | void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind, | 
|  | raw_ostream &OS) { | 
|  | switch (Kind) { | 
|  | case CharacterLiteralKind::Ascii: | 
|  | break; // no prefix. | 
|  | case CharacterLiteralKind::Wide: | 
|  | OS << 'L'; | 
|  | break; | 
|  | case CharacterLiteralKind::UTF8: | 
|  | OS << "u8"; | 
|  | break; | 
|  | case CharacterLiteralKind::UTF16: | 
|  | OS << 'u'; | 
|  | break; | 
|  | case CharacterLiteralKind::UTF32: | 
|  | OS << 'U'; | 
|  | break; | 
|  | } | 
|  |  | 
|  | StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val); | 
|  | if (!Escaped.empty()) { | 
|  | OS << "'" << Escaped << "'"; | 
|  | } else { | 
|  | // A character literal might be sign-extended, which | 
|  | // would result in an invalid \U escape sequence. | 
|  | // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' | 
|  | // are not correctly handled. | 
|  | if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii) | 
|  | Val &= 0xFFu; | 
|  | if (Val < 256 && isPrintable((unsigned char)Val)) | 
|  | OS << "'" << (char)Val << "'"; | 
|  | else if (Val < 256) | 
|  | OS << "'\\x" << llvm::format("%02x", Val) << "'"; | 
|  | else if (Val <= 0xFFFF) | 
|  | OS << "'\\u" << llvm::format("%04x", Val) << "'"; | 
|  | else | 
|  | OS << "'\\U" << llvm::format("%08x", Val) << "'"; | 
|  | } | 
|  | } | 
|  |  | 
|  | FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, | 
|  | bool isexact, QualType Type, SourceLocation L) | 
|  | : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { | 
|  | setSemantics(V.getSemantics()); | 
|  | FloatingLiteralBits.IsExact = isexact; | 
|  | setValue(C, V); | 
|  | setDependence(ExprDependence::None); | 
|  | } | 
|  |  | 
|  | FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) | 
|  | : Expr(FloatingLiteralClass, Empty) { | 
|  | setRawSemantics(llvm::APFloatBase::S_IEEEhalf); | 
|  | FloatingLiteralBits.IsExact = false; | 
|  | } | 
|  |  | 
|  | FloatingLiteral * | 
|  | FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, | 
|  | bool isexact, QualType Type, SourceLocation L) { | 
|  | return new (C) FloatingLiteral(C, V, isexact, Type, L); | 
|  | } | 
|  |  | 
|  | FloatingLiteral * | 
|  | FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { | 
|  | return new (C) FloatingLiteral(C, Empty); | 
|  | } | 
|  |  | 
|  | /// getValueAsApproximateDouble - This returns the value as an inaccurate | 
|  | /// double.  Note that this may cause loss of precision, but is useful for | 
|  | /// debugging dumps, etc. | 
|  | double FloatingLiteral::getValueAsApproximateDouble() const { | 
|  | llvm::APFloat V = getValue(); | 
|  | bool ignored; | 
|  | V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, | 
|  | &ignored); | 
|  | return V.convertToDouble(); | 
|  | } | 
|  |  | 
|  | unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, | 
|  | StringLiteralKind SK) { | 
|  | unsigned CharByteWidth = 0; | 
|  | switch (SK) { | 
|  | case StringLiteralKind::Ordinary: | 
|  | case StringLiteralKind::UTF8: | 
|  | case StringLiteralKind::Binary: | 
|  | CharByteWidth = Target.getCharWidth(); | 
|  | break; | 
|  | case StringLiteralKind::Wide: | 
|  | CharByteWidth = Target.getWCharWidth(); | 
|  | break; | 
|  | case StringLiteralKind::UTF16: | 
|  | CharByteWidth = Target.getChar16Width(); | 
|  | break; | 
|  | case StringLiteralKind::UTF32: | 
|  | CharByteWidth = Target.getChar32Width(); | 
|  | break; | 
|  | case StringLiteralKind::Unevaluated: | 
|  | return sizeof(char); // Host; | 
|  | } | 
|  | assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); | 
|  | CharByteWidth /= 8; | 
|  | assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && | 
|  | "The only supported character byte widths are 1,2 and 4!"); | 
|  | return CharByteWidth; | 
|  | } | 
|  |  | 
|  | StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, | 
|  | StringLiteralKind Kind, bool Pascal, QualType Ty, | 
|  | ArrayRef<SourceLocation> Locs) | 
|  | : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { | 
|  |  | 
|  | unsigned Length = Str.size(); | 
|  |  | 
|  | StringLiteralBits.Kind = llvm::to_underlying(Kind); | 
|  | StringLiteralBits.NumConcatenated = Locs.size(); | 
|  |  | 
|  | if (Kind != StringLiteralKind::Unevaluated) { | 
|  | assert(Ctx.getAsConstantArrayType(Ty) && | 
|  | "StringLiteral must be of constant array type!"); | 
|  | unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); | 
|  | unsigned ByteLength = Str.size(); | 
|  | assert((ByteLength % CharByteWidth == 0) && | 
|  | "The size of the data must be a multiple of CharByteWidth!"); | 
|  |  | 
|  | // Avoid the expensive division. The compiler should be able to figure it | 
|  | // out by itself. However as of clang 7, even with the appropriate | 
|  | // llvm_unreachable added just here, it is not able to do so. | 
|  | switch (CharByteWidth) { | 
|  | case 1: | 
|  | Length = ByteLength; | 
|  | break; | 
|  | case 2: | 
|  | Length = ByteLength / 2; | 
|  | break; | 
|  | case 4: | 
|  | Length = ByteLength / 4; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unsupported character width!"); | 
|  | } | 
|  |  | 
|  | StringLiteralBits.CharByteWidth = CharByteWidth; | 
|  | StringLiteralBits.IsPascal = Pascal; | 
|  | } else { | 
|  | assert(!Pascal && "Can't make an unevaluated Pascal string"); | 
|  | StringLiteralBits.CharByteWidth = 1; | 
|  | StringLiteralBits.IsPascal = false; | 
|  | } | 
|  |  | 
|  | *getTrailingObjects<unsigned>() = Length; | 
|  |  | 
|  | // Initialize the trailing array of SourceLocation. | 
|  | // This is safe since SourceLocation is POD-like. | 
|  | llvm::copy(Locs, getTrailingObjects<SourceLocation>()); | 
|  |  | 
|  | // Initialize the trailing array of char holding the string data. | 
|  | llvm::copy(Str, getTrailingObjects<char>()); | 
|  |  | 
|  | setDependence(ExprDependence::None); | 
|  | } | 
|  |  | 
|  | StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, | 
|  | unsigned Length, unsigned CharByteWidth) | 
|  | : Expr(StringLiteralClass, Empty) { | 
|  | StringLiteralBits.CharByteWidth = CharByteWidth; | 
|  | StringLiteralBits.NumConcatenated = NumConcatenated; | 
|  | *getTrailingObjects<unsigned>() = Length; | 
|  | } | 
|  |  | 
|  | StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, | 
|  | StringLiteralKind Kind, bool Pascal, | 
|  | QualType Ty, | 
|  | ArrayRef<SourceLocation> Locs) { | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( | 
|  | 1, Locs.size(), Str.size()), | 
|  | alignof(StringLiteral)); | 
|  | return new (Mem) StringLiteral(Ctx, Str, Kind, Pascal, Ty, Locs); | 
|  | } | 
|  |  | 
|  | StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, | 
|  | unsigned NumConcatenated, | 
|  | unsigned Length, | 
|  | unsigned CharByteWidth) { | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( | 
|  | 1, NumConcatenated, Length * CharByteWidth), | 
|  | alignof(StringLiteral)); | 
|  | return new (Mem) | 
|  | StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); | 
|  | } | 
|  |  | 
|  | void StringLiteral::outputString(raw_ostream &OS) const { | 
|  | switch (getKind()) { | 
|  | case StringLiteralKind::Unevaluated: | 
|  | case StringLiteralKind::Ordinary: | 
|  | case StringLiteralKind::Binary: | 
|  | break; // no prefix. | 
|  | case StringLiteralKind::Wide: | 
|  | OS << 'L'; | 
|  | break; | 
|  | case StringLiteralKind::UTF8: | 
|  | OS << "u8"; | 
|  | break; | 
|  | case StringLiteralKind::UTF16: | 
|  | OS << 'u'; | 
|  | break; | 
|  | case StringLiteralKind::UTF32: | 
|  | OS << 'U'; | 
|  | break; | 
|  | } | 
|  | OS << '"'; | 
|  | static const char Hex[] = "0123456789ABCDEF"; | 
|  |  | 
|  | unsigned LastSlashX = getLength(); | 
|  | for (unsigned I = 0, N = getLength(); I != N; ++I) { | 
|  | uint32_t Char = getCodeUnit(I); | 
|  | StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char); | 
|  | if (Escaped.empty()) { | 
|  | // FIXME: Convert UTF-8 back to codepoints before rendering. | 
|  |  | 
|  | // Convert UTF-16 surrogate pairs back to codepoints before rendering. | 
|  | // Leave invalid surrogates alone; we'll use \x for those. | 
|  | if (getKind() == StringLiteralKind::UTF16 && I != N - 1 && | 
|  | Char >= 0xd800 && Char <= 0xdbff) { | 
|  | uint32_t Trail = getCodeUnit(I + 1); | 
|  | if (Trail >= 0xdc00 && Trail <= 0xdfff) { | 
|  | Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Char > 0xff) { | 
|  | // If this is a wide string, output characters over 0xff using \x | 
|  | // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a | 
|  | // codepoint: use \x escapes for invalid codepoints. | 
|  | if (getKind() == StringLiteralKind::Wide || | 
|  | (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { | 
|  | // FIXME: Is this the best way to print wchar_t? | 
|  | OS << "\\x"; | 
|  | int Shift = 28; | 
|  | while ((Char >> Shift) == 0) | 
|  | Shift -= 4; | 
|  | for (/**/; Shift >= 0; Shift -= 4) | 
|  | OS << Hex[(Char >> Shift) & 15]; | 
|  | LastSlashX = I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Char > 0xffff) | 
|  | OS << "\\U00" | 
|  | << Hex[(Char >> 20) & 15] | 
|  | << Hex[(Char >> 16) & 15]; | 
|  | else | 
|  | OS << "\\u"; | 
|  | OS << Hex[(Char >> 12) & 15] | 
|  | << Hex[(Char >>  8) & 15] | 
|  | << Hex[(Char >>  4) & 15] | 
|  | << Hex[(Char >>  0) & 15]; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we used \x... for the previous character, and this character is a | 
|  | // hexadecimal digit, prevent it being slurped as part of the \x. | 
|  | if (LastSlashX + 1 == I) { | 
|  | switch (Char) { | 
|  | case '0': case '1': case '2': case '3': case '4': | 
|  | case '5': case '6': case '7': case '8': case '9': | 
|  | case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': | 
|  | case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': | 
|  | OS << "\"\""; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Char <= 0xff && | 
|  | "Characters above 0xff should already have been handled."); | 
|  |  | 
|  | if (isPrintable(Char)) | 
|  | OS << (char)Char; | 
|  | else  // Output anything hard as an octal escape. | 
|  | OS << '\\' | 
|  | << (char)('0' + ((Char >> 6) & 7)) | 
|  | << (char)('0' + ((Char >> 3) & 7)) | 
|  | << (char)('0' + ((Char >> 0) & 7)); | 
|  | } else { | 
|  | // Handle some common non-printable cases to make dumps prettier. | 
|  | OS << Escaped; | 
|  | } | 
|  | } | 
|  | OS << '"'; | 
|  | } | 
|  |  | 
|  | /// getLocationOfByte - Return a source location that points to the specified | 
|  | /// byte of this string literal. | 
|  | /// | 
|  | /// Strings are amazingly complex.  They can be formed from multiple tokens and | 
|  | /// can have escape sequences in them in addition to the usual trigraph and | 
|  | /// escaped newline business.  This routine handles this complexity. | 
|  | /// | 
|  | /// The *StartToken sets the first token to be searched in this function and | 
|  | /// the *StartTokenByteOffset is the byte offset of the first token. Before | 
|  | /// returning, it updates the *StartToken to the TokNo of the token being found | 
|  | /// and sets *StartTokenByteOffset to the byte offset of the token in the | 
|  | /// string. | 
|  | /// Using these two parameters can reduce the time complexity from O(n^2) to | 
|  | /// O(n) if one wants to get the location of byte for all the tokens in a | 
|  | /// string. | 
|  | /// | 
|  | SourceLocation | 
|  | StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, | 
|  | const LangOptions &Features, | 
|  | const TargetInfo &Target, unsigned *StartToken, | 
|  | unsigned *StartTokenByteOffset) const { | 
|  | // No source location of bytes for binary literals since they don't come from | 
|  | // source. | 
|  | if (getKind() == StringLiteralKind::Binary) | 
|  | return getStrTokenLoc(0); | 
|  |  | 
|  | assert((getKind() == StringLiteralKind::Ordinary || | 
|  | getKind() == StringLiteralKind::UTF8 || | 
|  | getKind() == StringLiteralKind::Unevaluated) && | 
|  | "Only narrow string literals are currently supported"); | 
|  |  | 
|  | // Loop over all of the tokens in this string until we find the one that | 
|  | // contains the byte we're looking for. | 
|  | unsigned TokNo = 0; | 
|  | unsigned StringOffset = 0; | 
|  | if (StartToken) | 
|  | TokNo = *StartToken; | 
|  | if (StartTokenByteOffset) { | 
|  | StringOffset = *StartTokenByteOffset; | 
|  | ByteNo -= StringOffset; | 
|  | } | 
|  | while (true) { | 
|  | assert(TokNo < getNumConcatenated() && "Invalid byte number!"); | 
|  | SourceLocation StrTokLoc = getStrTokenLoc(TokNo); | 
|  |  | 
|  | // Get the spelling of the string so that we can get the data that makes up | 
|  | // the string literal, not the identifier for the macro it is potentially | 
|  | // expanded through. | 
|  | SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); | 
|  |  | 
|  | // Re-lex the token to get its length and original spelling. | 
|  | FileIDAndOffset LocInfo = SM.getDecomposedLoc(StrTokSpellingLoc); | 
|  | bool Invalid = false; | 
|  | StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); | 
|  | if (Invalid) { | 
|  | if (StartTokenByteOffset != nullptr) | 
|  | *StartTokenByteOffset = StringOffset; | 
|  | if (StartToken != nullptr) | 
|  | *StartToken = TokNo; | 
|  | return StrTokSpellingLoc; | 
|  | } | 
|  |  | 
|  | const char *StrData = Buffer.data()+LocInfo.second; | 
|  |  | 
|  | // Create a lexer starting at the beginning of this token. | 
|  | Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, | 
|  | Buffer.begin(), StrData, Buffer.end()); | 
|  | Token TheTok; | 
|  | TheLexer.LexFromRawLexer(TheTok); | 
|  |  | 
|  | // Use the StringLiteralParser to compute the length of the string in bytes. | 
|  | StringLiteralParser SLP(TheTok, SM, Features, Target); | 
|  | unsigned TokNumBytes = SLP.GetStringLength(); | 
|  |  | 
|  | // If the byte is in this token, return the location of the byte. | 
|  | if (ByteNo < TokNumBytes || | 
|  | (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { | 
|  | unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); | 
|  |  | 
|  | // Now that we know the offset of the token in the spelling, use the | 
|  | // preprocessor to get the offset in the original source. | 
|  | if (StartTokenByteOffset != nullptr) | 
|  | *StartTokenByteOffset = StringOffset; | 
|  | if (StartToken != nullptr) | 
|  | *StartToken = TokNo; | 
|  | return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); | 
|  | } | 
|  |  | 
|  | // Move to the next string token. | 
|  | StringOffset += TokNumBytes; | 
|  | ++TokNo; | 
|  | ByteNo -= TokNumBytes; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
|  | /// corresponds to, e.g. "sizeof" or "[pre]++". | 
|  | StringRef UnaryOperator::getOpcodeStr(Opcode Op) { | 
|  | switch (Op) { | 
|  | #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; | 
|  | #include "clang/AST/OperationKinds.def" | 
|  | } | 
|  | llvm_unreachable("Unknown unary operator"); | 
|  | } | 
|  |  | 
|  | UnaryOperatorKind | 
|  | UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { | 
|  | switch (OO) { | 
|  | default: llvm_unreachable("No unary operator for overloaded function"); | 
|  | case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc; | 
|  | case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; | 
|  | case OO_Amp:        return UO_AddrOf; | 
|  | case OO_Star:       return UO_Deref; | 
|  | case OO_Plus:       return UO_Plus; | 
|  | case OO_Minus:      return UO_Minus; | 
|  | case OO_Tilde:      return UO_Not; | 
|  | case OO_Exclaim:    return UO_LNot; | 
|  | case OO_Coawait:    return UO_Coawait; | 
|  | } | 
|  | } | 
|  |  | 
|  | OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { | 
|  | switch (Opc) { | 
|  | case UO_PostInc: case UO_PreInc: return OO_PlusPlus; | 
|  | case UO_PostDec: case UO_PreDec: return OO_MinusMinus; | 
|  | case UO_AddrOf: return OO_Amp; | 
|  | case UO_Deref: return OO_Star; | 
|  | case UO_Plus: return OO_Plus; | 
|  | case UO_Minus: return OO_Minus; | 
|  | case UO_Not: return OO_Tilde; | 
|  | case UO_LNot: return OO_Exclaim; | 
|  | case UO_Coawait: return OO_Coawait; | 
|  | default: return OO_None; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Postfix Operators. | 
|  | //===----------------------------------------------------------------------===// | 
|  | #ifndef NDEBUG | 
|  | static unsigned SizeOfCallExprInstance(Expr::StmtClass SC) { | 
|  | switch (SC) { | 
|  | case Expr::CallExprClass: | 
|  | return sizeof(CallExpr); | 
|  | case Expr::CXXOperatorCallExprClass: | 
|  | return sizeof(CXXOperatorCallExpr); | 
|  | case Expr::CXXMemberCallExprClass: | 
|  | return sizeof(CXXMemberCallExpr); | 
|  | case Expr::UserDefinedLiteralClass: | 
|  | return sizeof(UserDefinedLiteral); | 
|  | case Expr::CUDAKernelCallExprClass: | 
|  | return sizeof(CUDAKernelCallExpr); | 
|  | default: | 
|  | llvm_unreachable("unexpected class deriving from CallExpr!"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // changing the size of SourceLocation, CallExpr, and | 
|  | // subclasses requires careful considerations | 
|  | static_assert(sizeof(SourceLocation) == 4 && sizeof(CXXOperatorCallExpr) <= 32, | 
|  | "we assume CXXOperatorCallExpr is at most 32 bytes"); | 
|  |  | 
|  | CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, | 
|  | ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, | 
|  | SourceLocation RParenLoc, FPOptionsOverride FPFeatures, | 
|  | unsigned MinNumArgs, ADLCallKind UsesADL) | 
|  | : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { | 
|  | NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); | 
|  | unsigned NumPreArgs = PreArgs.size(); | 
|  | CallExprBits.NumPreArgs = NumPreArgs; | 
|  | assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); | 
|  | assert(SizeOfCallExprInstance(SC) <= OffsetToTrailingObjects && | 
|  | "This CallExpr subclass is too big or unsupported"); | 
|  |  | 
|  | CallExprBits.UsesADL = static_cast<bool>(UsesADL); | 
|  |  | 
|  | setCallee(Fn); | 
|  | for (unsigned I = 0; I != NumPreArgs; ++I) | 
|  | setPreArg(I, PreArgs[I]); | 
|  | for (unsigned I = 0; I != Args.size(); ++I) | 
|  | setArg(I, Args[I]); | 
|  | for (unsigned I = Args.size(); I != NumArgs; ++I) | 
|  | setArg(I, nullptr); | 
|  |  | 
|  | this->computeDependence(); | 
|  |  | 
|  | CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | CallExprBits.IsCoroElideSafe = false; | 
|  | CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false; | 
|  | CallExprBits.HasTrailingSourceLoc = false; | 
|  |  | 
|  | if (hasStoredFPFeatures()) | 
|  | setStoredFPFeatures(FPFeatures); | 
|  | } | 
|  |  | 
|  | CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, | 
|  | bool HasFPFeatures, EmptyShell Empty) | 
|  | : Expr(SC, Empty), NumArgs(NumArgs) { | 
|  | CallExprBits.NumPreArgs = NumPreArgs; | 
|  | assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); | 
|  | CallExprBits.HasFPFeatures = HasFPFeatures; | 
|  | CallExprBits.IsCoroElideSafe = false; | 
|  | CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false; | 
|  | CallExprBits.HasTrailingSourceLoc = false; | 
|  | } | 
|  |  | 
|  | CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, | 
|  | ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, | 
|  | SourceLocation RParenLoc, | 
|  | FPOptionsOverride FPFeatures, unsigned MinNumArgs, | 
|  | ADLCallKind UsesADL) { | 
|  | unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); | 
|  | unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( | 
|  | /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage()); | 
|  | void *Mem = Ctx.Allocate( | 
|  | sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects), | 
|  | alignof(CallExpr)); | 
|  | CallExpr *E = | 
|  | new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, | 
|  | RParenLoc, FPFeatures, MinNumArgs, UsesADL); | 
|  | E->updateTrailingSourceLoc(); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, | 
|  | bool HasFPFeatures, EmptyShell Empty) { | 
|  | unsigned SizeOfTrailingObjects = | 
|  | CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); | 
|  | void *Mem = Ctx.Allocate( | 
|  | sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects), | 
|  | alignof(CallExpr)); | 
|  | return new (Mem) | 
|  | CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); | 
|  | } | 
|  |  | 
|  | Decl *Expr::getReferencedDeclOfCallee() { | 
|  |  | 
|  | // Optimize for the common case first | 
|  | // (simple function or member function call) | 
|  | // then try more exotic possibilities. | 
|  | Expr *CEE = IgnoreImpCasts(); | 
|  |  | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(CEE)) | 
|  | return DRE->getDecl(); | 
|  |  | 
|  | if (auto *ME = dyn_cast<MemberExpr>(CEE)) | 
|  | return ME->getMemberDecl(); | 
|  |  | 
|  | CEE = CEE->IgnoreParens(); | 
|  |  | 
|  | while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) | 
|  | CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); | 
|  |  | 
|  | // If we're calling a dereference, look at the pointer instead. | 
|  | while (true) { | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(CEE)) { | 
|  | if (BO->isPtrMemOp()) { | 
|  | CEE = BO->getRHS()->IgnoreParenImpCasts(); | 
|  | continue; | 
|  | } | 
|  | } else if (auto *UO = dyn_cast<UnaryOperator>(CEE)) { | 
|  | if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || | 
|  | UO->getOpcode() == UO_Plus) { | 
|  | CEE = UO->getSubExpr()->IgnoreParenImpCasts(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(CEE)) | 
|  | return DRE->getDecl(); | 
|  | if (auto *ME = dyn_cast<MemberExpr>(CEE)) | 
|  | return ME->getMemberDecl(); | 
|  | if (auto *BE = dyn_cast<BlockExpr>(CEE)) | 
|  | return BE->getBlockDecl(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// If this is a call to a builtin, return the builtin ID. If not, return 0. | 
|  | unsigned CallExpr::getBuiltinCallee() const { | 
|  | const auto *FDecl = getDirectCallee(); | 
|  | return FDecl ? FDecl->getBuiltinID() : 0; | 
|  | } | 
|  |  | 
|  | bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { | 
|  | if (unsigned BI = getBuiltinCallee()) | 
|  | return Ctx.BuiltinInfo.isUnevaluated(BI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { | 
|  | const Expr *Callee = getCallee(); | 
|  | QualType CalleeType = Callee->getType(); | 
|  | if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { | 
|  | CalleeType = FnTypePtr->getPointeeType(); | 
|  | } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { | 
|  | CalleeType = BPT->getPointeeType(); | 
|  | } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { | 
|  | if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) | 
|  | return Ctx.VoidTy; | 
|  |  | 
|  | if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens())) | 
|  | return Ctx.DependentTy; | 
|  |  | 
|  | // This should never be overloaded and so should never return null. | 
|  | CalleeType = Expr::findBoundMemberType(Callee); | 
|  | assert(!CalleeType.isNull()); | 
|  | } else if (CalleeType->isRecordType()) { | 
|  | // If the Callee is a record type, then it is a not-yet-resolved | 
|  | // dependent call to the call operator of that type. | 
|  | return Ctx.DependentTy; | 
|  | } else if (CalleeType->isDependentType() || | 
|  | CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) { | 
|  | return Ctx.DependentTy; | 
|  | } | 
|  |  | 
|  | const FunctionType *FnType = CalleeType->castAs<FunctionType>(); | 
|  | return FnType->getReturnType(); | 
|  | } | 
|  |  | 
|  | std::pair<const NamedDecl *, const Attr *> | 
|  | CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { | 
|  | // If the callee is marked nodiscard, return that attribute | 
|  | if (const Decl *D = getCalleeDecl()) | 
|  | if (const auto *A = D->getAttr<WarnUnusedResultAttr>()) | 
|  | return {nullptr, A}; | 
|  |  | 
|  | // If the return type is a struct, union, or enum that is marked nodiscard, | 
|  | // then return the return type attribute. | 
|  | if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) | 
|  | if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) | 
|  | return {TD, A}; | 
|  |  | 
|  | for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; | 
|  | TD = TD->desugar()->getAs<TypedefType>()) | 
|  | if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) | 
|  | return {TD->getDecl(), A}; | 
|  | return {nullptr, nullptr}; | 
|  | } | 
|  |  | 
|  | OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, | 
|  | SourceLocation OperatorLoc, | 
|  | TypeSourceInfo *tsi, | 
|  | ArrayRef<OffsetOfNode> comps, | 
|  | ArrayRef<Expr*> exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | void *Mem = C.Allocate( | 
|  | totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); | 
|  |  | 
|  | return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, | 
|  | RParenLoc); | 
|  | } | 
|  |  | 
|  | OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned numComps, unsigned numExprs) { | 
|  | void *Mem = | 
|  | C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); | 
|  | return new (Mem) OffsetOfExpr(numComps, numExprs); | 
|  | } | 
|  |  | 
|  | OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, | 
|  | SourceLocation OperatorLoc, TypeSourceInfo *tsi, | 
|  | ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, | 
|  | SourceLocation RParenLoc) | 
|  | : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), | 
|  | OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), | 
|  | NumComps(comps.size()), NumExprs(exprs.size()) { | 
|  | for (unsigned i = 0; i != comps.size(); ++i) | 
|  | setComponent(i, comps[i]); | 
|  | for (unsigned i = 0; i != exprs.size(); ++i) | 
|  | setIndexExpr(i, exprs[i]); | 
|  |  | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | IdentifierInfo *OffsetOfNode::getFieldName() const { | 
|  | assert(getKind() == Field || getKind() == Identifier); | 
|  | if (getKind() == Field) | 
|  | return getField()->getIdentifier(); | 
|  |  | 
|  | return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); | 
|  | } | 
|  |  | 
|  | UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( | 
|  | UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, | 
|  | SourceLocation op, SourceLocation rp) | 
|  | : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), | 
|  | OpLoc(op), RParenLoc(rp) { | 
|  | assert(ExprKind <= UETT_Last && "invalid enum value!"); | 
|  | UnaryExprOrTypeTraitExprBits.Kind = ExprKind; | 
|  | assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && | 
|  | "UnaryExprOrTypeTraitExprBits.Kind overflow!"); | 
|  | UnaryExprOrTypeTraitExprBits.IsType = false; | 
|  | Argument.Ex = E; | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, | 
|  | DeclAccessPair FoundDecl, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | const TemplateArgumentListInfo *TemplateArgs, QualType T, | 
|  | ExprValueKind VK, ExprObjectKind OK, | 
|  | NonOdrUseReason NOUR) | 
|  | : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), | 
|  | MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { | 
|  | assert(!NameInfo.getName() || | 
|  | MemberDecl->getDeclName() == NameInfo.getName()); | 
|  | MemberExprBits.IsArrow = IsArrow; | 
|  | MemberExprBits.HasQualifier = QualifierLoc.hasQualifier(); | 
|  | MemberExprBits.HasFoundDecl = | 
|  | FoundDecl.getDecl() != MemberDecl || | 
|  | FoundDecl.getAccess() != MemberDecl->getAccess(); | 
|  | MemberExprBits.HasTemplateKWAndArgsInfo = | 
|  | TemplateArgs || TemplateKWLoc.isValid(); | 
|  | MemberExprBits.HadMultipleCandidates = false; | 
|  | MemberExprBits.NonOdrUseReason = NOUR; | 
|  | MemberExprBits.OperatorLoc = OperatorLoc; | 
|  |  | 
|  | if (hasQualifier()) | 
|  | new (getTrailingObjects<NestedNameSpecifierLoc>()) | 
|  | NestedNameSpecifierLoc(QualifierLoc); | 
|  | if (hasFoundDecl()) | 
|  | *getTrailingObjects<DeclAccessPair>() = FoundDecl; | 
|  | if (TemplateArgs) { | 
|  | auto Deps = TemplateArgumentDependence::None; | 
|  | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), | 
|  | Deps); | 
|  | } else if (TemplateKWLoc.isValid()) { | 
|  | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( | 
|  | TemplateKWLoc); | 
|  | } | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | MemberExpr *MemberExpr::Create( | 
|  | const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, | 
|  | ValueDecl *MemberDecl, DeclAccessPair FoundDecl, | 
|  | DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, | 
|  | QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { | 
|  | bool HasQualifier = QualifierLoc.hasQualifier(); | 
|  | bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl || | 
|  | FoundDecl.getAccess() != MemberDecl->getAccess(); | 
|  | bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); | 
|  | std::size_t Size = | 
|  | totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, | 
|  | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( | 
|  | HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo, | 
|  | TemplateArgs ? TemplateArgs->size() : 0); | 
|  |  | 
|  | void *Mem = C.Allocate(Size, alignof(MemberExpr)); | 
|  | return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc, | 
|  | TemplateKWLoc, MemberDecl, FoundDecl, NameInfo, | 
|  | TemplateArgs, T, VK, OK, NOUR); | 
|  | } | 
|  |  | 
|  | MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, | 
|  | bool HasQualifier, bool HasFoundDecl, | 
|  | bool HasTemplateKWAndArgsInfo, | 
|  | unsigned NumTemplateArgs) { | 
|  | assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && | 
|  | "template args but no template arg info?"); | 
|  | std::size_t Size = | 
|  | totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, | 
|  | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( | 
|  | HasQualifier, HasFoundDecl, HasTemplateKWAndArgsInfo, | 
|  | NumTemplateArgs); | 
|  | void *Mem = Context.Allocate(Size, alignof(MemberExpr)); | 
|  | return new (Mem) MemberExpr(EmptyShell()); | 
|  | } | 
|  |  | 
|  | void MemberExpr::setMemberDecl(ValueDecl *NewD) { | 
|  | MemberDecl = NewD; | 
|  | if (getType()->isUndeducedType()) | 
|  | setType(NewD->getType()); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | SourceLocation MemberExpr::getBeginLoc() const { | 
|  | if (isImplicitAccess()) { | 
|  | if (hasQualifier()) | 
|  | return getQualifierLoc().getBeginLoc(); | 
|  | return MemberLoc; | 
|  | } | 
|  |  | 
|  | // FIXME: We don't want this to happen. Rather, we should be able to | 
|  | // detect all kinds of implicit accesses more cleanly. | 
|  | SourceLocation BaseStartLoc = getBase()->getBeginLoc(); | 
|  | if (BaseStartLoc.isValid()) | 
|  | return BaseStartLoc; | 
|  | return MemberLoc; | 
|  | } | 
|  | SourceLocation MemberExpr::getEndLoc() const { | 
|  | SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); | 
|  | if (hasExplicitTemplateArgs()) | 
|  | EndLoc = getRAngleLoc(); | 
|  | else if (EndLoc.isInvalid()) | 
|  | EndLoc = getBase()->getEndLoc(); | 
|  | return EndLoc; | 
|  | } | 
|  |  | 
|  | bool CastExpr::CastConsistency() const { | 
|  | switch (getCastKind()) { | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_DerivedToBaseMemberPointer: | 
|  | case CK_BaseToDerived: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | assert(!path_empty() && "Cast kind should have a base path!"); | 
|  | break; | 
|  |  | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | assert(getType()->isObjCObjectPointerType()); | 
|  | assert(getSubExpr()->getType()->isPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | assert(getType()->isObjCObjectPointerType()); | 
|  | assert(getSubExpr()->getType()->isBlockPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_ReinterpretMemberPointer: | 
|  | assert(getType()->isMemberPointerType()); | 
|  | assert(getSubExpr()->getType()->isMemberPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_BitCast: | 
|  | // Arbitrary casts to C pointer types count as bitcasts. | 
|  | // Otherwise, we should only have block and ObjC pointer casts | 
|  | // here if they stay within the type kind. | 
|  | if (!getType()->isPointerType()) { | 
|  | assert(getType()->isObjCObjectPointerType() == | 
|  | getSubExpr()->getType()->isObjCObjectPointerType()); | 
|  | assert(getType()->isBlockPointerType() == | 
|  | getSubExpr()->getType()->isBlockPointerType()); | 
|  | } | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | assert(getType()->isBlockPointerType()); | 
|  | assert(getSubExpr()->getType()->isAnyPointerType() && | 
|  | !getSubExpr()->getType()->isBlockPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_CopyAndAutoreleaseBlockObject: | 
|  | assert(getType()->isBlockPointerType()); | 
|  | assert(getSubExpr()->getType()->isBlockPointerType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_FunctionToPointerDecay: | 
|  | assert(getType()->isPointerType()); | 
|  | assert(getSubExpr()->getType()->isFunctionType()); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_AddressSpaceConversion: { | 
|  | auto Ty = getType(); | 
|  | auto SETy = getSubExpr()->getType(); | 
|  | assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); | 
|  | if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { | 
|  | Ty = Ty->getPointeeType(); | 
|  | SETy = SETy->getPointeeType(); | 
|  | } | 
|  | assert((Ty->isDependentType() || SETy->isDependentType()) || | 
|  | (!Ty.isNull() && !SETy.isNull() && | 
|  | Ty.getAddressSpace() != SETy.getAddressSpace())); | 
|  | goto CheckNoBasePath; | 
|  | } | 
|  | // These should not have an inheritance path. | 
|  | case CK_Dynamic: | 
|  | case CK_ToUnion: | 
|  | case CK_ArrayToPointerDecay: | 
|  | case CK_NullToMemberPointer: | 
|  | case CK_NullToPointer: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_IntegralToPointer: | 
|  | case CK_PointerToIntegral: | 
|  | case CK_ToVoid: | 
|  | case CK_VectorSplat: | 
|  | case CK_IntegralCast: | 
|  | case CK_BooleanToSignedIntegral: | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingCast: | 
|  | case CK_ObjCObjectLValueCast: | 
|  | case CK_FloatingRealToComplex: | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_FloatingComplexToIntegralComplex: | 
|  | case CK_IntegralRealToComplex: | 
|  | case CK_IntegralComplexToReal: | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | case CK_ARCProduceObject: | 
|  | case CK_ARCConsumeObject: | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | case CK_ARCExtendBlockObject: | 
|  | case CK_ZeroToOCLOpaqueType: | 
|  | case CK_IntToOCLSampler: | 
|  | case CK_FloatingToFixedPoint: | 
|  | case CK_FixedPointToFloating: | 
|  | case CK_FixedPointCast: | 
|  | case CK_FixedPointToIntegral: | 
|  | case CK_IntegralToFixedPoint: | 
|  | case CK_MatrixCast: | 
|  | assert(!getType()->isBooleanType() && "unheralded conversion to bool"); | 
|  | goto CheckNoBasePath; | 
|  |  | 
|  | case CK_Dependent: | 
|  | case CK_LValueToRValue: | 
|  | case CK_NoOp: | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_PointerToBoolean: | 
|  | case CK_IntegralToBoolean: | 
|  | case CK_FloatingToBoolean: | 
|  | case CK_MemberPointerToBoolean: | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_IntegralComplexToBoolean: | 
|  | case CK_LValueBitCast:            // -> bool& | 
|  | case CK_LValueToRValueBitCast: | 
|  | case CK_UserDefinedConversion:    // operator bool() | 
|  | case CK_BuiltinFnToFnPtr: | 
|  | case CK_FixedPointToBoolean: | 
|  | case CK_HLSLArrayRValue: | 
|  | case CK_HLSLVectorTruncation: | 
|  | case CK_HLSLElementwiseCast: | 
|  | case CK_HLSLAggregateSplatCast: | 
|  | CheckNoBasePath: | 
|  | assert(path_empty() && "Cast kind should not have a base path!"); | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const char *CastExpr::getCastKindName(CastKind CK) { | 
|  | switch (CK) { | 
|  | #define CAST_OPERATION(Name) case CK_##Name: return #Name; | 
|  | #include "clang/AST/OperationKinds.def" | 
|  | } | 
|  | llvm_unreachable("Unhandled cast kind!"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Skip over implicit nodes produced as part of semantic analysis. | 
|  | // Designed for use with IgnoreExprNodes. | 
|  | static Expr *ignoreImplicitSemaNodes(Expr *E) { | 
|  | if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) | 
|  | return Materialize->getSubExpr(); | 
|  |  | 
|  | if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) | 
|  | return Binder->getSubExpr(); | 
|  |  | 
|  | if (auto *Full = dyn_cast<FullExpr>(E)) | 
|  | return Full->getSubExpr(); | 
|  |  | 
|  | if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(E); | 
|  | CPLIE && CPLIE->getInitExprs().size() == 1) | 
|  | return CPLIE->getInitExprs()[0]; | 
|  |  | 
|  | return E; | 
|  | } | 
|  | } // namespace | 
|  |  | 
|  | Expr *CastExpr::getSubExprAsWritten() { | 
|  | const Expr *SubExpr = nullptr; | 
|  |  | 
|  | for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { | 
|  | SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); | 
|  |  | 
|  | // Conversions by constructor and conversion functions have a | 
|  | // subexpression describing the call; strip it off. | 
|  | if (E->getCastKind() == CK_ConstructorConversion) { | 
|  | SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0), | 
|  | ignoreImplicitSemaNodes); | 
|  | } else if (E->getCastKind() == CK_UserDefinedConversion) { | 
|  | assert((isa<CallExpr, BlockExpr>(SubExpr)) && | 
|  | "Unexpected SubExpr for CK_UserDefinedConversion."); | 
|  | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) | 
|  | SubExpr = MCE->getImplicitObjectArgument(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return const_cast<Expr *>(SubExpr); | 
|  | } | 
|  |  | 
|  | NamedDecl *CastExpr::getConversionFunction() const { | 
|  | const Expr *SubExpr = nullptr; | 
|  |  | 
|  | for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { | 
|  | SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes); | 
|  |  | 
|  | if (E->getCastKind() == CK_ConstructorConversion) | 
|  | return cast<CXXConstructExpr>(SubExpr)->getConstructor(); | 
|  |  | 
|  | if (E->getCastKind() == CK_UserDefinedConversion) { | 
|  | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) | 
|  | return MCE->getMethodDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CXXBaseSpecifier **CastExpr::path_buffer() { | 
|  | switch (getStmtClass()) { | 
|  | #define ABSTRACT_STMT(x) | 
|  | #define CASTEXPR(Type, Base)                                                   \ | 
|  | case Stmt::Type##Class:                                                      \ | 
|  | return static_cast<Type *>(this)                                           \ | 
|  | ->getTrailingObjectsNonStrict<CXXBaseSpecifier *>(); | 
|  | #define STMT(Type, Base) | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | default: | 
|  | llvm_unreachable("non-cast expressions not possible here"); | 
|  | } | 
|  | } | 
|  |  | 
|  | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, | 
|  | QualType opType) { | 
|  | auto RD = unionType->castAs<RecordType>()->getDecl(); | 
|  | return getTargetFieldForToUnionCast(RD, opType); | 
|  | } | 
|  |  | 
|  | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, | 
|  | QualType OpType) { | 
|  | auto &Ctx = RD->getASTContext(); | 
|  | RecordDecl::field_iterator Field, FieldEnd; | 
|  | for (Field = RD->field_begin(), FieldEnd = RD->field_end(); | 
|  | Field != FieldEnd; ++Field) { | 
|  | if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && | 
|  | !Field->isUnnamedBitField()) { | 
|  | return *Field; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | FPOptionsOverride *CastExpr::getTrailingFPFeatures() { | 
|  | assert(hasStoredFPFeatures()); | 
|  | switch (getStmtClass()) { | 
|  | case ImplicitCastExprClass: | 
|  | return static_cast<ImplicitCastExpr *>(this) | 
|  | ->getTrailingObjects<FPOptionsOverride>(); | 
|  | case CStyleCastExprClass: | 
|  | return static_cast<CStyleCastExpr *>(this) | 
|  | ->getTrailingObjects<FPOptionsOverride>(); | 
|  | case CXXFunctionalCastExprClass: | 
|  | return static_cast<CXXFunctionalCastExpr *>(this) | 
|  | ->getTrailingObjects<FPOptionsOverride>(); | 
|  | case CXXStaticCastExprClass: | 
|  | return static_cast<CXXStaticCastExpr *>(this) | 
|  | ->getTrailingObjects<FPOptionsOverride>(); | 
|  | default: | 
|  | llvm_unreachable("Cast does not have FPFeatures"); | 
|  | } | 
|  | } | 
|  |  | 
|  | ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, | 
|  | CastKind Kind, Expr *Operand, | 
|  | const CXXCastPath *BasePath, | 
|  | ExprValueKind VK, | 
|  | FPOptionsOverride FPO) { | 
|  | unsigned PathSize = (BasePath ? BasePath->size() : 0); | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( | 
|  | PathSize, FPO.requiresTrailingStorage())); | 
|  | // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and | 
|  | // std::nullptr_t have special semantics not captured by CK_LValueToRValue. | 
|  | assert((Kind != CK_LValueToRValue || | 
|  | !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && | 
|  | "invalid type for lvalue-to-rvalue conversion"); | 
|  | ImplicitCastExpr *E = | 
|  | new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); | 
|  | if (PathSize) | 
|  | llvm::uninitialized_copy(*BasePath, | 
|  | E->getTrailingObjects<CXXBaseSpecifier *>()); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned PathSize, | 
|  | bool HasFPFeatures) { | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( | 
|  | PathSize, HasFPFeatures)); | 
|  | return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); | 
|  | } | 
|  |  | 
|  | CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, | 
|  | ExprValueKind VK, CastKind K, Expr *Op, | 
|  | const CXXCastPath *BasePath, | 
|  | FPOptionsOverride FPO, | 
|  | TypeSourceInfo *WrittenTy, | 
|  | SourceLocation L, SourceLocation R) { | 
|  | unsigned PathSize = (BasePath ? BasePath->size() : 0); | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( | 
|  | PathSize, FPO.requiresTrailingStorage())); | 
|  | CStyleCastExpr *E = | 
|  | new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); | 
|  | if (PathSize) | 
|  | llvm::uninitialized_copy(*BasePath, | 
|  | E->getTrailingObjects<CXXBaseSpecifier *>()); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned PathSize, | 
|  | bool HasFPFeatures) { | 
|  | void *Buffer = | 
|  | C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( | 
|  | PathSize, HasFPFeatures)); | 
|  | return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); | 
|  | } | 
|  |  | 
|  | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it | 
|  | /// corresponds to, e.g. "<<=". | 
|  | StringRef BinaryOperator::getOpcodeStr(Opcode Op) { | 
|  | switch (Op) { | 
|  | #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; | 
|  | #include "clang/AST/OperationKinds.def" | 
|  | } | 
|  | llvm_unreachable("Invalid OpCode!"); | 
|  | } | 
|  |  | 
|  | BinaryOperatorKind | 
|  | BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { | 
|  | switch (OO) { | 
|  | default: llvm_unreachable("Not an overloadable binary operator"); | 
|  | case OO_Plus: return BO_Add; | 
|  | case OO_Minus: return BO_Sub; | 
|  | case OO_Star: return BO_Mul; | 
|  | case OO_Slash: return BO_Div; | 
|  | case OO_Percent: return BO_Rem; | 
|  | case OO_Caret: return BO_Xor; | 
|  | case OO_Amp: return BO_And; | 
|  | case OO_Pipe: return BO_Or; | 
|  | case OO_Equal: return BO_Assign; | 
|  | case OO_Spaceship: return BO_Cmp; | 
|  | case OO_Less: return BO_LT; | 
|  | case OO_Greater: return BO_GT; | 
|  | case OO_PlusEqual: return BO_AddAssign; | 
|  | case OO_MinusEqual: return BO_SubAssign; | 
|  | case OO_StarEqual: return BO_MulAssign; | 
|  | case OO_SlashEqual: return BO_DivAssign; | 
|  | case OO_PercentEqual: return BO_RemAssign; | 
|  | case OO_CaretEqual: return BO_XorAssign; | 
|  | case OO_AmpEqual: return BO_AndAssign; | 
|  | case OO_PipeEqual: return BO_OrAssign; | 
|  | case OO_LessLess: return BO_Shl; | 
|  | case OO_GreaterGreater: return BO_Shr; | 
|  | case OO_LessLessEqual: return BO_ShlAssign; | 
|  | case OO_GreaterGreaterEqual: return BO_ShrAssign; | 
|  | case OO_EqualEqual: return BO_EQ; | 
|  | case OO_ExclaimEqual: return BO_NE; | 
|  | case OO_LessEqual: return BO_LE; | 
|  | case OO_GreaterEqual: return BO_GE; | 
|  | case OO_AmpAmp: return BO_LAnd; | 
|  | case OO_PipePipe: return BO_LOr; | 
|  | case OO_Comma: return BO_Comma; | 
|  | case OO_ArrowStar: return BO_PtrMemI; | 
|  | } | 
|  | } | 
|  |  | 
|  | OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { | 
|  | static const OverloadedOperatorKind OverOps[] = { | 
|  | /* .* Cannot be overloaded */OO_None, OO_ArrowStar, | 
|  | OO_Star, OO_Slash, OO_Percent, | 
|  | OO_Plus, OO_Minus, | 
|  | OO_LessLess, OO_GreaterGreater, | 
|  | OO_Spaceship, | 
|  | OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, | 
|  | OO_EqualEqual, OO_ExclaimEqual, | 
|  | OO_Amp, | 
|  | OO_Caret, | 
|  | OO_Pipe, | 
|  | OO_AmpAmp, | 
|  | OO_PipePipe, | 
|  | OO_Equal, OO_StarEqual, | 
|  | OO_SlashEqual, OO_PercentEqual, | 
|  | OO_PlusEqual, OO_MinusEqual, | 
|  | OO_LessLessEqual, OO_GreaterGreaterEqual, | 
|  | OO_AmpEqual, OO_CaretEqual, | 
|  | OO_PipeEqual, | 
|  | OO_Comma | 
|  | }; | 
|  | return OverOps[Opc]; | 
|  | } | 
|  |  | 
|  | bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, | 
|  | Opcode Opc, | 
|  | const Expr *LHS, | 
|  | const Expr *RHS) { | 
|  | if (Opc != BO_Add) | 
|  | return false; | 
|  |  | 
|  | // Check that we have one pointer and one integer operand. | 
|  | const Expr *PExp; | 
|  | if (LHS->getType()->isPointerType()) { | 
|  | if (!RHS->getType()->isIntegerType()) | 
|  | return false; | 
|  | PExp = LHS; | 
|  | } else if (RHS->getType()->isPointerType()) { | 
|  | if (!LHS->getType()->isIntegerType()) | 
|  | return false; | 
|  | PExp = RHS; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Workaround for old glibc's __PTR_ALIGN macro | 
|  | if (auto *Select = | 
|  | dyn_cast<ConditionalOperator>(PExp->IgnoreParenNoopCasts(Ctx))) { | 
|  | // If the condition can be constant evaluated, we check the selected arm. | 
|  | bool EvalResult; | 
|  | if (!Select->getCond()->EvaluateAsBooleanCondition(EvalResult, Ctx)) | 
|  | return false; | 
|  | PExp = EvalResult ? Select->getTrueExpr() : Select->getFalseExpr(); | 
|  | } | 
|  |  | 
|  | // Check that the pointer is a nullptr. | 
|  | if (!PExp->IgnoreParenCasts() | 
|  | ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) | 
|  | return false; | 
|  |  | 
|  | // Check that the pointee type is char-sized. | 
|  | const PointerType *PTy = PExp->getType()->getAs<PointerType>(); | 
|  | if (!PTy || !PTy->getPointeeType()->isCharType()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind, | 
|  | QualType ResultTy, SourceLocation BLoc, | 
|  | SourceLocation RParenLoc, | 
|  | DeclContext *ParentContext) | 
|  | : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), | 
|  | BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { | 
|  | SourceLocExprBits.Kind = llvm::to_underlying(Kind); | 
|  | // In dependent contexts, function names may change. | 
|  | setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext() | 
|  | ? ExprDependence::Value | 
|  | : ExprDependence::None); | 
|  | } | 
|  |  | 
|  | StringRef SourceLocExpr::getBuiltinStr() const { | 
|  | switch (getIdentKind()) { | 
|  | case SourceLocIdentKind::File: | 
|  | return "__builtin_FILE"; | 
|  | case SourceLocIdentKind::FileName: | 
|  | return "__builtin_FILE_NAME"; | 
|  | case SourceLocIdentKind::Function: | 
|  | return "__builtin_FUNCTION"; | 
|  | case SourceLocIdentKind::FuncSig: | 
|  | return "__builtin_FUNCSIG"; | 
|  | case SourceLocIdentKind::Line: | 
|  | return "__builtin_LINE"; | 
|  | case SourceLocIdentKind::Column: | 
|  | return "__builtin_COLUMN"; | 
|  | case SourceLocIdentKind::SourceLocStruct: | 
|  | return "__builtin_source_location"; | 
|  | } | 
|  | llvm_unreachable("unexpected IdentKind!"); | 
|  | } | 
|  |  | 
|  | APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, | 
|  | const Expr *DefaultExpr) const { | 
|  | SourceLocation Loc; | 
|  | const DeclContext *Context; | 
|  |  | 
|  | if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(DefaultExpr)) { | 
|  | Loc = DIE->getUsedLocation(); | 
|  | Context = DIE->getUsedContext(); | 
|  | } else if (const auto *DAE = | 
|  | dyn_cast_if_present<CXXDefaultArgExpr>(DefaultExpr)) { | 
|  | Loc = DAE->getUsedLocation(); | 
|  | Context = DAE->getUsedContext(); | 
|  | } else { | 
|  | Loc = getLocation(); | 
|  | Context = getParentContext(); | 
|  | } | 
|  |  | 
|  | // If we are currently parsing a lambda declarator, we might not have a fully | 
|  | // formed call operator declaration yet, and we could not form a function name | 
|  | // for it. Because we do not have access to Sema/function scopes here, we | 
|  | // detect this case by relying on the fact such method doesn't yet have a | 
|  | // type. | 
|  | if (const auto *D = dyn_cast<CXXMethodDecl>(Context); | 
|  | D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(D)) | 
|  | Context = D->getParent()->getParent(); | 
|  |  | 
|  | PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( | 
|  | Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); | 
|  |  | 
|  | auto MakeStringLiteral = [&](StringRef Tmp) { | 
|  | using LValuePathEntry = APValue::LValuePathEntry; | 
|  | StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); | 
|  | // Decay the string to a pointer to the first character. | 
|  | LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; | 
|  | return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); | 
|  | }; | 
|  |  | 
|  | switch (getIdentKind()) { | 
|  | case SourceLocIdentKind::FileName: { | 
|  | // __builtin_FILE_NAME() is a Clang-specific extension that expands to the | 
|  | // the last part of __builtin_FILE(). | 
|  | SmallString<256> FileName; | 
|  | clang::Preprocessor::processPathToFileName( | 
|  | FileName, PLoc, Ctx.getLangOpts(), Ctx.getTargetInfo()); | 
|  | return MakeStringLiteral(FileName); | 
|  | } | 
|  | case SourceLocIdentKind::File: { | 
|  | SmallString<256> Path(PLoc.getFilename()); | 
|  | clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), | 
|  | Ctx.getTargetInfo()); | 
|  | return MakeStringLiteral(Path); | 
|  | } | 
|  | case SourceLocIdentKind::Function: | 
|  | case SourceLocIdentKind::FuncSig: { | 
|  | const auto *CurDecl = dyn_cast<Decl>(Context); | 
|  | const auto Kind = getIdentKind() == SourceLocIdentKind::Function | 
|  | ? PredefinedIdentKind::Function | 
|  | : PredefinedIdentKind::FuncSig; | 
|  | return MakeStringLiteral( | 
|  | CurDecl ? PredefinedExpr::ComputeName(Kind, CurDecl) : std::string("")); | 
|  | } | 
|  | case SourceLocIdentKind::Line: | 
|  | return APValue(Ctx.MakeIntValue(PLoc.getLine(), Ctx.UnsignedIntTy)); | 
|  | case SourceLocIdentKind::Column: | 
|  | return APValue(Ctx.MakeIntValue(PLoc.getColumn(), Ctx.UnsignedIntTy)); | 
|  | case SourceLocIdentKind::SourceLocStruct: { | 
|  | // Fill in a std::source_location::__impl structure, by creating an | 
|  | // artificial file-scoped CompoundLiteralExpr, and returning a pointer to | 
|  | // that. | 
|  | const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); | 
|  | assert(ImplDecl); | 
|  |  | 
|  | // Construct an APValue for the __impl struct, and get or create a Decl | 
|  | // corresponding to that. Note that we've already verified that the shape of | 
|  | // the ImplDecl type is as expected. | 
|  |  | 
|  | APValue Value(APValue::UninitStruct(), 0, 4); | 
|  | for (const FieldDecl *F : ImplDecl->fields()) { | 
|  | StringRef Name = F->getName(); | 
|  | if (Name == "_M_file_name") { | 
|  | SmallString<256> Path(PLoc.getFilename()); | 
|  | clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(), | 
|  | Ctx.getTargetInfo()); | 
|  | Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path); | 
|  | } else if (Name == "_M_function_name") { | 
|  | // Note: this emits the PrettyFunction name -- different than what | 
|  | // __builtin_FUNCTION() above returns! | 
|  | const auto *CurDecl = dyn_cast<Decl>(Context); | 
|  | Value.getStructField(F->getFieldIndex()) = MakeStringLiteral( | 
|  | CurDecl && !isa<TranslationUnitDecl>(CurDecl) | 
|  | ? StringRef(PredefinedExpr::ComputeName( | 
|  | PredefinedIdentKind::PrettyFunction, CurDecl)) | 
|  | : ""); | 
|  | } else if (Name == "_M_line") { | 
|  | llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType()); | 
|  | Value.getStructField(F->getFieldIndex()) = APValue(IntVal); | 
|  | } else if (Name == "_M_column") { | 
|  | llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType()); | 
|  | Value.getStructField(F->getFieldIndex()) = APValue(IntVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | UnnamedGlobalConstantDecl *GV = | 
|  | Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value); | 
|  |  | 
|  | return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, | 
|  | false); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("unhandled case"); | 
|  | } | 
|  |  | 
|  | EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, | 
|  | EmbedDataStorage *Data, unsigned Begin, | 
|  | unsigned NumOfElements) | 
|  | : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary), | 
|  | EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin), | 
|  | NumOfElements(NumOfElements) { | 
|  | setDependence(ExprDependence::None); | 
|  | FakeChildNode = IntegerLiteral::Create( | 
|  | Ctx, llvm::APInt::getZero(Ctx.getTypeSize(getType())), getType(), Loc); | 
|  | } | 
|  |  | 
|  | InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, | 
|  | ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) | 
|  | : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), | 
|  | InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), | 
|  | RBraceLoc(rbraceloc), AltForm(nullptr, true) { | 
|  | sawArrayRangeDesignator(false); | 
|  | InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); | 
|  |  | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { | 
|  | if (NumInits > InitExprs.size()) | 
|  | InitExprs.reserve(C, NumInits); | 
|  | } | 
|  |  | 
|  | void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { | 
|  | InitExprs.resize(C, NumInits, nullptr); | 
|  | } | 
|  |  | 
|  | Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { | 
|  | if (Init >= InitExprs.size()) { | 
|  | InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); | 
|  | setInit(Init, expr); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Expr *Result = cast_or_null<Expr>(InitExprs[Init]); | 
|  | setInit(Init, expr); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void InitListExpr::setArrayFiller(Expr *filler) { | 
|  | assert(!hasArrayFiller() && "Filler already set!"); | 
|  | ArrayFillerOrUnionFieldInit = filler; | 
|  | // Fill out any "holes" in the array due to designated initializers. | 
|  | Expr **inits = getInits(); | 
|  | for (unsigned i = 0, e = getNumInits(); i != e; ++i) | 
|  | if (inits[i] == nullptr) | 
|  | inits[i] = filler; | 
|  | } | 
|  |  | 
|  | bool InitListExpr::isStringLiteralInit() const { | 
|  | if (getNumInits() != 1) | 
|  | return false; | 
|  | const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); | 
|  | if (!AT || !AT->getElementType()->isIntegerType()) | 
|  | return false; | 
|  | // It is possible for getInit() to return null. | 
|  | const Expr *Init = getInit(0); | 
|  | if (!Init) | 
|  | return false; | 
|  | Init = Init->IgnoreParenImpCasts(); | 
|  | return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); | 
|  | } | 
|  |  | 
|  | bool InitListExpr::isTransparent() const { | 
|  | assert(isSemanticForm() && "syntactic form never semantically transparent"); | 
|  |  | 
|  | // A glvalue InitListExpr is always just sugar. | 
|  | if (isGLValue()) { | 
|  | assert(getNumInits() == 1 && "multiple inits in glvalue init list"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, we're sugar if and only if we have exactly one initializer that | 
|  | // is of the same type. | 
|  | if (getNumInits() != 1 || !getInit(0)) | 
|  | return false; | 
|  |  | 
|  | // Don't confuse aggregate initialization of a struct X { X &x; }; with a | 
|  | // transparent struct copy. | 
|  | if (!getInit(0)->isPRValue() && getType()->isRecordType()) | 
|  | return false; | 
|  |  | 
|  | return getType().getCanonicalType() == | 
|  | getInit(0)->getType().getCanonicalType(); | 
|  | } | 
|  |  | 
|  | bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { | 
|  | assert(isSyntacticForm() && "only test syntactic form as zero initializer"); | 
|  |  | 
|  | if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); | 
|  | return Lit && Lit->getValue() == 0; | 
|  | } | 
|  |  | 
|  | SourceLocation InitListExpr::getBeginLoc() const { | 
|  | if (InitListExpr *SyntacticForm = getSyntacticForm()) | 
|  | return SyntacticForm->getBeginLoc(); | 
|  | SourceLocation Beg = LBraceLoc; | 
|  | if (Beg.isInvalid()) { | 
|  | // Find the first non-null initializer. | 
|  | for (InitExprsTy::const_iterator I = InitExprs.begin(), | 
|  | E = InitExprs.end(); | 
|  | I != E; ++I) { | 
|  | if (Stmt *S = *I) { | 
|  | Beg = S->getBeginLoc(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Beg; | 
|  | } | 
|  |  | 
|  | SourceLocation InitListExpr::getEndLoc() const { | 
|  | if (InitListExpr *SyntacticForm = getSyntacticForm()) | 
|  | return SyntacticForm->getEndLoc(); | 
|  | SourceLocation End = RBraceLoc; | 
|  | if (End.isInvalid()) { | 
|  | // Find the first non-null initializer from the end. | 
|  | for (Stmt *S : llvm::reverse(InitExprs)) { | 
|  | if (S) { | 
|  | End = S->getEndLoc(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return End; | 
|  | } | 
|  |  | 
|  | /// getFunctionType - Return the underlying function type for this block. | 
|  | /// | 
|  | const FunctionProtoType *BlockExpr::getFunctionType() const { | 
|  | // The block pointer is never sugared, but the function type might be. | 
|  | return cast<BlockPointerType>(getType()) | 
|  | ->getPointeeType()->castAs<FunctionProtoType>(); | 
|  | } | 
|  |  | 
|  | SourceLocation BlockExpr::getCaretLocation() const { | 
|  | return TheBlock->getCaretLocation(); | 
|  | } | 
|  | const Stmt *BlockExpr::getBody() const { | 
|  | return TheBlock->getBody(); | 
|  | } | 
|  | Stmt *BlockExpr::getBody() { | 
|  | return TheBlock->getBody(); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Generic Expression Routines | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool Expr::isReadIfDiscardedInCPlusPlus11() const { | 
|  | // In C++11, discarded-value expressions of a certain form are special, | 
|  | // according to [expr]p10: | 
|  | //   The lvalue-to-rvalue conversion (4.1) is applied only if the | 
|  | //   expression is a glvalue of volatile-qualified type and it has | 
|  | //   one of the following forms: | 
|  | if (!isGLValue() || !getType().isVolatileQualified()) | 
|  | return false; | 
|  |  | 
|  | const Expr *E = IgnoreParens(); | 
|  |  | 
|  | //   - id-expression (5.1.1), | 
|  | if (isa<DeclRefExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | //   - subscripting (5.2.1), | 
|  | if (isa<ArraySubscriptExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | //   - class member access (5.2.5), | 
|  | if (isa<MemberExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | //   - indirection (5.3.1), | 
|  | if (auto *UO = dyn_cast<UnaryOperator>(E)) | 
|  | if (UO->getOpcode() == UO_Deref) | 
|  | return true; | 
|  |  | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | //   - pointer-to-member operation (5.5), | 
|  | if (BO->isPtrMemOp()) | 
|  | return true; | 
|  |  | 
|  | //   - comma expression (5.18) where the right operand is one of the above. | 
|  | if (BO->getOpcode() == BO_Comma) | 
|  | return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); | 
|  | } | 
|  |  | 
|  | //   - conditional expression (5.16) where both the second and the third | 
|  | //     operands are one of the above, or | 
|  | if (auto *CO = dyn_cast<ConditionalOperator>(E)) | 
|  | return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && | 
|  | CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); | 
|  | // The related edge case of "*x ?: *x". | 
|  | if (auto *BCO = | 
|  | dyn_cast<BinaryConditionalOperator>(E)) { | 
|  | if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) | 
|  | return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && | 
|  | BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); | 
|  | } | 
|  |  | 
|  | // Objective-C++ extensions to the rule. | 
|  | if (isa<ObjCIvarRefExpr>(E)) | 
|  | return true; | 
|  | if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) { | 
|  | if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm())) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isUnusedResultAWarning - Return true if this immediate expression should | 
|  | /// be warned about if the result is unused.  If so, fill in Loc and Ranges | 
|  | /// with location to warn on and the source range[s] to report with the | 
|  | /// warning. | 
|  | bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, | 
|  | SourceRange &R1, SourceRange &R2, | 
|  | ASTContext &Ctx) const { | 
|  | // Don't warn if the expr is type dependent. The type could end up | 
|  | // instantiating to void. | 
|  | if (isTypeDependent()) | 
|  | return false; | 
|  |  | 
|  | switch (getStmtClass()) { | 
|  | default: | 
|  | if (getType()->isVoidType()) | 
|  | return false; | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | case ParenExprClass: | 
|  | return cast<ParenExpr>(this)->getSubExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case GenericSelectionExprClass: | 
|  | return cast<GenericSelectionExpr>(this)->getResultExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case CoawaitExprClass: | 
|  | case CoyieldExprClass: | 
|  | return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case ChooseExprClass: | 
|  | return cast<ChooseExpr>(this)->getChosenSubExpr()-> | 
