|  | //===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H | 
|  | #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H | 
|  |  | 
|  | #include "SystemZSubtarget.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  |  | 
|  | namespace llvm { | 
|  | namespace SystemZ { | 
|  | const unsigned ELFNumArgGPRs = 5; | 
|  | extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs]; | 
|  |  | 
|  | const unsigned ELFNumArgFPRs = 4; | 
|  | extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs]; | 
|  |  | 
|  | const unsigned XPLINK64NumArgGPRs = 3; | 
|  | extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs]; | 
|  |  | 
|  | const unsigned XPLINK64NumArgFPRs = 4; | 
|  | extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs]; | 
|  | } // end namespace SystemZ | 
|  |  | 
|  | class SystemZCCState : public CCState { | 
|  | private: | 
|  | /// Records whether the value was a fixed argument. | 
|  | /// See ISD::OutputArg::IsFixed. | 
|  | SmallVector<bool, 4> ArgIsFixed; | 
|  |  | 
|  | /// Records whether the value was widened from a short vector type. | 
|  | SmallVector<bool, 4> ArgIsShortVector; | 
|  |  | 
|  | // Check whether ArgVT is a short vector type. | 
|  | bool IsShortVectorType(EVT ArgVT) { | 
|  | return ArgVT.isVector() && ArgVT.getStoreSize() <= 8; | 
|  | } | 
|  |  | 
|  | public: | 
|  | SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, | 
|  | SmallVectorImpl<CCValAssign> &locs, LLVMContext &C) | 
|  | : CCState(CC, isVarArg, MF, locs, C) {} | 
|  |  | 
|  | void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, | 
|  | CCAssignFn Fn) { | 
|  | // Formal arguments are always fixed. | 
|  | ArgIsFixed.clear(); | 
|  | for (unsigned i = 0; i < Ins.size(); ++i) | 
|  | ArgIsFixed.push_back(true); | 
|  | // Record whether the call operand was a short vector. | 
|  | ArgIsShortVector.clear(); | 
|  | for (unsigned i = 0; i < Ins.size(); ++i) | 
|  | ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT)); | 
|  |  | 
|  | CCState::AnalyzeFormalArguments(Ins, Fn); | 
|  | } | 
|  |  | 
|  | void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | CCAssignFn Fn) { | 
|  | // Record whether the call operand was a fixed argument. | 
|  | ArgIsFixed.clear(); | 
|  | for (unsigned i = 0; i < Outs.size(); ++i) | 
|  | ArgIsFixed.push_back(Outs[i].IsFixed); | 
|  | // Record whether the call operand was a short vector. | 
|  | ArgIsShortVector.clear(); | 
|  | for (unsigned i = 0; i < Outs.size(); ++i) | 
|  | ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT)); | 
|  |  | 
|  | CCState::AnalyzeCallOperands(Outs, Fn); | 
|  | } | 
|  |  | 
|  | // This version of AnalyzeCallOperands in the base class is not usable | 
|  | // since we must provide a means of accessing ISD::OutputArg::IsFixed. | 
|  | void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs, | 
|  | SmallVectorImpl<ISD::ArgFlagsTy> &Flags, | 
|  | CCAssignFn Fn) = delete; | 
|  |  | 
|  | bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; } | 
|  | bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; } | 
|  | }; | 
|  |  | 
|  | // Handle i128 argument types.  These need to be passed by implicit | 
|  | // reference.  This could be as simple as the following .td line: | 
|  | //    CCIfType<[i128], CCPassIndirect<i64>>, | 
|  | // except that i128 is not a legal type, and therefore gets split by | 
|  | // common code into a pair of i64 arguments. | 
|  | inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); | 
|  |  | 
|  | // ArgFlags.isSplit() is true on the first part of a i128 argument; | 
|  | // PendingMembers.empty() is false on all subsequent parts. | 
|  | if (!ArgFlags.isSplit() && PendingMembers.empty()) | 
|  | return false; | 
|  |  | 
|  | // Push a pending Indirect value location for each part. | 
|  | LocVT = MVT::i64; | 
|  | LocInfo = CCValAssign::Indirect; | 
|  | PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, | 
|  | LocVT, LocInfo)); | 
|  | if (!ArgFlags.isSplitEnd()) | 
|  | return true; | 