|  | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case UnaryOperatorClass: { | 
|  | const UnaryOperator *UO = cast<UnaryOperator>(this); | 
|  |  | 
|  | switch (UO->getOpcode()) { | 
|  | case UO_Plus: | 
|  | case UO_Minus: | 
|  | case UO_AddrOf: | 
|  | case UO_Not: | 
|  | case UO_LNot: | 
|  | case UO_Deref: | 
|  | break; | 
|  | case UO_Coawait: | 
|  | // This is just the 'operator co_await' call inside the guts of a | 
|  | // dependent co_await call. | 
|  | case UO_PostInc: | 
|  | case UO_PostDec: | 
|  | case UO_PreInc: | 
|  | case UO_PreDec:                 // ++/-- | 
|  | return false;  // Not a warning. | 
|  | case UO_Real: | 
|  | case UO_Imag: | 
|  | // accessing a piece of a volatile complex is a side-effect. | 
|  | if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) | 
|  | .isVolatileQualified()) | 
|  | return false; | 
|  | break; | 
|  | case UO_Extension: | 
|  | return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | WarnE = this; | 
|  | Loc = UO->getOperatorLoc(); | 
|  | R1 = UO->getSubExpr()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | case BinaryOperatorClass: { | 
|  | const BinaryOperator *BO = cast<BinaryOperator>(this); | 
|  | switch (BO->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | // Consider the RHS of comma for side effects. LHS was checked by | 
|  | // Sema::CheckCommaOperands. | 
|  | case BO_Comma: | 
|  | // ((foo = <blah>), 0) is an idiom for hiding the result (and | 
|  | // lvalue-ness) of an assignment written in a macro. | 
|  | if (IntegerLiteral *IE = | 
|  | dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) | 
|  | if (IE->getValue() == 0) | 
|  | return false; | 
|  | return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | // Consider '||', '&&' to have side effects if the LHS or RHS does. | 
|  | case BO_LAnd: | 
|  | case BO_LOr: | 
|  | if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || | 
|  | !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | if (BO->isAssignmentOp()) | 
|  | return false; | 
|  | WarnE = this; | 
|  | Loc = BO->getOperatorLoc(); | 
|  | R1 = BO->getLHS()->getSourceRange(); | 
|  | R2 = BO->getRHS()->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | case CompoundAssignOperatorClass: | 
|  | case VAArgExprClass: | 
|  | case AtomicExprClass: | 
|  | return false; | 
|  |  | 
|  | case ConditionalOperatorClass: { | 
|  | // If only one of the LHS or RHS is a warning, the operator might | 
|  | // be being used for control flow. Only warn if both the LHS and | 
|  | // RHS are warnings. | 
|  | const auto *Exp = cast<ConditionalOperator>(this); | 
|  | return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && | 
|  | Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | case BinaryConditionalOperatorClass: { | 
|  | const auto *Exp = cast<BinaryConditionalOperator>(this); | 
|  | return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  |  | 
|  | case MemberExprClass: | 
|  | WarnE = this; | 
|  | Loc = cast<MemberExpr>(this)->getMemberLoc(); | 
|  | R1 = SourceRange(Loc, Loc); | 
|  | R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case ArraySubscriptExprClass: | 
|  | WarnE = this; | 
|  | Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); | 
|  | R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); | 
|  | R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case CXXOperatorCallExprClass: { | 
|  | // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator | 
|  | // overloads as there is no reasonable way to define these such that they | 
|  | // have non-trivial, desirable side-effects. See the -Wunused-comparison | 
|  | // warning: operators == and != are commonly typo'ed, and so warning on them | 
|  | // provides additional value as well. If this list is updated, | 
|  | // DiagnoseUnusedComparison should be as well. | 
|  | const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); | 
|  | switch (Op->getOperator()) { | 
|  | default: | 
|  | break; | 
|  | case OO_EqualEqual: | 
|  | case OO_ExclaimEqual: | 
|  | case OO_Less: | 
|  | case OO_Greater: | 
|  | case OO_GreaterEqual: | 
|  | case OO_LessEqual: | 
|  | if (Op->getCallReturnType(Ctx)->isReferenceType() || | 
|  | Op->getCallReturnType(Ctx)->isVoidType()) | 
|  | break; | 
|  | WarnE = this; | 
|  | Loc = Op->getOperatorLoc(); | 
|  | R1 = Op->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Fallthrough for generic call handling. | 
|  | [[fallthrough]]; | 
|  | } | 
|  | case CallExprClass: | 
|  | case CXXMemberCallExprClass: | 
|  | case UserDefinedLiteralClass: { | 
|  | // If this is a direct call, get the callee. | 
|  | const CallExpr *CE = cast<CallExpr>(this); | 
|  | if (const Decl *FD = CE->getCalleeDecl()) { | 
|  | // If the callee has attribute pure, const, or warn_unused_result, warn | 
|  | // about it. void foo() { strlen("bar"); } should warn. | 
|  | // | 
|  | // Note: If new cases are added here, DiagnoseUnusedExprResult should be | 
|  | // updated to match for QoI. | 
|  | if (CE->hasUnusedResultAttr(Ctx) || | 
|  | FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { | 
|  | WarnE = this; | 
|  | Loc = CE->getCallee()->getBeginLoc(); | 
|  | R1 = CE->getCallee()->getSourceRange(); | 
|  |  | 
|  | if (unsigned NumArgs = CE->getNumArgs()) | 
|  | R2 = SourceRange(CE->getArg(0)->getBeginLoc(), | 
|  | CE->getArg(NumArgs - 1)->getEndLoc()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we don't know precisely what we're looking at, let's not warn. | 
|  | case UnresolvedLookupExprClass: | 
|  | case CXXUnresolvedConstructExprClass: | 
|  | case RecoveryExprClass: | 
|  | return false; | 
|  |  | 
|  | case CXXTemporaryObjectExprClass: | 
|  | case CXXConstructExprClass: { | 
|  | if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { | 
|  | const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); | 
|  | if (Type->hasAttr<WarnUnusedAttr>() || | 
|  | (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { | 
|  | WarnE = this; | 
|  | Loc = getBeginLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | const auto *CE = cast<CXXConstructExpr>(this); | 
|  | if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { | 
|  | const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); | 
|  | if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { | 
|  | WarnE = this; | 
|  | Loc = getBeginLoc(); | 
|  | R1 = getSourceRange(); | 
|  |  | 
|  | if (unsigned NumArgs = CE->getNumArgs()) | 
|  | R2 = SourceRange(CE->getArg(0)->getBeginLoc(), | 
|  | CE->getArg(NumArgs - 1)->getEndLoc()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ObjCMessageExprClass: { | 
|  | const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); | 
|  | if (Ctx.getLangOpts().ObjCAutoRefCount && | 
|  | ME->isInstanceMessage() && | 
|  | !ME->getType()->isVoidType() && | 
|  | ME->getMethodFamily() == OMF_init) { | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = ME->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const ObjCMethodDecl *MD = ME->getMethodDecl()) | 
|  | if (MD->hasAttr<WarnUnusedResultAttr>()) { | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ObjCPropertyRefExprClass: | 
|  | case ObjCSubscriptRefExprClass: | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  |  | 
|  | case PseudoObjectExprClass: { | 
|  | const auto *POE = cast<PseudoObjectExpr>(this); | 
|  |  | 
|  | // For some syntactic forms, we should always warn. | 
|  | if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( | 
|  | POE->getSyntacticForm())) { | 
|  | WarnE = this; | 
|  | Loc = getExprLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For others, we should never warn. | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm())) | 
|  | if (BO->isAssignmentOp()) | 
|  | return false; | 
|  | if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm())) | 
|  | if (UO->isIncrementDecrementOp()) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, warn if the result expression would warn. | 
|  | const Expr *Result = POE->getResultExpr(); | 
|  | return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  |  | 
|  | case StmtExprClass: { | 
|  | // Statement exprs don't logically have side effects themselves, but are | 
|  | // sometimes used in macros in ways that give them a type that is unused. | 
|  | // For example ({ blah; foo(); }) will end up with a type if foo has a type. | 
|  | // however, if the result of the stmt expr is dead, we don't want to emit a | 
|  | // warning. | 
|  | const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); | 
|  | if (!CS->body_empty()) { | 
|  | if (const Expr *E = dyn_cast<Expr>(CS->body_back())) | 
|  | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) | 
|  | if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) | 
|  | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  |  | 
|  | if (getType()->isVoidType()) | 
|  | return false; | 
|  | WarnE = this; | 
|  | Loc = cast<StmtExpr>(this)->getLParenLoc(); | 
|  | R1 = getSourceRange(); | 
|  | return true; | 
|  | } | 
|  | case CXXFunctionalCastExprClass: | 
|  | case CStyleCastExprClass: { | 
|  | // Ignore an explicit cast to void, except in C++98 if the operand is a | 
|  | // volatile glvalue for which we would trigger an implicit read in any | 
|  | // other language mode. (Such an implicit read always happens as part of | 
|  | // the lvalue conversion in C, and happens in C++ for expressions of all | 
|  | // forms where it seems likely the user intended to trigger a volatile | 
|  | // load.) | 
|  | const CastExpr *CE = cast<CastExpr>(this); | 
|  | const Expr *SubE = CE->getSubExpr()->IgnoreParens(); | 
|  | if (CE->getCastKind() == CK_ToVoid) { | 
|  | if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && | 
|  | SubE->isReadIfDiscardedInCPlusPlus11()) { | 
|  | // Suppress the "unused value" warning for idiomatic usage of | 
|  | // '(void)var;' used to suppress "unused variable" warnings. | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(SubE)) | 
|  | if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
|  | if (!VD->isExternallyVisible()) | 
|  | return false; | 
|  |  | 
|  | // The lvalue-to-rvalue conversion would have no effect for an array. | 
|  | // It's implausible that the programmer expected this to result in a | 
|  | // volatile array load, so don't warn. | 
|  | if (SubE->getType()->isArrayType()) | 
|  | return false; | 
|  |  | 
|  | return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this is a cast to a constructor conversion, check the operand. | 
|  | // Otherwise, the result of the cast is unused. | 
|  | if (CE->getCastKind() == CK_ConstructorConversion) | 
|  | return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | if (CE->getCastKind() == CK_Dependent) | 
|  | return false; | 
|  |  | 
|  | WarnE = this; | 
|  | if (const CXXFunctionalCastExpr *CXXCE = | 
|  | dyn_cast<CXXFunctionalCastExpr>(this)) { | 
|  | Loc = CXXCE->getBeginLoc(); | 
|  | R1 = CXXCE->getSubExpr()->getSourceRange(); | 
|  | } else { | 
|  | const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); | 
|  | Loc = CStyleCE->getLParenLoc(); | 
|  | R1 = CStyleCE->getSubExpr()->getSourceRange(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case ImplicitCastExprClass: { | 
|  | const CastExpr *ICE = cast<ImplicitCastExpr>(this); | 
|  |  | 
|  | // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. | 
|  | if (ICE->getCastKind() == CK_LValueToRValue && | 
|  | ICE->getSubExpr()->getType().isVolatileQualified()) | 
|  | return false; | 
|  |  | 
|  | return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | case CXXDefaultArgExprClass: | 
|  | return (cast<CXXDefaultArgExpr>(this) | 
|  | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); | 
|  | case CXXDefaultInitExprClass: | 
|  | return (cast<CXXDefaultInitExpr>(this) | 
|  | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); | 
|  |  | 
|  | case CXXNewExprClass: | 
|  | // FIXME: In theory, there might be new expressions that don't have side | 
|  | // effects (e.g. a placement new with an uninitialized POD). | 
|  | case CXXDeleteExprClass: | 
|  | return false; | 
|  | case MaterializeTemporaryExprClass: | 
|  | return cast<MaterializeTemporaryExpr>(this) | 
|  | ->getSubExpr() | 
|  | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case CXXBindTemporaryExprClass: | 
|  | return cast<CXXBindTemporaryExpr>(this)->getSubExpr() | 
|  | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case ExprWithCleanupsClass: | 
|  | return cast<ExprWithCleanups>(this)->getSubExpr() | 
|  | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); | 
|  | case OpaqueValueExprClass: | 
|  | return cast<OpaqueValueExpr>(this)->getSourceExpr()->isUnusedResultAWarning( | 
|  | WarnE, Loc, R1, R2, Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isOBJCGCCandidate - Check if an expression is objc gc'able. | 
|  | /// returns true, if it is; false otherwise. | 
|  | bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { | 
|  | const Expr *E = IgnoreParens(); | 
|  | switch (E->getStmtClass()) { | 
|  | default: | 
|  | return false; | 
|  | case ObjCIvarRefExprClass: | 
|  | return true; | 
|  | case Expr::UnaryOperatorClass: | 
|  | return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
|  | case ImplicitCastExprClass: | 
|  | return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
|  | case MaterializeTemporaryExprClass: | 
|  | return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate( | 
|  | Ctx); | 
|  | case CStyleCastExprClass: | 
|  | return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); | 
|  | case DeclRefExprClass: { | 
|  | const Decl *D = cast<DeclRefExpr>(E)->getDecl(); | 
|  |  | 
|  | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (VD->hasGlobalStorage()) | 
|  | return true; | 
|  | QualType T = VD->getType(); | 
|  | // dereferencing to a  pointer is always a gc'able candidate, | 
|  | // unless it is __weak. | 
|  | return T->isPointerType() && | 
|  | (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | case MemberExprClass: { | 
|  | const MemberExpr *M = cast<MemberExpr>(E); | 
|  | return M->getBase()->isOBJCGCCandidate(Ctx); | 
|  | } | 
|  | case ArraySubscriptExprClass: | 
|  | return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { | 
|  | if (isTypeDependent()) | 
|  | return false; | 
|  | return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; | 
|  | } | 
|  |  | 
|  | QualType Expr::findBoundMemberType(const Expr *expr) { | 
|  | assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); | 
|  |  | 
|  | // Bound member expressions are always one of these possibilities: | 
|  | //   x->m      x.m      x->*y      x.*y | 
|  | // (possibly parenthesized) | 
|  |  | 
|  | expr = expr->IgnoreParens(); | 
|  | if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { | 
|  | assert(isa<CXXMethodDecl>(mem->getMemberDecl())); | 
|  | return mem->getMemberDecl()->getType(); | 
|  | } | 
|  |  | 
|  | if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { | 
|  | QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() | 
|  | ->getPointeeType(); | 
|  | assert(type->isFunctionType()); | 
|  | return type; | 
|  | } | 
|  |  | 
|  | assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreImpCasts() { | 
|  | return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreCasts() { | 
|  | return IgnoreExprNodes(this, IgnoreCastsSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreImplicit() { | 
|  | return IgnoreExprNodes(this, IgnoreImplicitSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreImplicitAsWritten() { | 
|  | return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreParens() { | 
|  | return IgnoreExprNodes(this, IgnoreParensSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreParenImpCasts() { | 
|  | return IgnoreExprNodes(this, IgnoreParensSingleStep, | 
|  | IgnoreImplicitCastsExtraSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreParenCasts() { | 
|  | return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreConversionOperatorSingleStep() { | 
|  | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { | 
|  | if (isa_and_nonnull<CXXConversionDecl>(MCE->getMethodDecl())) | 
|  | return MCE->getImplicitObjectArgument(); | 
|  | } | 
|  | return this; | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreParenLValueCasts() { | 
|  | return IgnoreExprNodes(this, IgnoreParensSingleStep, | 
|  | IgnoreLValueCastsSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreParenBaseCasts() { | 
|  | return IgnoreExprNodes(this, IgnoreParensSingleStep, | 
|  | IgnoreBaseCastsSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { | 
|  | auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { | 
|  | if (auto *CE = dyn_cast<CastExpr>(E)) { | 
|  | // We ignore integer <-> casts that are of the same width, ptr<->ptr and | 
|  | // ptr<->int casts of the same width. We also ignore all identity casts. | 
|  | Expr *SubExpr = CE->getSubExpr(); | 
|  | bool IsIdentityCast = | 
|  | Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); | 
|  | bool IsSameWidthCast = (E->getType()->isPointerType() || | 
|  | E->getType()->isIntegralType(Ctx)) && | 
|  | (SubExpr->getType()->isPointerType() || | 
|  | SubExpr->getType()->isIntegralType(Ctx)) && | 
|  | (Ctx.getTypeSize(E->getType()) == | 
|  | Ctx.getTypeSize(SubExpr->getType())); | 
|  |  | 
|  | if (IsIdentityCast || IsSameWidthCast) | 
|  | return SubExpr; | 
|  | } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) | 
|  | return NTTP->getReplacement(); | 
|  |  | 
|  | return E; | 
|  | }; | 
|  | return IgnoreExprNodes(this, IgnoreParensSingleStep, | 
|  | IgnoreNoopCastsSingleStep); | 
|  | } | 
|  |  | 
|  | Expr *Expr::IgnoreUnlessSpelledInSource() { | 
|  | auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { | 
|  | if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) { | 
|  | auto *SE = Cast->getSubExpr(); | 
|  | if (SE->getSourceRange() == E->getSourceRange()) | 
|  | return SE; | 
|  | } | 
|  |  | 
|  | if (auto *C = dyn_cast<CXXConstructExpr>(E)) { | 
|  | auto NumArgs = C->getNumArgs(); | 
|  | if (NumArgs == 1 || | 
|  | (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) { | 
|  | Expr *A = C->getArg(0); | 
|  | if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) | 
|  | return A; | 
|  | } | 
|  | } | 
|  | return E; | 
|  | }; | 
|  | auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { | 
|  | if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) { | 
|  | Expr *ExprNode = C->getImplicitObjectArgument(); | 
|  | if (ExprNode->getSourceRange() == E->getSourceRange()) { | 
|  | return ExprNode; | 
|  | } | 
|  | if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) { | 
|  | if (PE->getSourceRange() == C->getSourceRange()) { | 
|  | return cast<Expr>(PE); | 
|  | } | 
|  | } | 
|  | ExprNode = ExprNode->IgnoreParenImpCasts(); | 
|  | if (ExprNode->getSourceRange() == E->getSourceRange()) | 
|  | return ExprNode; | 
|  | } | 
|  | return E; | 
|  | }; | 
|  | return IgnoreExprNodes( | 
|  | this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep, | 
|  | IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep, | 
|  | IgnoreImplicitMemberCallSingleStep); | 
|  | } | 
|  |  | 
|  | bool Expr::isDefaultArgument() const { | 
|  | const Expr *E = this; | 
|  | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) | 
|  | E = M->getSubExpr(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) | 
|  | E = ICE->getSubExprAsWritten(); | 
|  |  | 
|  | return isa<CXXDefaultArgExpr>(E); | 
|  | } | 
|  |  | 
|  | /// Skip over any no-op casts and any temporary-binding | 
|  | /// expressions. | 
|  | static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { | 
|  | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) | 
|  | E = M->getSubExpr(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_NoOp) | 
|  | E = ICE->getSubExpr(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) | 
|  | E = BE->getSubExpr(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_NoOp) | 
|  | E = ICE->getSubExpr(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E->IgnoreParens(); | 
|  | } | 
|  |  | 
|  | /// isTemporaryObject - Determines if this expression produces a | 
|  | /// temporary of the given class type. | 
|  | bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { | 
|  | if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) | 
|  | return false; | 
|  |  | 
|  | const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); | 
|  |  | 
|  | // Temporaries are by definition pr-values of class type. | 
|  | if (!E->Classify(C).isPRValue()) { | 
|  | // In this context, property reference is a message call and is pr-value. | 
|  | if (!isa<ObjCPropertyRefExpr>(E)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Black-list a few cases which yield pr-values of class type that don't | 
|  | // refer to temporaries of that type: | 
|  |  | 
|  | // - implicit derived-to-base conversions | 
|  | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | switch (ICE->getCastKind()) { | 
|  | case CK_DerivedToBase: | 
|  | case CK_UncheckedDerivedToBase: | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // - member expressions (all) | 
|  | if (isa<MemberExpr>(E)) | 
|  | return false; | 
|  |  | 
|  | if (const auto *BO = dyn_cast<BinaryOperator>(E)) | 
|  | if (BO->isPtrMemOp()) | 
|  | return false; | 
|  |  | 
|  | // - opaque values (all) | 
|  | if (isa<OpaqueValueExpr>(E)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Expr::isImplicitCXXThis() const { | 
|  | const Expr *E = this; | 
|  |  | 
|  | // Strip away parentheses and casts we don't care about. | 
|  | while (true) { | 
|  | if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { | 
|  | E = Paren->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_NoOp || | 
|  | ICE->getCastKind() == CK_LValueToRValue || | 
|  | ICE->getCastKind() == CK_DerivedToBase || | 
|  | ICE->getCastKind() == CK_UncheckedDerivedToBase) { | 
|  | E = ICE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { | 
|  | if (UnOp->getOpcode() == UO_Extension) { | 
|  | E = UnOp->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const MaterializeTemporaryExpr *M | 
|  | = dyn_cast<MaterializeTemporaryExpr>(E)) { | 
|  | E = M->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) | 
|  | return This->isImplicit(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// hasAnyTypeDependentArguments - Determines if any of the expressions | 
|  | /// in Exprs is type-dependent. | 
|  | bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { | 
|  | for (unsigned I = 0; I < Exprs.size(); ++I) | 
|  | if (Exprs[I]->isTypeDependent()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, | 
|  | const Expr **Culprit) const { | 
|  | assert(!isValueDependent() && | 
|  | "Expression evaluator can't be called on a dependent expression."); | 
|  |  | 
|  | // This function is attempting whether an expression is an initializer | 
|  | // which can be evaluated at compile-time. It very closely parallels | 
|  | // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it | 
|  | // will lead to unexpected results.  Like ConstExprEmitter, it falls back | 
|  | // to isEvaluatable most of the time. | 
|  | // | 
|  | // If we ever capture reference-binding directly in the AST, we can | 
|  | // kill the second parameter. | 
|  |  | 
|  | if (IsForRef) { | 
|  | if (auto *EWC = dyn_cast<ExprWithCleanups>(this)) | 
|  | return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit); | 
|  | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(this)) | 
|  | return MTE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); | 
|  | EvalResult Result; | 
|  | if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) | 
|  | return true; | 
|  | if (Culprit) | 
|  | *Culprit = this; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (getStmtClass()) { | 
|  | default: break; | 
|  | case Stmt::ExprWithCleanupsClass: | 
|  | return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer( | 
|  | Ctx, IsForRef, Culprit); | 
|  | case StringLiteralClass: | 
|  | case ObjCEncodeExprClass: | 
|  | return true; | 
|  | case CXXTemporaryObjectExprClass: | 
|  | case CXXConstructExprClass: { | 
|  | const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); | 
|  |  | 
|  | if (CE->getConstructor()->isTrivial() && | 
|  | CE->getConstructor()->getParent()->hasTrivialDestructor()) { | 
|  | // Trivial default constructor | 
|  | if (!CE->getNumArgs()) return true; | 
|  |  | 
|  | // Trivial copy constructor | 
|  | assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); | 
|  | return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ConstantExprClass: { | 
|  | // FIXME: We should be able to return "true" here, but it can lead to extra | 
|  | // error messages. E.g. in Sema/array-init.c. | 
|  | const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); | 
|  | return Exp->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | case CompoundLiteralExprClass: { | 
|  | // This handles gcc's extension that allows global initializers like | 
|  | // "struct x {int x;} x = (struct x) {};". | 
|  | // FIXME: This accepts other cases it shouldn't! | 
|  | const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); | 
|  | return Exp->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | case DesignatedInitUpdateExprClass: { | 
|  | const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); | 
|  | return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && | 
|  | DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | case InitListExprClass: { | 
|  | // C++ [dcl.init.aggr]p2: | 
|  | //   The elements of an aggregate are: | 
|  | //   - for an array, the array elements in increasing subscript order, or | 
|  | //   - for a class, the direct base classes in declaration order, followed | 
|  | //     by the direct non-static data members (11.4) that are not members of | 
|  | //     an anonymous union, in declaration order. | 
|  | const InitListExpr *ILE = cast<InitListExpr>(this); | 
|  | assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); | 
|  |  | 
|  | if (ILE->isTransparent()) | 
|  | return ILE->getInit(0)->isConstantInitializer(Ctx, false, Culprit); | 
|  |  | 
|  | if (ILE->getType()->isArrayType()) { | 
|  | unsigned numInits = ILE->getNumInits(); | 
|  | for (unsigned i = 0; i < numInits; i++) { | 
|  | if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (ILE->getType()->isRecordType()) { | 
|  | unsigned ElementNo = 0; | 
|  | RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); | 
|  |  | 
|  | // In C++17, bases were added to the list of members used by aggregate | 
|  | // initialization. | 
|  | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) { | 
|  | if (ElementNo < ILE->getNumInits()) { | 
|  | const Expr *Elt = ILE->getInit(ElementNo++); | 
|  | if (!Elt->isConstantInitializer(Ctx, false, Culprit)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto *Field : RD->fields()) { | 
|  | // If this is a union, skip all the fields that aren't being initialized. | 
|  | if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) | 
|  | continue; | 
|  |  | 
|  | // Don't emit anonymous bitfields, they just affect layout. | 
|  | if (Field->isUnnamedBitField()) | 
|  | continue; | 
|  |  | 
|  | if (ElementNo < ILE->getNumInits()) { | 
|  | const Expr *Elt = ILE->getInit(ElementNo++); | 
|  | if (Field->isBitField()) { | 
|  | // Bitfields have to evaluate to an integer. | 
|  | EvalResult Result; | 
|  | if (!Elt->EvaluateAsInt(Result, Ctx)) { | 
|  | if (Culprit) | 
|  | *Culprit = Elt; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | bool RefType = Field->getType()->isReferenceType(); | 
|  | if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ImplicitValueInitExprClass: | 
|  | case NoInitExprClass: | 
|  | return true; | 
|  | case ParenExprClass: | 
|  | return cast<ParenExpr>(this)->getSubExpr() | 
|  | ->isConstantInitializer(Ctx, IsForRef, Culprit); | 
|  | case GenericSelectionExprClass: | 
|  | return cast<GenericSelectionExpr>(this)->getResultExpr() | 
|  | ->isConstantInitializer(Ctx, IsForRef, Culprit); | 
|  | case ChooseExprClass: | 
|  | if (cast<ChooseExpr>(this)->isConditionDependent()) { | 
|  | if (Culprit) | 
|  | *Culprit = this; | 
|  | return false; | 
|  | } | 
|  | return cast<ChooseExpr>(this)->getChosenSubExpr() | 
|  | ->isConstantInitializer(Ctx, IsForRef, Culprit); | 
|  | case UnaryOperatorClass: { | 
|  | const UnaryOperator* Exp = cast<UnaryOperator>(this); | 
|  | if (Exp->getOpcode() == UO_Extension) | 
|  | return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); | 
|  | break; | 
|  | } | 
|  | case PackIndexingExprClass: { | 
|  | return cast<PackIndexingExpr>(this) | 
|  | ->getSelectedExpr() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | case CXXFunctionalCastExprClass: | 
|  | case CXXStaticCastExprClass: | 
|  | case ImplicitCastExprClass: | 
|  | case CStyleCastExprClass: | 
|  | case ObjCBridgedCastExprClass: | 
|  | case CXXDynamicCastExprClass: | 
|  | case CXXReinterpretCastExprClass: | 
|  | case CXXAddrspaceCastExprClass: | 
|  | case CXXConstCastExprClass: { | 
|  | const CastExpr *CE = cast<CastExpr>(this); | 
|  |  | 
|  | // Handle misc casts we want to ignore. | 
|  | if (CE->getCastKind() == CK_NoOp || | 
|  | CE->getCastKind() == CK_LValueToRValue || | 
|  | CE->getCastKind() == CK_ToUnion || | 
|  | CE->getCastKind() == CK_ConstructorConversion || | 
|  | CE->getCastKind() == CK_NonAtomicToAtomic || | 
|  | CE->getCastKind() == CK_AtomicToNonAtomic || | 
|  | CE->getCastKind() == CK_NullToPointer || | 
|  | CE->getCastKind() == CK_IntToOCLSampler) | 
|  | return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); | 
|  |  | 
|  | break; | 
|  | } | 
|  | case MaterializeTemporaryExprClass: | 
|  | return cast<MaterializeTemporaryExpr>(this) | 
|  | ->getSubExpr() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  |  | 
|  | case SubstNonTypeTemplateParmExprClass: | 
|  | return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  | case CXXDefaultArgExprClass: | 
|  | return cast<CXXDefaultArgExpr>(this)->getExpr() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  | case CXXDefaultInitExprClass: | 
|  | return cast<CXXDefaultInitExpr>(this)->getExpr() | 
|  | ->isConstantInitializer(Ctx, false, Culprit); | 
|  | } | 
|  | // Allow certain forms of UB in constant initializers: signed integer | 
|  | // overflow and floating-point division by zero. We'll give a warning on | 
|  | // these, but they're common enough that we have to accept them. | 
|  | if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) | 
|  | return true; | 
|  | if (Culprit) | 
|  | *Culprit = this; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { | 
|  | unsigned BuiltinID = getBuiltinCallee(); | 
|  | if (BuiltinID != Builtin::BI__assume && | 
|  | BuiltinID != Builtin::BI__builtin_assume) | 
|  | return false; | 
|  |  | 
|  | const Expr* Arg = getArg(0); | 
|  | bool ArgVal; | 
|  | return !Arg->isValueDependent() && | 
|  | Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; | 
|  | } | 
|  |  | 
|  | bool CallExpr::isCallToStdMove() const { | 
|  | return getBuiltinCallee() == Builtin::BImove; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Look for any side effects within a Stmt. | 
|  | class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { | 
|  | typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; | 
|  | const bool IncludePossibleEffects; | 
|  | bool HasSideEffects; | 
|  |  | 
|  | public: | 
|  | explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) | 
|  | : Inherited(Context), | 
|  | IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } | 
|  |  | 
|  | bool hasSideEffects() const { return HasSideEffects; } | 
|  |  | 
|  | void VisitDecl(const Decl *D) { | 
|  | if (!D) | 
|  | return; | 
|  |  | 
|  | // We assume the caller checks subexpressions (eg, the initializer, VLA | 
|  | // bounds) for side-effects on our behalf. | 
|  | if (auto *VD = dyn_cast<VarDecl>(D)) { | 
|  | // Registering a destructor is a side-effect. | 
|  | if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && | 
|  | VD->needsDestruction(Context)) | 
|  | HasSideEffects = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void VisitDeclStmt(const DeclStmt *DS) { | 
|  | for (auto *D : DS->decls()) | 
|  | VisitDecl(D); | 
|  | Inherited::VisitDeclStmt(DS); | 
|  | } | 
|  |  | 
|  | void VisitExpr(const Expr *E) { | 
|  | if (!HasSideEffects && | 
|  | E->HasSideEffects(Context, IncludePossibleEffects)) | 
|  | HasSideEffects = true; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool Expr::HasSideEffects(const ASTContext &Ctx, | 
|  | bool IncludePossibleEffects) const { | 
|  | // In circumstances where we care about definite side effects instead of | 
|  | // potential side effects, we want to ignore expressions that are part of a | 
|  | // macro expansion as a potential side effect. | 
|  | if (!IncludePossibleEffects && getExprLoc().isMacroID()) | 
|  | return false; | 
|  |  | 
|  | switch (getStmtClass()) { | 
|  | case NoStmtClass: | 
|  | #define ABSTRACT_STMT(Type) | 
|  | #define STMT(Type, Base) case Type##Class: | 
|  | #define EXPR(Type, Base) | 
|  | #include "clang/AST/StmtNodes.inc" | 
|  | llvm_unreachable("unexpected Expr kind"); | 
|  |  | 
|  | case DependentScopeDeclRefExprClass: | 
|  | case CXXUnresolvedConstructExprClass: | 
|  | case CXXDependentScopeMemberExprClass: | 
|  | case UnresolvedLookupExprClass: | 
|  | case UnresolvedMemberExprClass: | 
|  | case PackExpansionExprClass: | 
|  | case SubstNonTypeTemplateParmPackExprClass: | 
|  | case FunctionParmPackExprClass: | 
|  | case RecoveryExprClass: | 
|  | case CXXFoldExprClass: | 
|  | // Make a conservative assumption for dependent nodes. | 
|  | return IncludePossibleEffects; | 
|  |  | 
|  | case DeclRefExprClass: | 
|  | case ObjCIvarRefExprClass: | 
|  | case PredefinedExprClass: | 
|  | case IntegerLiteralClass: | 
|  | case FixedPointLiteralClass: | 
|  | case FloatingLiteralClass: | 
|  | case ImaginaryLiteralClass: | 
|  | case StringLiteralClass: | 
|  | case CharacterLiteralClass: | 
|  | case OffsetOfExprClass: | 
|  | case ImplicitValueInitExprClass: | 
|  | case UnaryExprOrTypeTraitExprClass: | 
|  | case AddrLabelExprClass: | 
|  | case GNUNullExprClass: | 
|  | case ArrayInitIndexExprClass: | 
|  | case NoInitExprClass: | 
|  | case CXXBoolLiteralExprClass: | 
|  | case CXXNullPtrLiteralExprClass: | 
|  | case CXXThisExprClass: | 
|  | case CXXScalarValueInitExprClass: | 
|  | case TypeTraitExprClass: | 
|  | case ArrayTypeTraitExprClass: | 
|  | case ExpressionTraitExprClass: | 
|  | case CXXNoexceptExprClass: | 
|  | case SizeOfPackExprClass: | 
|  | case ObjCStringLiteralClass: | 
|  | case ObjCEncodeExprClass: | 
|  | case ObjCBoolLiteralExprClass: | 
|  | case ObjCAvailabilityCheckExprClass: | 
|  | case CXXUuidofExprClass: | 
|  | case OpaqueValueExprClass: | 
|  | case SourceLocExprClass: | 
|  | case EmbedExprClass: | 
|  | case ConceptSpecializationExprClass: | 
|  | case RequiresExprClass: | 
|  | case SYCLUniqueStableNameExprClass: | 
|  | case PackIndexingExprClass: | 
|  | case HLSLOutArgExprClass: | 
|  | case OpenACCAsteriskSizeExprClass: | 
|  | // These never have a side-effect. | 
|  | return false; | 
|  |  | 
|  | case ConstantExprClass: | 
|  | // FIXME: Move this into the "return false;" block above. | 
|  | return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( | 
|  | Ctx, IncludePossibleEffects); | 
|  |  | 
|  | case CallExprClass: | 
|  | case CXXOperatorCallExprClass: | 
|  | case CXXMemberCallExprClass: | 
|  | case CUDAKernelCallExprClass: | 
|  | case UserDefinedLiteralClass: { | 
|  | // We don't know a call definitely has side effects, except for calls | 
|  | // to pure/const functions that definitely don't. | 
|  | // If the call itself is considered side-effect free, check the operands. | 
|  | const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); | 
|  | bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); | 
|  | if (IsPure || !IncludePossibleEffects) | 
|  | break; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case BlockExprClass: | 
|  | case CXXBindTemporaryExprClass: | 
|  | if (!IncludePossibleEffects) | 
|  | break; | 
|  | return true; | 
|  |  | 
|  | case MSPropertyRefExprClass: | 
|  | case MSPropertySubscriptExprClass: | 
|  | case CompoundAssignOperatorClass: | 
|  | case VAArgExprClass: | 
|  | case AtomicExprClass: | 
|  | case CXXThrowExprClass: | 
|  | case CXXNewExprClass: | 
|  | case CXXDeleteExprClass: | 
|  | case CoawaitExprClass: | 
|  | case DependentCoawaitExprClass: | 
|  | case CoyieldExprClass: | 
|  | // These always have a side-effect. | 
|  | return true; | 
|  |  | 
|  | case StmtExprClass: { | 
|  | // StmtExprs have a side-effect if any substatement does. | 
|  | SideEffectFinder Finder(Ctx, IncludePossibleEffects); | 
|  | Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); | 
|  | return Finder.hasSideEffects(); | 
|  | } | 
|  |  | 
|  | case ExprWithCleanupsClass: | 
|  | if (IncludePossibleEffects) | 
|  | if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case ParenExprClass: | 
|  | case ArraySubscriptExprClass: | 
|  | case MatrixSubscriptExprClass: | 
|  | case ArraySectionExprClass: | 
|  | case OMPArrayShapingExprClass: | 
|  | case OMPIteratorExprClass: | 
|  | case MemberExprClass: | 
|  | case ConditionalOperatorClass: | 
|  | case BinaryConditionalOperatorClass: | 
|  | case CompoundLiteralExprClass: | 
|  | case ExtVectorElementExprClass: | 
|  | case DesignatedInitExprClass: | 
|  | case DesignatedInitUpdateExprClass: | 
|  | case ArrayInitLoopExprClass: | 
|  | case ParenListExprClass: | 
|  | case CXXPseudoDestructorExprClass: | 
|  | case CXXRewrittenBinaryOperatorClass: | 
|  | case CXXStdInitializerListExprClass: | 
|  | case SubstNonTypeTemplateParmExprClass: | 
|  | case MaterializeTemporaryExprClass: | 
|  | case ShuffleVectorExprClass: | 
|  | case ConvertVectorExprClass: | 
|  | case AsTypeExprClass: | 
|  | case CXXParenListInitExprClass: | 
|  | // These have a side-effect if any subexpression does. | 
|  | break; | 
|  |  | 
|  | case UnaryOperatorClass: | 
|  | if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case BinaryOperatorClass: | 
|  | if (cast<BinaryOperator>(this)->isAssignmentOp()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case InitListExprClass: | 
|  | // FIXME: The children for an InitListExpr doesn't include the array filler. | 
|  | if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) | 
|  | if (E->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case GenericSelectionExprClass: | 
|  | return cast<GenericSelectionExpr>(this)->getResultExpr()-> | 
|  | HasSideEffects(Ctx, IncludePossibleEffects); | 
|  |  | 
|  | case ChooseExprClass: | 
|  | return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( | 
|  | Ctx, IncludePossibleEffects); | 
|  |  | 
|  | case CXXDefaultArgExprClass: | 
|  | return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( | 
|  | Ctx, IncludePossibleEffects); | 
|  |  | 
|  | case CXXDefaultInitExprClass: { | 
|  | const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); | 
|  | if (const Expr *E = FD->getInClassInitializer()) | 
|  | return E->HasSideEffects(Ctx, IncludePossibleEffects); | 
|  | // If we've not yet parsed the initializer, assume it has side-effects. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case CXXDynamicCastExprClass: { | 
|  | // A dynamic_cast expression has side-effects if it can throw. | 
|  | const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); | 
|  | if (DCE->getTypeAsWritten()->isReferenceType() && | 
|  | DCE->getCastKind() == CK_Dynamic) | 
|  | return true; | 
|  | } | 
|  | [[fallthrough]]; | 
|  | case ImplicitCastExprClass: | 
|  | case CStyleCastExprClass: | 
|  | case CXXStaticCastExprClass: | 
|  | case CXXReinterpretCastExprClass: | 
|  | case CXXConstCastExprClass: | 
|  | case CXXAddrspaceCastExprClass: | 
|  | case CXXFunctionalCastExprClass: | 
|  | case BuiltinBitCastExprClass: { | 
|  | // While volatile reads are side-effecting in both C and C++, we treat them | 
|  | // as having possible (not definite) side-effects. This allows idiomatic | 
|  | // code to behave without warning, such as sizeof(*v) for a volatile- | 
|  | // qualified pointer. | 
|  | if (!IncludePossibleEffects) | 
|  | break; | 
|  |  | 
|  | const CastExpr *CE = cast<CastExpr>(this); | 
|  | if (CE->getCastKind() == CK_LValueToRValue && | 
|  | CE->getSubExpr()->getType().isVolatileQualified()) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case CXXTypeidExprClass: { | 
|  | const auto *TE = cast<CXXTypeidExpr>(this); | 
|  | if (!TE->isPotentiallyEvaluated()) | 
|  | return false; | 
|  |  | 
|  | // If this type id expression can throw because of a null pointer, that is a | 
|  | // side-effect independent of if the operand has a side-effect | 
|  | if (IncludePossibleEffects && TE->hasNullCheck()) | 
|  | return true; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case CXXConstructExprClass: | 
|  | case CXXTemporaryObjectExprClass: { | 
|  | const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); | 
|  | if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) | 
|  | return true; | 
|  | // A trivial constructor does not add any side-effects of its own. Just look | 
|  | // at its arguments. | 
|  | break; | 
|  | } | 
|  |  | 
|  | case CXXInheritedCtorInitExprClass: { | 
|  | const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); | 
|  | if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LambdaExprClass: { | 
|  | const LambdaExpr *LE = cast<LambdaExpr>(this); | 
|  | for (Expr *E : LE->capture_inits()) | 
|  | if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case PseudoObjectExprClass: { | 
|  | // Only look for side-effects in the semantic form, and look past | 
|  | // OpaqueValueExpr bindings in that form. | 
|  | const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); | 
|  | for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), | 
|  | E = PO->semantics_end(); | 
|  | I != E; ++I) { | 
|  | const Expr *Subexpr = *I; | 
|  | if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) | 
|  | Subexpr = OVE->getSourceExpr(); | 
|  | if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case ObjCBoxedExprClass: | 
|  | case ObjCArrayLiteralClass: | 
|  | case ObjCDictionaryLiteralClass: | 
|  | case ObjCSelectorExprClass: | 
|  | case ObjCProtocolExprClass: | 
|  | case ObjCIsaExprClass: | 
|  | case ObjCIndirectCopyRestoreExprClass: | 
|  | case ObjCSubscriptRefExprClass: | 
|  | case ObjCBridgedCastExprClass: | 
|  | case ObjCMessageExprClass: | 
|  | case ObjCPropertyRefExprClass: | 
|  | // FIXME: Classify these cases better. | 
|  | if (IncludePossibleEffects) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Recurse to children. | 
|  | for (const Stmt *SubStmt : children()) | 
|  | if (SubStmt && | 
|  | cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { | 
|  | if (auto Call = dyn_cast<CallExpr>(this)) | 
|  | return Call->getFPFeaturesInEffect(LO); | 
|  | if (auto UO = dyn_cast<UnaryOperator>(this)) | 
|  | return UO->getFPFeaturesInEffect(LO); | 
|  | if (auto BO = dyn_cast<BinaryOperator>(this)) | 
|  | return BO->getFPFeaturesInEffect(LO); | 
|  | if (auto Cast = dyn_cast<CastExpr>(this)) | 
|  | return Cast->getFPFeaturesInEffect(LO); | 
|  | if (auto ConvertVector = dyn_cast<ConvertVectorExpr>(this)) | 
|  | return ConvertVector->getFPFeaturesInEffect(LO); | 
|  | return FPOptions::defaultWithoutTrailingStorage(LO); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// Look for a call to a non-trivial function within an expression. | 
|  | class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> | 
|  | { | 
|  | typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; | 
|  |  | 
|  | bool NonTrivial; | 
|  |  | 
|  | public: | 
|  | explicit NonTrivialCallFinder(const ASTContext &Context) | 
|  | : Inherited(Context), NonTrivial(false) { } | 
|  |  | 
|  | bool hasNonTrivialCall() const { return NonTrivial; } | 
|  |  | 
|  | void VisitCallExpr(const CallExpr *E) { | 
|  | if (const CXXMethodDecl *Method | 
|  | = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { | 
|  | if (Method->isTrivial()) { | 
|  | // Recurse to children of the call. | 
|  | Inherited::VisitStmt(E); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | NonTrivial = true; | 
|  | } | 
|  |  | 
|  | void VisitCXXConstructExpr(const CXXConstructExpr *E) { | 
|  | if (E->getConstructor()->isTrivial()) { | 
|  | // Recurse to children of the call. | 
|  | Inherited::VisitStmt(E); | 
|  | return; | 
|  | } | 
|  |  | 
|  | NonTrivial = true; | 
|  | } | 
|  |  | 
|  | void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { | 
|  | // Destructor of the temporary might be null if destructor declaration | 
|  | // is not valid. | 
|  | if (const CXXDestructorDecl *DtorDecl = | 
|  | E->getTemporary()->getDestructor()) { | 
|  | if (DtorDecl->isTrivial()) { | 
|  | Inherited::VisitStmt(E); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | NonTrivial = true; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { | 
|  | NonTrivialCallFinder Finder(Ctx); | 
|  | Finder.Visit(this); | 
|  | return Finder.hasNonTrivialCall(); | 
|  | } | 
|  |  | 
|  | /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null | 
|  | /// pointer constant or not, as well as the specific kind of constant detected. | 
|  | /// Null pointer constants can be integer constant expressions with the | 
|  | /// value zero, casts of zero to void*, nullptr (C++0X), or __null | 
|  | /// (a GNU extension). | 
|  | Expr::NullPointerConstantKind | 
|  | Expr::isNullPointerConstant(ASTContext &Ctx, | 
|  | NullPointerConstantValueDependence NPC) const { | 
|  | if (isValueDependent() && | 
|  | (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { | 
|  | // Error-dependent expr should never be a null pointer. | 
|  | if (containsErrors()) | 
|  | return NPCK_NotNull; | 
|  | switch (NPC) { | 
|  | case NPC_NeverValueDependent: | 
|  | llvm_unreachable("Unexpected value dependent expression!"); | 
|  | case NPC_ValueDependentIsNull: | 
|  | if (isTypeDependent() || getType()->isIntegralType(Ctx)) | 
|  | return NPCK_ZeroExpression; | 
|  | else | 
|  | return NPCK_NotNull; | 
|  |  | 
|  | case NPC_ValueDependentIsNotNull: | 
|  | return NPCK_NotNull; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Strip off a cast to void*, if it exists. Except in C++. | 
|  | if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { | 
|  | if (!Ctx.getLangOpts().CPlusPlus) { | 
|  | // Check that it is a cast to void*. | 
|  | if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { | 
|  | QualType Pointee = PT->getPointeeType(); | 
|  | Qualifiers Qs = Pointee.getQualifiers(); | 
|  | // Only (void*)0 or equivalent are treated as nullptr. If pointee type | 
|  | // has non-default address space it is not treated as nullptr. | 
|  | // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr | 
|  | // since it cannot be assigned to a pointer to constant address space. | 
|  | if (Ctx.getLangOpts().OpenCL && | 
|  | Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) | 
|  | Qs.removeAddressSpace(); | 
|  |  | 
|  | if (Pointee->isVoidType() && Qs.empty() && // to void* | 
|  | CE->getSubExpr()->getType()->isIntegerType()) // from int | 
|  | return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } | 
|  | } | 
|  | } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { | 
|  | // Ignore the ImplicitCastExpr type entirely. | 
|  | return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { | 
|  | // Accept ((void*)0) as a null pointer constant, as many other | 
|  | // implementations do. | 
|  | return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const GenericSelectionExpr *GE = | 
|  | dyn_cast<GenericSelectionExpr>(this)) { | 
|  | if (GE->isResultDependent()) | 
|  | return NPCK_NotNull; | 
|  | return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { | 
|  | if (CE->isConditionDependent()) | 
|  | return NPCK_NotNull; | 
|  | return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const CXXDefaultArgExpr *DefaultArg | 
|  | = dyn_cast<CXXDefaultArgExpr>(this)) { | 
|  | // See through default argument expressions. | 
|  | return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const CXXDefaultInitExpr *DefaultInit | 
|  | = dyn_cast<CXXDefaultInitExpr>(this)) { | 
|  | // See through default initializer expressions. | 
|  | return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (isa<GNUNullExpr>(this)) { | 
|  | // The GNU __null extension is always a null pointer constant. | 
|  | return NPCK_GNUNull; | 
|  | } else if (const MaterializeTemporaryExpr *M | 
|  | = dyn_cast<MaterializeTemporaryExpr>(this)) { | 
|  | return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); | 
|  | } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { | 
|  | if (const Expr *Source = OVE->getSourceExpr()) | 
|  | return Source->isNullPointerConstant(Ctx, NPC); | 
|  | } | 
|  |  | 
|  | // If the expression has no type information, it cannot be a null pointer | 
|  | // constant. | 
|  | if (getType().isNull()) | 
|  | return NPCK_NotNull; | 
|  |  | 
|  | // C++11/C23 nullptr_t is always a null pointer constant. | 
|  | if (getType()->isNullPtrType()) | 
|  | return NPCK_CXX11_nullptr; | 
|  |  | 
|  | if (const RecordType *UT = getType()->getAsUnionType()) | 
|  | if (!Ctx.getLangOpts().CPlusPlus11 && | 
|  | UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) | 
|  | if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ | 
|  | const Expr *InitExpr = CLE->getInitializer(); | 
|  | if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) | 
|  | return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); | 
|  | } | 
|  | // This expression must be an integer type. | 
|  | if (!getType()->isIntegerType() || | 
|  | (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) | 
|  | return NPCK_NotNull; | 
|  |  | 
|  | if (Ctx.getLangOpts().CPlusPlus11) { | 
|  | // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with | 
|  | // value zero or a prvalue of type std::nullptr_t. | 
|  | // Microsoft mode permits C++98 rules reflecting MSVC behavior. | 
|  | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); | 
|  | if (Lit && !Lit->getValue()) | 
|  | return NPCK_ZeroLiteral; | 
|  | if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) | 
|  | return NPCK_NotNull; | 
|  | } else { | 
|  | // If we have an integer constant expression, we need to *evaluate* it and | 
|  | // test for the value 0. | 
|  | if (!isIntegerConstantExpr(Ctx)) | 
|  | return NPCK_NotNull; | 
|  | } | 
|  |  | 
|  | if (EvaluateKnownConstInt(Ctx) != 0) | 
|  | return NPCK_NotNull; | 
|  |  | 
|  | if (isa<IntegerLiteral>(this)) | 
|  | return NPCK_ZeroLiteral; | 
|  | return NPCK_ZeroExpression; | 
|  | } | 
|  |  | 
|  | /// If this expression is an l-value for an Objective C | 
|  | /// property, find the underlying property reference expression. | 
|  | const ObjCPropertyRefExpr *Expr::getObjCProperty() const { | 
|  | const Expr *E = this; | 
|  | while (true) { | 
|  | assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && | 
|  | "expression is not a property reference"); | 
|  | E = E->IgnoreParenCasts(); | 
|  | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BO->getOpcode() == BO_Comma) { | 
|  | E = BO->getRHS(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return cast<ObjCPropertyRefExpr>(E); | 
|  | } | 
|  |  | 
|  | bool Expr::isObjCSelfExpr() const { | 
|  | const Expr *E = IgnoreParenImpCasts(); | 
|  |  | 
|  | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); | 
|  | if (!DRE) | 
|  | return false; | 
|  |  | 
|  | const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); | 
|  | if (!Param) | 
|  | return false; | 
|  |  | 
|  | const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); | 
|  | if (!M) | 
|  | return false; | 
|  |  | 
|  | return M->getSelfDecl() == Param; | 
|  | } | 
|  |  | 
|  | FieldDecl *Expr::getSourceBitField() { | 
|  | Expr *E = this->IgnoreParens(); | 
|  |  | 
|  | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->getCastKind() == CK_LValueToRValue || | 
|  | (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) | 
|  | E = ICE->getSubExpr()->IgnoreParens(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) | 
|  | if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) | 
|  | if (Field->isBitField()) | 
|  | return Field; | 
|  |  | 
|  | if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { | 
|  | FieldDecl *Ivar = IvarRef->getDecl(); | 
|  | if (Ivar->isBitField()) | 
|  | return Ivar; | 
|  | } | 
|  |  | 
|  | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { | 
|  | if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) | 
|  | if (Field->isBitField()) | 
|  | return Field; | 
|  |  | 
|  | if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) | 
|  | if (Expr *E = BD->getBinding()) | 
|  | return E->getSourceBitField(); | 
|  | } | 
|  |  | 
|  | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { | 
|  | if (BinOp->isAssignmentOp() && BinOp->getLHS()) | 
|  | return BinOp->getLHS()->getSourceBitField(); | 
|  |  | 
|  | if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) | 
|  | return BinOp->getRHS()->getSourceBitField(); | 
|  | } | 
|  |  | 
|  | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) | 
|  | if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) | 
|  | return UnOp->getSubExpr()->getSourceBitField(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | EnumConstantDecl *Expr::getEnumConstantDecl() { | 
|  | Expr *E = this->IgnoreParenImpCasts(); | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | return dyn_cast<EnumConstantDecl>(DRE->getDecl()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Expr::refersToVectorElement() const { | 
|  | // FIXME: Why do we not just look at the ObjectKind here? | 
|  | const Expr *E = this->IgnoreParens(); | 
|  |  | 
|  | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) | 
|  | E = ICE->getSubExpr()->IgnoreParens(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) | 
|  | return ASE->getBase()->getType()->isVectorType(); | 
|  |  | 
|  | if (isa<ExtVectorElementExpr>(E)) | 
|  | return true; | 
|  |  | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) | 
|  | if (auto *E = BD->getBinding()) | 
|  | return E->refersToVectorElement(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Expr::refersToGlobalRegisterVar() const { | 
|  | const Expr *E = this->IgnoreParenImpCasts(); | 
|  |  | 
|  | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
|  | if (VD->getStorageClass() == SC_Register && | 
|  | VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { | 
|  | E1 = E1->IgnoreParens(); | 
|  | E2 = E2->IgnoreParens(); | 
|  |  | 
|  | if (E1->getStmtClass() != E2->getStmtClass()) | 
|  | return false; | 
|  |  | 
|  | switch (E1->getStmtClass()) { | 
|  | default: | 
|  | return false; | 
|  | case CXXThisExprClass: | 
|  | return true; | 
|  | case DeclRefExprClass: { | 
|  | // DeclRefExpr without an ImplicitCastExpr can happen for integral | 
|  | // template parameters. | 
|  | const auto *DRE1 = cast<DeclRefExpr>(E1); | 
|  | const auto *DRE2 = cast<DeclRefExpr>(E2); | 
|  | return DRE1->isPRValue() && DRE2->isPRValue() && | 
|  | DRE1->getDecl() == DRE2->getDecl(); | 
|  | } | 
|  | case ImplicitCastExprClass: { | 
|  | // Peel off implicit casts. | 
|  | while (true) { | 
|  | const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); | 
|  | const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); | 
|  | if (!ICE1 || !ICE2) | 
|  | return false; | 
|  | if (ICE1->getCastKind() != ICE2->getCastKind()) | 
|  | return false; | 
|  | E1 = ICE1->getSubExpr()->IgnoreParens(); | 
|  | E2 = ICE2->getSubExpr()->IgnoreParens(); | 
|  | // The final cast must be one of these types. | 
|  | if (ICE1->getCastKind() == CK_LValueToRValue || | 
|  | ICE1->getCastKind() == CK_ArrayToPointerDecay || | 
|  | ICE1->getCastKind() == CK_FunctionToPointerDecay) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); | 
|  | const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); | 
|  | if (DRE1 && DRE2) | 
|  | return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); | 
|  |  | 
|  | const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); | 
|  | const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); | 
|  | if (Ivar1 && Ivar2) { | 
|  | return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && | 
|  | declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); | 
|  | } | 
|  |  | 
|  | const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); | 
|  | const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); | 
|  | if (Array1 && Array2) { | 
|  | if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) | 
|  | return false; | 
|  |  | 
|  | auto Idx1 = Array1->getIdx(); | 
|  | auto Idx2 = Array2->getIdx(); | 
|  | const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); | 
|  | const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); | 
|  | if (Integer1 && Integer2) { | 
|  | if (!llvm::APInt::isSameValue(Integer1->getValue(), | 
|  | Integer2->getValue())) | 
|  | return false; | 
|  | } else { | 
|  | if (!isSameComparisonOperand(Idx1, Idx2)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Walk the MemberExpr chain. | 
|  | while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { | 
|  | const auto *ME1 = cast<MemberExpr>(E1); | 
|  | const auto *ME2 = cast<MemberExpr>(E2); | 
|  | if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) | 
|  | return false; | 
|  | if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) | 
|  | if (D->isStaticDataMember()) | 
|  | return true; | 
|  | E1 = ME1->getBase()->IgnoreParenImpCasts(); | 
|  | E2 = ME2->getBase()->IgnoreParenImpCasts(); | 
|  | } | 
|  |  | 
|  | if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) | 
|  | return true; | 
|  |  | 
|  | // A static member variable can end the MemberExpr chain with either | 
|  | // a MemberExpr or a DeclRefExpr. | 
|  | auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) | 
|  | return DRE->getDecl(); | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(E)) | 
|  | return ME->getMemberDecl(); | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | const ValueDecl *VD1 = getAnyDecl(E1); | 
|  | const ValueDecl *VD2 = getAnyDecl(E2); | 
|  | return declaresSameEntity(VD1, VD2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isArrow - Return true if the base expression is a pointer to vector, | 
|  | /// return false if the base expression is a vector. | 
|  | bool ExtVectorElementExpr::isArrow() const { | 
|  | return getBase()->getType()->isPointerType(); | 
|  | } | 
|  |  | 
|  | unsigned ExtVectorElementExpr::getNumElements() const { | 
|  | if (const VectorType *VT = getType()->getAs<VectorType>()) | 
|  | return VT->getNumElements(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// containsDuplicateElements - Return true if any element access is repeated. | 
|  | bool ExtVectorElementExpr::containsDuplicateElements() const { | 
|  | // FIXME: Refactor this code to an accessor on the AST node which returns the | 
|  | // "type" of component access, and share with code below and in Sema. | 
|  | StringRef Comp = Accessor->getName(); | 
|  |  | 
|  | // Halving swizzles do not contain duplicate elements. | 
|  | if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") | 
|  | return false; | 
|  |  | 
|  | // Advance past s-char prefix on hex swizzles. | 
|  | if (Comp[0] == 's' || Comp[0] == 'S') | 
|  | Comp = Comp.substr(1); | 
|  |  | 
|  | for (unsigned i = 0, e = Comp.size(); i != e; ++i) | 
|  | if (Comp.substr(i + 1).contains(Comp[i])) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. | 
|  | void ExtVectorElementExpr::getEncodedElementAccess( | 
|  | SmallVectorImpl<uint32_t> &Elts) const { | 
|  | StringRef Comp = Accessor->getName(); | 
|  | bool isNumericAccessor = false; | 
|  | if (Comp[0] == 's' || Comp[0] == 'S') { | 
|  | Comp = Comp.substr(1); | 
|  | isNumericAccessor = true; | 
|  | } | 
|  |  | 
|  | bool isHi =   Comp == "hi"; | 
|  | bool isLo =   Comp == "lo"; | 
|  | bool isEven = Comp == "even"; | 
|  | bool isOdd  = Comp == "odd"; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumElements(); i != e; ++i) { | 
|  | uint64_t Index; | 
|  |  | 
|  | if (isHi) | 
|  | Index = e + i; | 
|  | else if (isLo) | 
|  | Index = i; | 
|  | else if (isEven) | 
|  | Index = 2 * i; | 
|  | else if (isOdd) | 
|  | Index = 2 * i + 1; | 
|  | else | 
|  | Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); | 
|  |  | 
|  | Elts.push_back(Index); | 
|  | } | 
|  | } | 
|  |  | 
|  | ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, | 
|  | QualType Type, SourceLocation BLoc, | 
|  | SourceLocation RP) | 
|  | : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), | 
|  | BuiltinLoc(BLoc), RParenLoc(RP) { | 
|  | ShuffleVectorExprBits.NumExprs = args.size(); | 
|  | SubExprs = new (C) Stmt*[args.size()]; | 
|  | for (unsigned i = 0; i != args.size(); i++) | 
|  | SubExprs[i] = args[i]; | 
|  |  | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { | 
|  | if (SubExprs) C.Deallocate(SubExprs); | 
|  |  | 
|  | this->ShuffleVectorExprBits.NumExprs = Exprs.size(); | 
|  | SubExprs = new (C) Stmt *[ShuffleVectorExprBits.NumExprs]; | 
|  | llvm::copy(Exprs, SubExprs); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr::GenericSelectionExpr( | 
|  | const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, | 
|  | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, | 
|  | SourceLocation DefaultLoc, SourceLocation RParenLoc, | 
|  | bool ContainsUnexpandedParameterPack, unsigned ResultIndex) | 
|  | : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), | 
|  | AssocExprs[ResultIndex]->getValueKind(), | 
|  | AssocExprs[ResultIndex]->getObjectKind()), | 
|  | NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), | 
|  | IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { | 
|  | assert(AssocTypes.size() == AssocExprs.size() && | 
|  | "Must have the same number of association expressions" | 
|  | " and TypeSourceInfo!"); | 
|  | assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); | 
|  |  | 
|  | GenericSelectionExprBits.GenericLoc = GenericLoc; | 
|  | getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = | 
|  | ControllingExpr; | 
|  | llvm::copy(AssocExprs, | 
|  | getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); | 
|  | llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() + | 
|  | getIndexOfStartOfAssociatedTypes()); | 
|  |  | 
|  | setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr::GenericSelectionExpr( | 
|  | const ASTContext &, SourceLocation GenericLoc, | 
|  | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, | 
|  | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, | 
|  | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, | 
|  | unsigned ResultIndex) | 
|  | : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), | 
|  | AssocExprs[ResultIndex]->getValueKind(), | 
|  | AssocExprs[ResultIndex]->getObjectKind()), | 
|  | NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), | 
|  | IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { | 
|  | assert(AssocTypes.size() == AssocExprs.size() && | 
|  | "Must have the same number of association expressions" | 
|  | " and TypeSourceInfo!"); | 
|  | assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); | 
|  |  | 
|  | GenericSelectionExprBits.GenericLoc = GenericLoc; | 
|  | getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = | 
|  | ControllingType; | 
|  | llvm::copy(AssocExprs, | 
|  | getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); | 
|  | llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() + | 
|  | getIndexOfStartOfAssociatedTypes()); | 
|  |  | 
|  | setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr::GenericSelectionExpr( | 
|  | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, | 
|  | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, | 
|  | SourceLocation DefaultLoc, SourceLocation RParenLoc, | 
|  | bool ContainsUnexpandedParameterPack) | 
|  | : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, | 
|  | OK_Ordinary), | 
|  | NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), | 
|  | IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { | 
|  | assert(AssocTypes.size() == AssocExprs.size() && | 
|  | "Must have the same number of association expressions" | 
|  | " and TypeSourceInfo!"); | 
|  |  | 
|  | GenericSelectionExprBits.GenericLoc = GenericLoc; | 
|  | getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = | 
|  | ControllingExpr; | 
|  | llvm::copy(AssocExprs, | 
|  | getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); | 
|  | llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() + | 
|  | getIndexOfStartOfAssociatedTypes()); | 
|  |  | 
|  | setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr::GenericSelectionExpr( | 
|  | const ASTContext &Context, SourceLocation GenericLoc, | 
|  | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, | 
|  | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, | 
|  | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) | 
|  | : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, | 
|  | OK_Ordinary), | 
|  | NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), | 
|  | IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { | 
|  | assert(AssocTypes.size() == AssocExprs.size() && | 
|  | "Must have the same number of association expressions" | 
|  | " and TypeSourceInfo!"); | 
|  |  | 
|  | GenericSelectionExprBits.GenericLoc = GenericLoc; | 
|  | getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = | 
|  | ControllingType; | 
|  | llvm::copy(AssocExprs, | 
|  | getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); | 
|  | llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() + | 
|  | getIndexOfStartOfAssociatedTypes()); | 
|  |  | 
|  | setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) | 
|  | : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} | 
|  |  | 
|  | GenericSelectionExpr *GenericSelectionExpr::Create( | 
|  | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, | 
|  | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, | 
|  | SourceLocation DefaultLoc, SourceLocation RParenLoc, | 
|  | bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { | 
|  | unsigned NumAssocs = AssocExprs.size(); | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), | 
|  | alignof(GenericSelectionExpr)); | 
|  | return new (Mem) GenericSelectionExpr( | 
|  | Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, | 
|  | RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr *GenericSelectionExpr::Create( | 
|  | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, | 
|  | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, | 
|  | SourceLocation DefaultLoc, SourceLocation RParenLoc, | 
|  | bool ContainsUnexpandedParameterPack) { | 
|  | unsigned NumAssocs = AssocExprs.size(); | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), | 
|  | alignof(GenericSelectionExpr)); | 
|  | return new (Mem) GenericSelectionExpr( | 
|  | Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, | 
|  | RParenLoc, ContainsUnexpandedParameterPack); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr *GenericSelectionExpr::Create( | 
|  | const ASTContext &Context, SourceLocation GenericLoc, | 
|  | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, | 
|  | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, | 
|  | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, | 
|  | unsigned ResultIndex) { | 
|  | unsigned NumAssocs = AssocExprs.size(); | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), | 
|  | alignof(GenericSelectionExpr)); | 
|  | return new (Mem) GenericSelectionExpr( | 
|  | Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, | 
|  | RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr *GenericSelectionExpr::Create( | 
|  | const ASTContext &Context, SourceLocation GenericLoc, | 
|  | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, | 
|  | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, | 
|  | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { | 
|  | unsigned NumAssocs = AssocExprs.size(); | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), | 
|  | alignof(GenericSelectionExpr)); | 
|  | return new (Mem) GenericSelectionExpr( | 
|  | Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, | 
|  | RParenLoc, ContainsUnexpandedParameterPack); | 
|  | } | 
|  |  | 
|  | GenericSelectionExpr * | 
|  | GenericSelectionExpr::CreateEmpty(const ASTContext &Context, | 
|  | unsigned NumAssocs) { | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), | 
|  | alignof(GenericSelectionExpr)); | 
|  | return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DesignatedInitExpr | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { | 
|  | assert(isFieldDesignator() && "Only valid on a field designator"); | 
|  | if (FieldInfo.NameOrField & 0x01) | 
|  | return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); | 
|  | return getFieldDecl()->getIdentifier(); | 
|  | } | 
|  |  | 
|  | DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, | 
|  | ArrayRef<Designator> Designators, | 
|  | SourceLocation EqualOrColonLoc, | 
|  | bool GNUSyntax, | 
|  | ArrayRef<Expr *> IndexExprs, Expr *Init) | 
|  | : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), | 
|  | Init->getObjectKind()), | 
|  | EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), | 
|  | NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { | 
|  | this->Designators = new (C) Designator[NumDesignators]; | 
|  |  | 
|  | // Record the initializer itself. | 
|  | child_iterator Child = child_begin(); | 
|  | *Child++ = Init; | 
|  |  | 
|  | // Copy the designators and their subexpressions, computing | 
|  | // value-dependence along the way. | 
|  | unsigned IndexIdx = 0; | 
|  | for (unsigned I = 0; I != NumDesignators; ++I) { | 
|  | this->Designators[I] = Designators[I]; | 
|  | if (this->Designators[I].isArrayDesignator()) { | 
|  | // Copy the index expressions into permanent storage. | 
|  | *Child++ = IndexExprs[IndexIdx++]; | 
|  | } else if (this->Designators[I].isArrayRangeDesignator()) { | 
|  | // Copy the start/end expressions into permanent storage. | 
|  | *Child++ = IndexExprs[IndexIdx++]; | 
|  | *Child++ = IndexExprs[IndexIdx++]; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | DesignatedInitExpr *DesignatedInitExpr::Create(const ASTContext &C, | 
|  | ArrayRef<Designator> Designators, | 
|  | ArrayRef<Expr *> IndexExprs, | 
|  | SourceLocation ColonOrEqualLoc, | 
|  | bool UsesColonSyntax, | 
|  | Expr *Init) { | 
|  | void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), | 
|  | alignof(DesignatedInitExpr)); | 
|  | return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, | 
|  | ColonOrEqualLoc, UsesColonSyntax, | 
|  | IndexExprs, Init); | 
|  | } | 
|  |  | 
|  | DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, | 
|  | unsigned NumIndexExprs) { | 
|  | void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), | 
|  | alignof(DesignatedInitExpr)); | 
|  | return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); | 
|  | } | 
|  |  | 
|  | void DesignatedInitExpr::setDesignators(const ASTContext &C, | 
|  | const Designator *Desigs, | 
|  | unsigned NumDesigs) { | 
|  | Designators = new (C) Designator[NumDesigs]; | 
|  | NumDesignators = NumDesigs; | 
|  | for (unsigned I = 0; I != NumDesigs; ++I) | 
|  | Designators[I] = Desigs[I]; | 
|  | } | 
|  |  | 
|  | SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { | 
|  | DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); | 
|  | if (size() == 1) | 
|  | return DIE->getDesignator(0)->getSourceRange(); | 
|  | return SourceRange(DIE->getDesignator(0)->getBeginLoc(), | 
|  | DIE->getDesignator(size() - 1)->getEndLoc()); | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitExpr::getBeginLoc() const { | 
|  | auto *DIE = const_cast<DesignatedInitExpr *>(this); | 
|  | Designator &First = *DIE->getDesignator(0); | 
|  | if (First.isFieldDesignator()) { | 
|  | // Skip past implicit designators for anonymous structs/unions, since | 
|  | // these do not have valid source locations. | 
|  | for (unsigned int i = 0; i < DIE->size(); i++) { | 
|  | Designator &Des = *DIE->getDesignator(i); | 
|  | SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc(); | 
|  | if (!retval.isValid()) | 
|  | continue; | 
|  | return retval; | 
|  | } | 
|  | } | 
|  | return First.getLBracketLoc(); | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitExpr::getEndLoc() const { | 
|  | return getInit()->getEndLoc(); | 
|  | } | 
|  |  | 
|  | Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { | 
|  | assert(D.isArrayDesignator() && "Requires array designator"); | 
|  | return getSubExpr(D.getArrayIndex() + 1); | 
|  | } | 
|  |  | 
|  | Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { | 
|  | assert(D.isArrayRangeDesignator() && "Requires array range designator"); | 
|  | return getSubExpr(D.getArrayIndex() + 1); | 
|  | } | 
|  |  | 
|  | Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { | 
|  | assert(D.isArrayRangeDesignator() && "Requires array range designator"); | 
|  | return getSubExpr(D.getArrayIndex() + 2); | 
|  | } | 
|  |  | 
|  | /// Replaces the designator at index @p Idx with the series | 
|  | /// of designators in [First, Last). | 
|  | void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, | 
|  | const Designator *First, | 
|  | const Designator *Last) { | 
|  | unsigned NumNewDesignators = Last - First; | 
|  | if (NumNewDesignators == 0) { | 
|  | std::copy_backward(Designators + Idx + 1, | 
|  | Designators + NumDesignators, | 
|  | Designators + Idx); | 
|  | --NumNewDesignators; | 
|  | return; | 
|  | } | 
|  | if (NumNewDesignators == 1) { | 
|  | Designators[Idx] = *First; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Designator *NewDesignators | 
|  | = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; | 
|  | std::copy(Designators, Designators + Idx, NewDesignators); | 
|  | std::copy(First, Last, NewDesignators + Idx); | 
|  | std::copy(Designators + Idx + 1, Designators + NumDesignators, | 
|  | NewDesignators + Idx + NumNewDesignators); | 
|  | Designators = NewDesignators; | 
|  | NumDesignators = NumDesignators - 1 + NumNewDesignators; | 
|  | } | 
|  |  | 
|  | DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, | 
|  | SourceLocation lBraceLoc, | 
|  | Expr *baseExpr, | 
|  | SourceLocation rBraceLoc) | 
|  | : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, | 
|  | OK_Ordinary) { | 
|  | BaseAndUpdaterExprs[0] = baseExpr; | 
|  |  | 
|  | InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc); | 
|  | ILE->setType(baseExpr->getType()); | 
|  | BaseAndUpdaterExprs[1] = ILE; | 
|  |  | 
|  | // FIXME: this is wrong, set it correctly. | 
|  | setDependence(ExprDependence::None); | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { | 
|  | return getBase()->getBeginLoc(); | 
|  | } | 
|  |  | 
|  | SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { | 
|  | return getBase()->getEndLoc(); | 
|  | } | 
|  |  | 
|  | ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, | 
|  | SourceLocation RParenLoc) | 
|  | : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), | 
|  | LParenLoc(LParenLoc), RParenLoc(RParenLoc) { | 
|  | ParenListExprBits.NumExprs = Exprs.size(); | 
|  | llvm::copy(Exprs, getTrailingObjects()); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) | 
|  | : Expr(ParenListExprClass, Empty) { | 
|  | ParenListExprBits.NumExprs = NumExprs; | 
|  | } | 
|  |  | 
|  | ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, | 
|  | SourceLocation LParenLoc, | 
|  | ArrayRef<Expr *> Exprs, | 
|  | SourceLocation RParenLoc) { | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), | 
|  | alignof(ParenListExpr)); | 
|  | return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); | 
|  | } | 
|  |  | 
|  | ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, | 
|  | unsigned NumExprs) { | 
|  | void *Mem = | 
|  | Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); | 
|  | return new (Mem) ParenListExpr(EmptyShell(), NumExprs); | 
|  | } | 
|  |  | 
|  | /// Certain overflow-dependent code patterns can have their integer overflow | 
|  | /// sanitization disabled. Check for the common pattern `if (a + b < a)` and | 
|  | /// return the resulting BinaryOperator responsible for the addition so we can | 
|  | /// elide overflow checks during codegen. | 
|  | static std::optional<BinaryOperator *> | 
|  | getOverflowPatternBinOp(const BinaryOperator *E) { | 
|  | Expr *Addition, *ComparedTo; | 
|  | if (E->getOpcode() == BO_LT) { | 
|  | Addition = E->getLHS(); | 
|  | ComparedTo = E->getRHS(); | 
|  | } else if (E->getOpcode() == BO_GT) { | 
|  | Addition = E->getRHS(); | 
|  | ComparedTo = E->getLHS(); | 
|  | } else { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | const Expr *AddLHS = nullptr, *AddRHS = nullptr; | 
|  | BinaryOperator *BO = dyn_cast<BinaryOperator>(Addition); | 
|  |  | 
|  | if (BO && BO->getOpcode() == clang::BO_Add) { | 
|  | // now store addends for lookup on other side of '>' | 
|  | AddLHS = BO->getLHS(); | 
|  | AddRHS = BO->getRHS(); | 
|  | } | 
|  |  | 
|  | if (!AddLHS || !AddRHS) | 
|  | return {}; | 
|  |  | 
|  | const Decl *LHSDecl, *RHSDecl, *OtherDecl; | 
|  |  | 
|  | LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); | 
|  | RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); | 
|  | OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); | 
|  |  | 
|  | if (!OtherDecl) | 
|  | return {}; | 
|  |  | 
|  | if (!LHSDecl && !RHSDecl) | 
|  | return {}; | 
|  |  | 
|  | if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) || | 
|  | (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl)) | 
|  | return BO; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /// Compute and set the OverflowPatternExclusion bit based on whether the | 
|  | /// BinaryOperator expression matches an overflow pattern being ignored by | 
|  | /// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or | 
|  | /// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test | 
|  | static void computeOverflowPatternExclusion(const ASTContext &Ctx, | 
|  | const BinaryOperator *E) { | 
|  | std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E); | 
|  | if (!Result.has_value()) | 
|  | return; | 
|  | QualType AdditionResultType = Result.value()->getType(); | 
|  |  | 
|  | if ((AdditionResultType->isSignedIntegerType() && | 
|  | Ctx.getLangOpts().isOverflowPatternExcluded( | 
|  | LangOptions::OverflowPatternExclusionKind::AddSignedOverflowTest)) || | 
|  | (AdditionResultType->isUnsignedIntegerType() && | 
|  | Ctx.getLangOpts().isOverflowPatternExcluded( | 
|  | LangOptions::OverflowPatternExclusionKind::AddUnsignedOverflowTest))) | 
|  | Result.value()->setExcludedOverflowPattern(true); | 
|  | } | 
|  |  | 
|  | BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, | 
|  | Opcode opc, QualType ResTy, ExprValueKind VK, | 
|  | ExprObjectKind OK, SourceLocation opLoc, | 
|  | FPOptionsOverride FPFeatures) | 
|  | : Expr(BinaryOperatorClass, ResTy, VK, OK) { | 
|  | BinaryOperatorBits.Opc = opc; | 
|  | assert(!isCompoundAssignmentOp() && | 
|  | "Use CompoundAssignOperator for compound assignments"); | 
|  | BinaryOperatorBits.OpLoc = opLoc; | 
|  | BinaryOperatorBits.ExcludedOverflowPattern = false; | 
|  | SubExprs[LHS] = lhs; | 
|  | SubExprs[RHS] = rhs; | 
|  | computeOverflowPatternExclusion(Ctx, this); | 
|  | BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | if (hasStoredFPFeatures()) | 
|  | setStoredFPFeatures(FPFeatures); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, | 
|  | Opcode opc, QualType ResTy, ExprValueKind VK, | 
|  | ExprObjectKind OK, SourceLocation opLoc, | 
|  | FPOptionsOverride FPFeatures, bool dead2) | 
|  | : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { | 
|  | BinaryOperatorBits.Opc = opc; | 
|  | BinaryOperatorBits.ExcludedOverflowPattern = false; | 
|  | assert(isCompoundAssignmentOp() && | 
|  | "Use CompoundAssignOperator for compound assignments"); | 
|  | BinaryOperatorBits.OpLoc = opLoc; | 
|  | SubExprs[LHS] = lhs; | 
|  | SubExprs[RHS] = rhs; | 
|  | BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | if (hasStoredFPFeatures()) | 
|  | setStoredFPFeatures(FPFeatures); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, | 
|  | bool HasFPFeatures) { | 
|  | unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); | 
|  | void *Mem = | 
|  | C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); | 
|  | return new (Mem) BinaryOperator(EmptyShell()); | 
|  | } | 
|  |  | 
|  | BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, | 
|  | Expr *rhs, Opcode opc, QualType ResTy, | 
|  | ExprValueKind VK, ExprObjectKind OK, | 
|  | SourceLocation opLoc, | 
|  | FPOptionsOverride FPFeatures) { | 
|  | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); | 
|  | void *Mem = | 
|  | C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); | 
|  | return new (Mem) | 
|  | BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); | 
|  | } | 
|  |  | 
|  | CompoundAssignOperator * | 
|  | CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { | 
|  | unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); | 
|  | void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, | 
|  | alignof(CompoundAssignOperator)); | 
|  | return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); | 
|  | } | 
|  |  | 
|  | CompoundAssignOperator * | 
|  | CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, | 
|  | Opcode opc, QualType ResTy, ExprValueKind VK, | 
|  | ExprObjectKind OK, SourceLocation opLoc, | 
|  | FPOptionsOverride FPFeatures, | 
|  | QualType CompLHSType, QualType CompResultType) { | 
|  | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); | 
|  | void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, | 
|  | alignof(CompoundAssignOperator)); | 
|  | return new (Mem) | 
|  | CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, | 
|  | CompLHSType, CompResultType); | 
|  | } | 
|  |  | 
|  | UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, | 
|  | bool hasFPFeatures) { | 
|  | void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), | 
|  | alignof(UnaryOperator)); | 
|  | return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); | 
|  | } | 
|  |  | 
|  | UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, | 
|  | QualType type, ExprValueKind VK, ExprObjectKind OK, | 
|  | SourceLocation l, bool CanOverflow, | 
|  | FPOptionsOverride FPFeatures) | 
|  | : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { | 
|  | UnaryOperatorBits.Opc = opc; | 
|  | UnaryOperatorBits.CanOverflow = CanOverflow; | 
|  | UnaryOperatorBits.Loc = l; | 
|  | UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | if (hasStoredFPFeatures()) | 
|  | setStoredFPFeatures(FPFeatures); | 
|  | setDependence(computeDependence(this, Ctx)); | 
|  | } | 
|  |  | 
|  | UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, | 
|  | Opcode opc, QualType type, | 
|  | ExprValueKind VK, ExprObjectKind OK, | 
|  | SourceLocation l, bool CanOverflow, | 
|  | FPOptionsOverride FPFeatures) { | 
|  | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); | 
|  | void *Mem = C.Allocate(Size, alignof(UnaryOperator)); | 
|  | return new (Mem) | 
|  | UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); | 
|  | } | 
|  |  | 
|  | const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { | 
|  | if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) | 
|  | e = ewc->getSubExpr(); | 
|  | if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) | 
|  | e = m->getSubExpr(); | 
|  | e = cast<CXXConstructExpr>(e)->getArg(0); | 
|  | while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) | 
|  | e = ice->getSubExpr(); | 
|  | return cast<OpaqueValueExpr>(e); | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, | 
|  | EmptyShell sh, | 
|  | unsigned numSemanticExprs) { | 
|  | void *buffer = | 
|  | Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), | 
|  | alignof(PseudoObjectExpr)); | 
|  | return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) | 
|  | : Expr(PseudoObjectExprClass, shell) { | 
|  | PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, | 
|  | ArrayRef<Expr*> semantics, | 
|  | unsigned resultIndex) { | 
|  | assert(syntax && "no syntactic expression!"); | 
|  | assert(semantics.size() && "no semantic expressions!"); | 
|  |  | 
|  | QualType type; | 
|  | ExprValueKind VK; | 
|  | if (resultIndex == NoResult) { | 
|  | type = C.VoidTy; | 
|  | VK = VK_PRValue; | 
|  | } else { | 
|  | assert(resultIndex < semantics.size()); | 
|  | type = semantics[resultIndex]->getType(); | 
|  | VK = semantics[resultIndex]->getValueKind(); | 
|  | assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); | 
|  | } | 
|  |  | 
|  | void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), | 
|  | alignof(PseudoObjectExpr)); | 
|  | return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, | 
|  | resultIndex); | 
|  | } | 
|  |  | 
|  | PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, | 
|  | Expr *syntax, ArrayRef<Expr *> semantics, | 
|  | unsigned resultIndex) | 
|  | : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { | 
|  | PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; | 
|  | PseudoObjectExprBits.ResultIndex = resultIndex + 1; | 
|  | MutableArrayRef<Expr *> Trail = getTrailingObjects(semantics.size() + 1); | 
|  | Trail[0] = syntax; | 
|  |  | 
|  | assert(llvm::all_of(semantics, | 
|  | [](const Expr *E) { | 
|  | return !isa<OpaqueValueExpr>(E) || | 
|  | cast<OpaqueValueExpr>(E)->getSourceExpr() != | 
|  | nullptr; | 
|  | }) && | 
|  | "opaque-value semantic expressions for pseudo-object " | 
|  | "operations must have sources"); | 
|  |  | 
|  | llvm::copy(semantics, Trail.drop_front().begin()); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Child Iterators for iterating over subexpressions/substatements | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // UnaryExprOrTypeTraitExpr | 
|  | Stmt::child_range UnaryExprOrTypeTraitExpr::children() { | 
|  | const_child_range CCR = | 
|  | const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); | 
|  | return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); | 
|  | } | 
|  |  | 
|  | Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { | 
|  | // If this is of a type and the type is a VLA type (and not a typedef), the | 
|  | // size expression of the VLA needs to be treated as an executable expression. | 
|  | // Why isn't this weirdness documented better in StmtIterator? | 
|  | if (isArgumentType()) { | 
|  | if (const VariableArrayType *T = | 
|  | dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) | 
|  | return const_child_range(const_child_iterator(T), const_child_iterator()); | 
|  | return const_child_range(const_child_iterator(), const_child_iterator()); | 
|  | } | 
|  | return const_child_range(&Argument.Ex, &Argument.Ex + 1); | 
|  | } | 
|  |  | 
|  | AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, | 
|  | AtomicOp op, SourceLocation RP) | 
|  | : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), | 
|  | NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { | 
|  | assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); | 
|  | for (unsigned i = 0; i != args.size(); i++) | 
|  | SubExprs[i] = args[i]; | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { | 
|  | switch (Op) { | 
|  | case AO__c11_atomic_init: | 
|  | case AO__opencl_atomic_init: | 
|  | case AO__c11_atomic_load: | 
|  | case AO__atomic_load_n: | 
|  | case AO__atomic_test_and_set: | 
|  | case AO__atomic_clear: | 
|  | return 2; | 
|  |  | 
|  | case AO__scoped_atomic_load_n: | 
|  | case AO__opencl_atomic_load: | 
|  | case AO__hip_atomic_load: | 
|  | case AO__c11_atomic_store: | 
|  | case AO__c11_atomic_exchange: | 
|  | case AO__atomic_load: | 
|  | case AO__atomic_store: | 
|  | case AO__atomic_store_n: | 
|  | case AO__atomic_exchange_n: | 
|  | case AO__c11_atomic_fetch_add: | 
|  | case AO__c11_atomic_fetch_sub: | 
|  | case AO__c11_atomic_fetch_and: | 
|  | case AO__c11_atomic_fetch_or: | 
|  | case AO__c11_atomic_fetch_xor: | 
|  | case AO__c11_atomic_fetch_nand: | 
|  | case AO__c11_atomic_fetch_max: | 
|  | case AO__c11_atomic_fetch_min: | 
|  | case AO__atomic_fetch_add: | 
|  | case AO__atomic_fetch_sub: | 
|  | case AO__atomic_fetch_and: | 
|  | case AO__atomic_fetch_or: | 
|  | case AO__atomic_fetch_xor: | 
|  | case AO__atomic_fetch_nand: | 
|  | case AO__atomic_add_fetch: | 
|  | case AO__atomic_sub_fetch: | 
|  | case AO__atomic_and_fetch: | 
|  | case AO__atomic_or_fetch: | 
|  | case AO__atomic_xor_fetch: | 
|  | case AO__atomic_nand_fetch: | 
|  | case AO__atomic_min_fetch: | 
|  | case AO__atomic_max_fetch: | 
|  | case AO__atomic_fetch_min: | 
|  | case AO__atomic_fetch_max: | 
|  | return 3; | 
|  |  | 
|  | case AO__scoped_atomic_load: | 
|  | case AO__scoped_atomic_store: | 
|  | case AO__scoped_atomic_store_n: | 
|  | case AO__scoped_atomic_fetch_add: | 
|  | case AO__scoped_atomic_fetch_sub: | 
|  | case AO__scoped_atomic_fetch_and: | 
|  | case AO__scoped_atomic_fetch_or: | 
|  | case AO__scoped_atomic_fetch_xor: | 
|  | case AO__scoped_atomic_fetch_nand: | 
|  | case AO__scoped_atomic_add_fetch: | 
|  | case AO__scoped_atomic_sub_fetch: | 
|  | case AO__scoped_atomic_and_fetch: | 
|  | case AO__scoped_atomic_or_fetch: | 
|  | case AO__scoped_atomic_xor_fetch: | 
|  | case AO__scoped_atomic_nand_fetch: | 
|  | case AO__scoped_atomic_min_fetch: | 
|  | case AO__scoped_atomic_max_fetch: | 
|  | case AO__scoped_atomic_fetch_min: | 
|  | case AO__scoped_atomic_fetch_max: | 
|  | case AO__scoped_atomic_exchange_n: | 
|  | case AO__hip_atomic_exchange: | 
|  | case AO__hip_atomic_fetch_add: | 
|  | case AO__hip_atomic_fetch_sub: | 
|  | case AO__hip_atomic_fetch_and: | 
|  | case AO__hip_atomic_fetch_or: | 
|  | case AO__hip_atomic_fetch_xor: | 
|  | case AO__hip_atomic_fetch_min: | 
|  | case AO__hip_atomic_fetch_max: | 
|  | case AO__opencl_atomic_store: | 
|  | case AO__hip_atomic_store: | 
|  | case AO__opencl_atomic_exchange: | 
|  | case AO__opencl_atomic_fetch_add: | 
|  | case AO__opencl_atomic_fetch_sub: | 
|  | case AO__opencl_atomic_fetch_and: | 
|  | case AO__opencl_atomic_fetch_or: | 
|  | case AO__opencl_atomic_fetch_xor: | 
|  | case AO__opencl_atomic_fetch_min: | 
|  | case AO__opencl_atomic_fetch_max: | 
|  | case AO__atomic_exchange: | 
|  | return 4; | 
|  |  | 
|  | case AO__scoped_atomic_exchange: | 
|  | case AO__c11_atomic_compare_exchange_strong: | 
|  | case AO__c11_atomic_compare_exchange_weak: | 
|  | return 5; | 
|  | case AO__hip_atomic_compare_exchange_strong: | 
|  | case AO__opencl_atomic_compare_exchange_strong: | 
|  | case AO__opencl_atomic_compare_exchange_weak: | 
|  | case AO__hip_atomic_compare_exchange_weak: | 
|  | case AO__atomic_compare_exchange: | 
|  | case AO__atomic_compare_exchange_n: | 
|  | return 6; | 
|  |  | 
|  | case AO__scoped_atomic_compare_exchange: | 
|  | case AO__scoped_atomic_compare_exchange_n: | 
|  | return 7; | 
|  | } | 
|  | llvm_unreachable("unknown atomic op"); | 
|  | } | 
|  |  | 
|  | QualType AtomicExpr::getValueType() const { | 
|  | auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); | 
|  | if (auto AT = T->getAs<AtomicType>()) | 
|  | return AT->getValueType(); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) { | 
|  | unsigned ArraySectionCount = 0; | 
|  | while (auto *OASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParens())) { | 
|  | Base = OASE->getBase(); | 
|  | ++ArraySectionCount; | 
|  | } | 
|  | while (auto *ASE = | 
|  | dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { | 
|  | Base = ASE->getBase(); | 
|  | ++ArraySectionCount; | 
|  | } | 
|  | Base = Base->IgnoreParenImpCasts(); | 
|  | auto OriginalTy = Base->getType(); | 
|  | if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) | 
|  | if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) | 
|  | OriginalTy = PVD->getOriginalType().getNonReferenceType(); | 
|  |  | 
|  | for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { | 
|  | if (OriginalTy->isAnyPointerType()) | 
|  | OriginalTy = OriginalTy->getPointeeType(); | 
|  | else if (OriginalTy->isArrayType()) | 
|  | OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); | 
|  | else | 
|  | return {}; | 
|  | } | 
|  | return OriginalTy; | 
|  | } | 
|  |  | 
|  | RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, | 
|  | SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) | 
|  | : Expr(RecoveryExprClass, T.getNonReferenceType(), | 
|  | T->isDependentType() ? VK_LValue : getValueKindForType(T), | 
|  | OK_Ordinary), | 
|  | BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { | 
|  | assert(!T.isNull()); | 
|  | assert(!llvm::is_contained(SubExprs, nullptr)); | 
|  |  | 
|  | llvm::copy(SubExprs, getTrailingObjects()); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, | 
|  | SourceLocation BeginLoc, | 
|  | SourceLocation EndLoc, | 
|  | ArrayRef<Expr *> SubExprs) { | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()), | 
|  | alignof(RecoveryExpr)); | 
|  | return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); | 
|  | } | 
|  |  | 
|  | RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { | 
|  | void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs), | 
|  | alignof(RecoveryExpr)); | 
|  | return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); | 
|  | } | 
|  |  | 
|  | void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { | 
|  | assert( | 
|  | NumDims == Dims.size() && | 
|  | "Preallocated number of dimensions is different from the provided one."); | 
|  | llvm::copy(Dims, getTrailingObjects<Expr *>()); | 
|  | } | 
|  |  | 
|  | void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { | 
|  | assert( | 
|  | NumDims == BR.size() && | 
|  | "Preallocated number of dimensions is different from the provided one."); | 
|  | llvm::copy(BR, getTrailingObjects<SourceRange>()); | 
|  | } | 
|  |  | 
|  | OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, | 
|  | SourceLocation L, SourceLocation R, | 
|  | ArrayRef<Expr *> Dims) | 
|  | : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), | 
|  | RPLoc(R), NumDims(Dims.size()) { | 
|  | setBase(Op); | 
|  | setDimensions(Dims); | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | OMPArrayShapingExpr * | 
|  | OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, | 
|  | SourceLocation L, SourceLocation R, | 
|  | ArrayRef<Expr *> Dims, | 
|  | ArrayRef<SourceRange> BracketRanges) { | 
|  | assert(Dims.size() == BracketRanges.size() && | 
|  | "Different number of dimensions and brackets ranges."); | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()), | 
|  | alignof(OMPArrayShapingExpr)); | 
|  | auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); | 
|  | E->setBracketsRanges(BracketRanges); | 
|  | return E; | 
|  | } | 
|  |  | 
|  | OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, | 
|  | unsigned NumDims) { | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims), | 
|  | alignof(OMPArrayShapingExpr)); | 
|  | return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); | 
|  | } | 
|  |  | 
|  | void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { | 
|  | getTrailingObjects<Decl *>(NumIterators)[I] = D; | 
|  | } | 
|  |  | 
|  | void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { | 
|  | assert(I < NumIterators && | 
|  | "Idx is greater or equal the number of iterators definitions."); | 
|  | getTrailingObjects< | 
|  | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + | 
|  | static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; | 
|  | } | 
|  |  | 
|  | void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, | 
|  | SourceLocation ColonLoc, Expr *End, | 
|  | SourceLocation SecondColonLoc, | 
|  | Expr *Step) { | 
|  | assert(I < NumIterators && | 
|  | "Idx is greater or equal the number of iterators definitions."); | 
|  | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + | 
|  | static_cast<int>(RangeExprOffset::Begin)] = | 
|  | Begin; | 
|  | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + | 
|  | static_cast<int>(RangeExprOffset::End)] = End; | 
|  | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + | 
|  | static_cast<int>(RangeExprOffset::Step)] = Step; | 
|  | getTrailingObjects< | 
|  | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + | 
|  | static_cast<int>(RangeLocOffset::FirstColonLoc)] = | 
|  | ColonLoc; | 
|  | getTrailingObjects< | 
|  | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + | 
|  | static_cast<int>(RangeLocOffset::SecondColonLoc)] = | 
|  | SecondColonLoc; | 
|  | } | 
|  |  | 
|  | Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { | 
|  | return getTrailingObjects<Decl *>()[I]; | 
|  | } | 
|  |  | 
|  | OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { | 
|  | IteratorRange Res; | 
|  | Res.Begin = | 
|  | getTrailingObjects<Expr *>()[I * static_cast<int>( | 
|  | RangeExprOffset::Total) + | 
|  | static_cast<int>(RangeExprOffset::Begin)]; | 
|  | Res.End = | 
|  | getTrailingObjects<Expr *>()[I * static_cast<int>( | 
|  | RangeExprOffset::Total) + | 
|  | static_cast<int>(RangeExprOffset::End)]; | 
|  | Res.Step = | 
|  | getTrailingObjects<Expr *>()[I * static_cast<int>( | 
|  | RangeExprOffset::Total) + | 
|  | static_cast<int>(RangeExprOffset::Step)]; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { | 
|  | return getTrailingObjects< | 
|  | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + | 
|  | static_cast<int>(RangeLocOffset::AssignLoc)]; | 
|  | } | 
|  |  | 
|  | SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { | 
|  | return getTrailingObjects< | 
|  | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + | 
|  | static_cast<int>(RangeLocOffset::FirstColonLoc)]; | 
|  | } | 
|  |  | 
|  | SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { | 
|  | return getTrailingObjects< | 
|  | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + | 
|  | static_cast<int>(RangeLocOffset::SecondColonLoc)]; | 
|  | } | 
|  |  | 
|  | void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { | 
|  | getTrailingObjects<OMPIteratorHelperData>()[I] = D; | 
|  | } | 
|  |  | 
|  | OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { | 
|  | return getTrailingObjects<OMPIteratorHelperData>()[I]; | 
|  | } | 
|  |  | 
|  | const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { | 
|  | return getTrailingObjects<OMPIteratorHelperData>()[I]; | 
|  | } | 
|  |  | 
|  | OMPIteratorExpr::OMPIteratorExpr( | 
|  | QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, | 
|  | SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, | 
|  | ArrayRef<OMPIteratorHelperData> Helpers) | 
|  | : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), | 
|  | IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), | 
|  | NumIterators(Data.size()) { | 
|  | for (unsigned I = 0, E = Data.size(); I < E; ++I) { | 
|  | const IteratorDefinition &D = Data[I]; | 
|  | setIteratorDeclaration(I, D.IteratorDecl); | 
|  | setAssignmentLoc(I, D.AssignmentLoc); | 
|  | setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, | 
|  | D.SecondColonLoc, D.Range.Step); | 
|  | setHelper(I, Helpers[I]); | 
|  | } | 
|  | setDependence(computeDependence(this)); | 
|  | } | 
|  |  | 
|  | OMPIteratorExpr * | 
|  | OMPIteratorExpr::Create(const ASTContext &Context, QualType T, | 
|  | SourceLocation IteratorKwLoc, SourceLocation L, | 
|  | SourceLocation R, | 
|  | ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, | 
|  | ArrayRef<OMPIteratorHelperData> Helpers) { | 
|  | assert(Data.size() == Helpers.size() && | 
|  | "Data and helpers must have the same size."); | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( | 
|  | Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total), | 
|  | Data.size() * static_cast<int>(RangeLocOffset::Total), | 
|  | Helpers.size()), | 
|  | alignof(OMPIteratorExpr)); | 
|  | return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); | 
|  | } | 
|  |  | 
|  | OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, | 
|  | unsigned NumIterators) { | 
|  | void *Mem = Context.Allocate( | 
|  | totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( | 
|  | NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total), | 
|  | NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators), | 
|  | alignof(OMPIteratorExpr)); | 
|  | return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); | 
|  | } | 
|  |  | 
|  | HLSLOutArgExpr *HLSLOutArgExpr::Create(const ASTContext &C, QualType Ty, | 
|  | OpaqueValueExpr *Base, | 
|  | OpaqueValueExpr *OpV, Expr *WB, | 
|  | bool IsInOut) { | 
|  | return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut); | 
|  | } | 
|  |  | 
|  | HLSLOutArgExpr *HLSLOutArgExpr::CreateEmpty(const ASTContext &C) { | 
|  | return new (C) HLSLOutArgExpr(EmptyShell()); | 
|  | } | 
|  |  | 
|  | OpenACCAsteriskSizeExpr *OpenACCAsteriskSizeExpr::Create(const ASTContext &C, | 
|  | SourceLocation Loc) { | 
|  | return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy); | 
|  | } | 
|  |  | 
|  | OpenACCAsteriskSizeExpr * | 
|  | OpenACCAsteriskSizeExpr::CreateEmpty(const ASTContext &C) { | 
|  | return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy); | 
|  | } | 
|  |  | 
|  | ConvertVectorExpr *ConvertVectorExpr::CreateEmpty(const ASTContext &C, | 
|  | bool hasFPFeatures) { | 
|  | void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures), | 
|  | alignof(ConvertVectorExpr)); | 
|  | return new (Mem) ConvertVectorExpr(hasFPFeatures, EmptyShell()); | 
|  | } | 
|  |  | 
|  | ConvertVectorExpr *ConvertVectorExpr::Create( | 
|  | const ASTContext &C, Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType, | 
|  | ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc, | 
|  | SourceLocation RParenLoc, FPOptionsOverride FPFeatures) { | 
|  | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); | 
|  | unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures); | 
|  | void *Mem = C.Allocate(Size, alignof(ConvertVectorExpr)); | 
|  | return new (Mem) ConvertVectorExpr(SrcExpr, TI, DstType, VK, OK, BuiltinLoc, | 
|  | RParenLoc, FPFeatures); | 
|  | } | 
|  |  | 
|  | APValue &CompoundLiteralExpr::getOrCreateStaticValue(ASTContext &Ctx) const { | 
|  | assert(hasStaticStorage()); | 
|  | if (!StaticValue) { | 
|  | StaticValue = new (Ctx) APValue; | 
|  | Ctx.addDestruction(StaticValue); | 
|  | } | 
|  | return *StaticValue; | 
|  | } | 
|  |  | 
|  | APValue &CompoundLiteralExpr::getStaticValue() const { | 
|  | assert(StaticValue); | 
|  | return *StaticValue; | 
|  | } |