|  |  | 
|  | // OK, we've collected all parts in the pending list.  Allocate | 
|  | // the location (register or stack slot) for the indirect pointer. | 
|  | // (This duplicates the usual i64 calling convention rules.) | 
|  | unsigned Reg; | 
|  | const SystemZSubtarget &Subtarget = | 
|  | State.getMachineFunction().getSubtarget<SystemZSubtarget>(); | 
|  | if (Subtarget.isTargetELF()) | 
|  | Reg = State.AllocateReg(SystemZ::ELFArgGPRs); | 
|  | else if (Subtarget.isTargetXPLINK64()) | 
|  | Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs); | 
|  | else | 
|  | llvm_unreachable("Unknown Calling Convention!"); | 
|  |  | 
|  | unsigned Offset = Reg && !Subtarget.isTargetXPLINK64() | 
|  | ? 0 | 
|  | : State.AllocateStack(8, Align(8)); | 
|  |  | 
|  | // Use that same location for all the pending parts. | 
|  | for (auto &It : PendingMembers) { | 
|  | if (Reg) | 
|  | It.convertToReg(Reg); | 
|  | else | 
|  | It.convertToMem(Offset); | 
|  | State.addLoc(It); | 
|  | } | 
|  |  | 
|  | PendingMembers.clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // A pointer in 64bit mode is always passed as 64bit. | 
|  | inline bool CC_XPLINK64_Pointer(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | if (LocVT != MVT::i64) { | 
|  | LocVT = MVT::i64; | 
|  | LocInfo = CCValAssign::ZExt; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, CCState &State) { | 
|  | if (LocVT == MVT::f32 || LocVT == MVT::f64) { | 
|  | State.AllocateReg(SystemZ::XPLINK64ArgGPRs); | 
|  | } | 
|  | if (LocVT == MVT::f128 || LocVT.is128BitVector()) { | 
|  | // Shadow next two GPRs, if available. | 
|  | State.AllocateReg(SystemZ::XPLINK64ArgGPRs); | 
|  | State.AllocateReg(SystemZ::XPLINK64ArgGPRs); | 
|  |  | 
|  | // Quad precision floating point needs to | 
|  | // go inside pre-defined FPR pair. | 
|  | if (LocVT == MVT::f128) { | 
|  | for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2) | 
|  | if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I])) | 
|  | State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT, | 
|  | MVT &LocVT, | 
|  | CCValAssign::LocInfo &LocInfo, | 
|  | ISD::ArgFlagsTy &ArgFlags, | 
|  | CCState &State) { | 
|  | // For any C or C++ program, this should always be | 
|  | // false, since it is illegal to have a function | 
|  | // where the first argument is variadic. Therefore | 
|  | // the first fixed argument should already have | 
|  | // allocated GPR1 either through shadowing it or | 
|  | // using it for parameter passing. | 
|  | State.AllocateReg(SystemZ::R1D); | 
|  |  | 
|  | bool AllocGPR2 = State.AllocateReg(SystemZ::R2D); | 
|  | bool AllocGPR3 = State.AllocateReg(SystemZ::R3D); | 
|  |  | 
|  | // If GPR2 and GPR3 are available, then we may pass vararg in R2Q. | 
|  | // If only GPR3 is available, we need to set custom handling to copy | 
|  | // hi bits into GPR3. | 
|  | // Either way, we allocate on the stack. | 
|  | if (AllocGPR3) { | 
|  | // For f128 and vector var arg case, set the bitcast flag to bitcast to | 
|  | // i128. | 
|  | LocVT = MVT::i128; | 
|  | LocInfo = CCValAssign::BCvt; | 
|  | auto Offset = State.AllocateStack(16, Align(8)); | 
|  | if (AllocGPR2) | 
|  | State.addLoc( | 
|  | CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo)); | 
|  | else | 
|  | State.addLoc( | 
|  | CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &, | 
|  | CCValAssign::LocInfo &, ISD::ArgFlagsTy &, | 
|  | CCState &) { | 
|  | llvm_unreachable("Return value calling convention currently unsupported."); | 
|  | } | 
|  |  | 
|  | inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &, | 
|  | ISD::ArgFlagsTy &, CCState &) { | 
|  | llvm_unreachable("Argument calling convention currently unsupported."); | 
|  | } | 
|  |  | 
|  | inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &, | 
|  | CCValAssign::LocInfo &, ISD::ArgFlagsTy &, | 
|  | CCState &) { | 
|  | report_fatal_error("No registers left in GHC calling convention"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif |