| //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file contains the declarations of the Vectorization Plan base classes: |
| /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual |
| /// VPBlockBase, together implementing a Hierarchical CFG; |
| /// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained |
| /// within VPBasicBlocks; |
| /// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that |
| /// also inherit from VPValue. |
| /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned |
| /// instruction; |
| /// 5. The VPlan class holding a candidate for vectorization; |
| /// These are documented in docs/VectorizationPlan.rst. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| |
| #include "VPlanAnalysis.h" |
| #include "VPlanValue.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/ADT/ilist_node.h" |
| #include "llvm/Analysis/IVDescriptors.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/FMF.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/InstructionCost.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <string> |
| |
| namespace llvm { |
| |
| class BasicBlock; |
| class DominatorTree; |
| class InnerLoopVectorizer; |
| class IRBuilderBase; |
| struct VPTransformState; |
| class raw_ostream; |
| class RecurrenceDescriptor; |
| class SCEV; |
| class Type; |
| class VPBasicBlock; |
| class VPBuilder; |
| class VPDominatorTree; |
| class VPRegionBlock; |
| class VPlan; |
| class VPLane; |
| class VPReplicateRecipe; |
| class VPlanSlp; |
| class Value; |
| class LoopVectorizationCostModel; |
| |
| struct VPCostContext; |
| |
| namespace Intrinsic { |
| typedef unsigned ID; |
| } |
| |
| using VPlanPtr = std::unique_ptr<VPlan>; |
| |
| /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. |
| /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. |
| class VPBlockBase { |
| friend class VPBlockUtils; |
| |
| const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| |
| /// An optional name for the block. |
| std::string Name; |
| |
| /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if |
| /// it is a topmost VPBlockBase. |
| VPRegionBlock *Parent = nullptr; |
| |
| /// List of predecessor blocks. |
| SmallVector<VPBlockBase *, 1> Predecessors; |
| |
| /// List of successor blocks. |
| SmallVector<VPBlockBase *, 1> Successors; |
| |
| /// VPlan containing the block. Can only be set on the entry block of the |
| /// plan. |
| VPlan *Plan = nullptr; |
| |
| /// Add \p Successor as the last successor to this block. |
| void appendSuccessor(VPBlockBase *Successor) { |
| assert(Successor && "Cannot add nullptr successor!"); |
| Successors.push_back(Successor); |
| } |
| |
| /// Add \p Predecessor as the last predecessor to this block. |
| void appendPredecessor(VPBlockBase *Predecessor) { |
| assert(Predecessor && "Cannot add nullptr predecessor!"); |
| Predecessors.push_back(Predecessor); |
| } |
| |
| /// Remove \p Predecessor from the predecessors of this block. |
| void removePredecessor(VPBlockBase *Predecessor) { |
| auto Pos = find(Predecessors, Predecessor); |
| assert(Pos && "Predecessor does not exist"); |
| Predecessors.erase(Pos); |
| } |
| |
| /// Remove \p Successor from the successors of this block. |
| void removeSuccessor(VPBlockBase *Successor) { |
| auto Pos = find(Successors, Successor); |
| assert(Pos && "Successor does not exist"); |
| Successors.erase(Pos); |
| } |
| |
| /// This function replaces one predecessor with another, useful when |
| /// trying to replace an old block in the CFG with a new one. |
| void replacePredecessor(VPBlockBase *Old, VPBlockBase *New) { |
| auto I = find(Predecessors, Old); |
| assert(I != Predecessors.end()); |
| assert(Old->getParent() == New->getParent() && |
| "replaced predecessor must have the same parent"); |
| *I = New; |
| } |
| |
| /// This function replaces one successor with another, useful when |
| /// trying to replace an old block in the CFG with a new one. |
| void replaceSuccessor(VPBlockBase *Old, VPBlockBase *New) { |
| auto I = find(Successors, Old); |
| assert(I != Successors.end()); |
| assert(Old->getParent() == New->getParent() && |
| "replaced successor must have the same parent"); |
| *I = New; |
| } |
| |
| protected: |
| VPBlockBase(const unsigned char SC, const std::string &N) |
| : SubclassID(SC), Name(N) {} |
| |
| public: |
| /// An enumeration for keeping track of the concrete subclass of VPBlockBase |
| /// that are actually instantiated. Values of this enumeration are kept in the |
| /// SubclassID field of the VPBlockBase objects. They are used for concrete |
| /// type identification. |
| using VPBlockTy = enum { VPRegionBlockSC, VPBasicBlockSC, VPIRBasicBlockSC }; |
| |
| using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; |
| |
| virtual ~VPBlockBase() = default; |
| |
| const std::string &getName() const { return Name; } |
| |
| void setName(const Twine &newName) { Name = newName.str(); } |
| |
| /// \return an ID for the concrete type of this object. |
| /// This is used to implement the classof checks. This should not be used |
| /// for any other purpose, as the values may change as LLVM evolves. |
| unsigned getVPBlockID() const { return SubclassID; } |
| |
| VPRegionBlock *getParent() { return Parent; } |
| const VPRegionBlock *getParent() const { return Parent; } |
| |
| /// \return A pointer to the plan containing the current block. |
| VPlan *getPlan(); |
| const VPlan *getPlan() const; |
| |
| /// Sets the pointer of the plan containing the block. The block must be the |
| /// entry block into the VPlan. |
| void setPlan(VPlan *ParentPlan); |
| |
| void setParent(VPRegionBlock *P) { Parent = P; } |
| |
| /// \return the VPBasicBlock that is the entry of this VPBlockBase, |
| /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| /// VPBlockBase is a VPBasicBlock, it is returned. |
| const VPBasicBlock *getEntryBasicBlock() const; |
| VPBasicBlock *getEntryBasicBlock(); |
| |
| /// \return the VPBasicBlock that is the exiting this VPBlockBase, |
| /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| /// VPBlockBase is a VPBasicBlock, it is returned. |
| const VPBasicBlock *getExitingBasicBlock() const; |
| VPBasicBlock *getExitingBasicBlock(); |
| |
| const VPBlocksTy &getSuccessors() const { return Successors; } |
| VPBlocksTy &getSuccessors() { return Successors; } |
| |
| iterator_range<VPBlockBase **> successors() { return Successors; } |
| iterator_range<VPBlockBase **> predecessors() { return Predecessors; } |
| |
| const VPBlocksTy &getPredecessors() const { return Predecessors; } |
| VPBlocksTy &getPredecessors() { return Predecessors; } |
| |
| /// \return the successor of this VPBlockBase if it has a single successor. |
| /// Otherwise return a null pointer. |
| VPBlockBase *getSingleSuccessor() const { |
| return (Successors.size() == 1 ? *Successors.begin() : nullptr); |
| } |
| |
| /// \return the predecessor of this VPBlockBase if it has a single |
| /// predecessor. Otherwise return a null pointer. |
| VPBlockBase *getSinglePredecessor() const { |
| return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); |
| } |
| |
| size_t getNumSuccessors() const { return Successors.size(); } |
| size_t getNumPredecessors() const { return Predecessors.size(); } |
| |
| /// An Enclosing Block of a block B is any block containing B, including B |
| /// itself. \return the closest enclosing block starting from "this", which |
| /// has successors. \return the root enclosing block if all enclosing blocks |
| /// have no successors. |
| VPBlockBase *getEnclosingBlockWithSuccessors(); |
| |
| /// \return the closest enclosing block starting from "this", which has |
| /// predecessors. \return the root enclosing block if all enclosing blocks |
| /// have no predecessors. |
| VPBlockBase *getEnclosingBlockWithPredecessors(); |
| |
| /// \return the successors either attached directly to this VPBlockBase or, if |
| /// this VPBlockBase is the exit block of a VPRegionBlock and has no |
| /// successors of its own, search recursively for the first enclosing |
| /// VPRegionBlock that has successors and return them. If no such |
| /// VPRegionBlock exists, return the (empty) successors of the topmost |
| /// VPBlockBase reached. |
| const VPBlocksTy &getHierarchicalSuccessors() { |
| return getEnclosingBlockWithSuccessors()->getSuccessors(); |
| } |
| |
| /// \return the hierarchical successor of this VPBlockBase if it has a single |
| /// hierarchical successor. Otherwise return a null pointer. |
| VPBlockBase *getSingleHierarchicalSuccessor() { |
| return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); |
| } |
| |
| /// \return the predecessors either attached directly to this VPBlockBase or, |
| /// if this VPBlockBase is the entry block of a VPRegionBlock and has no |
| /// predecessors of its own, search recursively for the first enclosing |
| /// VPRegionBlock that has predecessors and return them. If no such |
| /// VPRegionBlock exists, return the (empty) predecessors of the topmost |
| /// VPBlockBase reached. |
| const VPBlocksTy &getHierarchicalPredecessors() { |
| return getEnclosingBlockWithPredecessors()->getPredecessors(); |
| } |
| |
| /// \return the hierarchical predecessor of this VPBlockBase if it has a |
| /// single hierarchical predecessor. Otherwise return a null pointer. |
| VPBlockBase *getSingleHierarchicalPredecessor() { |
| return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); |
| } |
| |
| /// Set a given VPBlockBase \p Successor as the single successor of this |
| /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. |
| /// This VPBlockBase must have no successors. |
| void setOneSuccessor(VPBlockBase *Successor) { |
| assert(Successors.empty() && "Setting one successor when others exist."); |
| assert(Successor->getParent() == getParent() && |
| "connected blocks must have the same parent"); |
| appendSuccessor(Successor); |
| } |
| |
| /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two |
| /// successors of this VPBlockBase. This VPBlockBase is not added as |
| /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no |
| /// successors. |
| void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { |
| assert(Successors.empty() && "Setting two successors when others exist."); |
| appendSuccessor(IfTrue); |
| appendSuccessor(IfFalse); |
| } |
| |
| /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. |
| /// This VPBlockBase must have no predecessors. This VPBlockBase is not added |
| /// as successor of any VPBasicBlock in \p NewPreds. |
| void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { |
| assert(Predecessors.empty() && "Block predecessors already set."); |
| for (auto *Pred : NewPreds) |
| appendPredecessor(Pred); |
| } |
| |
| /// Set each VPBasicBlock in \p NewSuccss as successor of this VPBlockBase. |
| /// This VPBlockBase must have no successors. This VPBlockBase is not added |
| /// as predecessor of any VPBasicBlock in \p NewSuccs. |
| void setSuccessors(ArrayRef<VPBlockBase *> NewSuccs) { |
| assert(Successors.empty() && "Block successors already set."); |
| for (auto *Succ : NewSuccs) |
| appendSuccessor(Succ); |
| } |
| |
| /// Remove all the predecessor of this block. |
| void clearPredecessors() { Predecessors.clear(); } |
| |
| /// Remove all the successors of this block. |
| void clearSuccessors() { Successors.clear(); } |
| |
| /// Swap predecessors of the block. The block must have exactly 2 |
| /// predecessors. |
| void swapPredecessors() { |
| assert(Predecessors.size() == 2 && "must have 2 predecessors to swap"); |
| std::swap(Predecessors[0], Predecessors[1]); |
| } |
| |
| /// Swap successors of the block. The block must have exactly 2 successors. |
| // TODO: This should be part of introducing conditional branch recipes rather |
| // than being independent. |
| void swapSuccessors() { |
| assert(Successors.size() == 2 && "must have 2 successors to swap"); |
| std::swap(Successors[0], Successors[1]); |
| } |
| |
| /// The method which generates the output IR that correspond to this |
| /// VPBlockBase, thereby "executing" the VPlan. |
| virtual void execute(VPTransformState *State) = 0; |
| |
| /// Return the cost of the block. |
| virtual InstructionCost cost(ElementCount VF, VPCostContext &Ctx) = 0; |
| |
| /// Return true if it is legal to hoist instructions into this block. |
| bool isLegalToHoistInto() { |
| // There are currently no constraints that prevent an instruction to be |
| // hoisted into a VPBlockBase. |
| return true; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void printAsOperand(raw_ostream &OS, bool PrintType = false) const { |
| OS << getName(); |
| } |
| |
| /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines |
| /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| /// consequtive numbers. |
| /// |
| /// Note that the numbering is applied to the whole VPlan, so printing |
| /// individual blocks is consistent with the whole VPlan printing. |
| virtual void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const = 0; |
| |
| /// Print plain-text dump of this VPlan to \p O. |
| void print(raw_ostream &O) const; |
| |
| /// Print the successors of this block to \p O, prefixing all lines with \p |
| /// Indent. |
| void printSuccessors(raw_ostream &O, const Twine &Indent) const; |
| |
| /// Dump this VPBlockBase to dbgs(). |
| LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| #endif |
| |
| /// Clone the current block and it's recipes without updating the operands of |
| /// the cloned recipes, including all blocks in the single-entry single-exit |
| /// region for VPRegionBlocks. |
| virtual VPBlockBase *clone() = 0; |
| }; |
| |
| /// VPRecipeBase is a base class modeling a sequence of one or more output IR |
| /// instructions. VPRecipeBase owns the VPValues it defines through VPDef |
| /// and is responsible for deleting its defined values. Single-value |
| /// recipes must inherit from VPSingleDef instead of inheriting from both |
| /// VPRecipeBase and VPValue separately. |
| class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, |
| public VPDef, |
| public VPUser { |
| friend VPBasicBlock; |
| friend class VPBlockUtils; |
| |
| /// Each VPRecipe belongs to a single VPBasicBlock. |
| VPBasicBlock *Parent = nullptr; |
| |
| /// The debug location for the recipe. |
| DebugLoc DL; |
| |
| public: |
| VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| DebugLoc DL = {}) |
| : VPDef(SC), VPUser(Operands), DL(DL) {} |
| |
| virtual ~VPRecipeBase() = default; |
| |
| /// Clone the current recipe. |
| virtual VPRecipeBase *clone() = 0; |
| |
| /// \return the VPBasicBlock which this VPRecipe belongs to. |
| VPBasicBlock *getParent() { return Parent; } |
| const VPBasicBlock *getParent() const { return Parent; } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPRecipe, thereby "executing" the VPlan. |
| virtual void execute(VPTransformState &State) = 0; |
| |
| /// Return the cost of this recipe, taking into account if the cost |
| /// computation should be skipped and the ForceTargetInstructionCost flag. |
| /// Also takes care of printing the cost for debugging. |
| InstructionCost cost(ElementCount VF, VPCostContext &Ctx); |
| |
| /// Insert an unlinked recipe into a basic block immediately before |
| /// the specified recipe. |
| void insertBefore(VPRecipeBase *InsertPos); |
| /// Insert an unlinked recipe into \p BB immediately before the insertion |
| /// point \p IP; |
| void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP); |
| |
| /// Insert an unlinked Recipe into a basic block immediately after |
| /// the specified Recipe. |
| void insertAfter(VPRecipeBase *InsertPos); |
| |
| /// Unlink this recipe from its current VPBasicBlock and insert it into |
| /// the VPBasicBlock that MovePos lives in, right after MovePos. |
| void moveAfter(VPRecipeBase *MovePos); |
| |
| /// Unlink this recipe and insert into BB before I. |
| /// |
| /// \pre I is a valid iterator into BB. |
| void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); |
| |
| /// This method unlinks 'this' from the containing basic block, but does not |
| /// delete it. |
| void removeFromParent(); |
| |
| /// This method unlinks 'this' from the containing basic block and deletes it. |
| /// |
| /// \returns an iterator pointing to the element after the erased one |
| iplist<VPRecipeBase>::iterator eraseFromParent(); |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPDef *D) { |
| // All VPDefs are also VPRecipeBases. |
| return true; |
| } |
| |
| static inline bool classof(const VPUser *U) { return true; } |
| |
| /// Returns true if the recipe may have side-effects. |
| bool mayHaveSideEffects() const; |
| |
| /// Returns true for PHI-like recipes. |
| bool isPhi() const; |
| |
| /// Returns true if the recipe may read from memory. |
| bool mayReadFromMemory() const; |
| |
| /// Returns true if the recipe may write to memory. |
| bool mayWriteToMemory() const; |
| |
| /// Returns true if the recipe may read from or write to memory. |
| bool mayReadOrWriteMemory() const { |
| return mayReadFromMemory() || mayWriteToMemory(); |
| } |
| |
| /// Returns the debug location of the recipe. |
| DebugLoc getDebugLoc() const { return DL; } |
| |
| /// Return true if the recipe is a scalar cast. |
| bool isScalarCast() const; |
| |
| /// Set the recipe's debug location to \p NewDL. |
| void setDebugLoc(DebugLoc NewDL) { DL = NewDL; } |
| |
| protected: |
| /// Compute the cost of this recipe either using a recipe's specialized |
| /// implementation or using the legacy cost model and the underlying |
| /// instructions. |
| virtual InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const; |
| }; |
| |
| // Helper macro to define common classof implementations for recipes. |
| #define VP_CLASSOF_IMPL(VPDefID) \ |
| static inline bool classof(const VPDef *D) { \ |
| return D->getVPDefID() == VPDefID; \ |
| } \ |
| static inline bool classof(const VPValue *V) { \ |
| auto *R = V->getDefiningRecipe(); \ |
| return R && R->getVPDefID() == VPDefID; \ |
| } \ |
| static inline bool classof(const VPUser *U) { \ |
| auto *R = dyn_cast<VPRecipeBase>(U); \ |
| return R && R->getVPDefID() == VPDefID; \ |
| } \ |
| static inline bool classof(const VPRecipeBase *R) { \ |
| return R->getVPDefID() == VPDefID; \ |
| } \ |
| static inline bool classof(const VPSingleDefRecipe *R) { \ |
| return R->getVPDefID() == VPDefID; \ |
| } |
| |
| /// VPSingleDef is a base class for recipes for modeling a sequence of one or |
| /// more output IR that define a single result VPValue. |
| /// Note that VPRecipeBase must be inherited from before VPValue. |
| class VPSingleDefRecipe : public VPRecipeBase, public VPValue { |
| public: |
| VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| DebugLoc DL = {}) |
| : VPRecipeBase(SC, Operands, DL), VPValue(this) {} |
| |
| VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| Value *UV, DebugLoc DL = {}) |
| : VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {} |
| |
| static inline bool classof(const VPRecipeBase *R) { |
| switch (R->getVPDefID()) { |
| case VPRecipeBase::VPDerivedIVSC: |
| case VPRecipeBase::VPEVLBasedIVPHISC: |
| case VPRecipeBase::VPExpandSCEVSC: |
| case VPRecipeBase::VPInstructionSC: |
| case VPRecipeBase::VPReductionEVLSC: |
| case VPRecipeBase::VPReductionSC: |
| case VPRecipeBase::VPReplicateSC: |
| case VPRecipeBase::VPScalarIVStepsSC: |
| case VPRecipeBase::VPVectorPointerSC: |
| case VPRecipeBase::VPVectorEndPointerSC: |
| case VPRecipeBase::VPWidenCallSC: |
| case VPRecipeBase::VPWidenCanonicalIVSC: |
| case VPRecipeBase::VPWidenCastSC: |
| case VPRecipeBase::VPWidenGEPSC: |
| case VPRecipeBase::VPWidenIntrinsicSC: |
| case VPRecipeBase::VPWidenSC: |
| case VPRecipeBase::VPWidenSelectSC: |
| case VPRecipeBase::VPBlendSC: |
| case VPRecipeBase::VPPredInstPHISC: |
| case VPRecipeBase::VPCanonicalIVPHISC: |
| case VPRecipeBase::VPActiveLaneMaskPHISC: |
| case VPRecipeBase::VPFirstOrderRecurrencePHISC: |
| case VPRecipeBase::VPWidenPHISC: |
| case VPRecipeBase::VPWidenIntOrFpInductionSC: |
| case VPRecipeBase::VPWidenPointerInductionSC: |
| case VPRecipeBase::VPReductionPHISC: |
| case VPRecipeBase::VPPartialReductionSC: |
| return true; |
| case VPRecipeBase::VPBranchOnMaskSC: |
| case VPRecipeBase::VPInterleaveSC: |
| case VPRecipeBase::VPIRInstructionSC: |
| case VPRecipeBase::VPWidenLoadEVLSC: |
| case VPRecipeBase::VPWidenLoadSC: |
| case VPRecipeBase::VPWidenStoreEVLSC: |
| case VPRecipeBase::VPWidenStoreSC: |
| case VPRecipeBase::VPHistogramSC: |
| // TODO: Widened stores don't define a value, but widened loads do. Split |
| // the recipes to be able to make widened loads VPSingleDefRecipes. |
| return false; |
| } |
| llvm_unreachable("Unhandled VPDefID"); |
| } |
| |
| static inline bool classof(const VPUser *U) { |
| auto *R = dyn_cast<VPRecipeBase>(U); |
| return R && classof(R); |
| } |
| |
| virtual VPSingleDefRecipe *clone() override = 0; |
| |
| /// Returns the underlying instruction. |
| Instruction *getUnderlyingInstr() { |
| return cast<Instruction>(getUnderlyingValue()); |
| } |
| const Instruction *getUnderlyingInstr() const { |
| return cast<Instruction>(getUnderlyingValue()); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print this VPSingleDefRecipe to dbgs() (for debugging). |
| LLVM_DUMP_METHOD void dump() const; |
| #endif |
| }; |
| |
| /// Class to record LLVM IR flag for a recipe along with it. |
| class VPRecipeWithIRFlags : public VPSingleDefRecipe { |
| enum class OperationType : unsigned char { |
| Cmp, |
| OverflowingBinOp, |
| DisjointOp, |
| PossiblyExactOp, |
| GEPOp, |
| FPMathOp, |
| NonNegOp, |
| Other |
| }; |
| |
| public: |
| struct WrapFlagsTy { |
| char HasNUW : 1; |
| char HasNSW : 1; |
| |
| WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {} |
| }; |
| |
| struct DisjointFlagsTy { |
| char IsDisjoint : 1; |
| DisjointFlagsTy(bool IsDisjoint) : IsDisjoint(IsDisjoint) {} |
| }; |
| |
| private: |
| struct ExactFlagsTy { |
| char IsExact : 1; |
| }; |
| struct NonNegFlagsTy { |
| char NonNeg : 1; |
| }; |
| struct FastMathFlagsTy { |
| char AllowReassoc : 1; |
| char NoNaNs : 1; |
| char NoInfs : 1; |
| char NoSignedZeros : 1; |
| char AllowReciprocal : 1; |
| char AllowContract : 1; |
| char ApproxFunc : 1; |
| |
| FastMathFlagsTy(const FastMathFlags &FMF); |
| }; |
| |
| OperationType OpType; |
| |
| union { |
| CmpInst::Predicate CmpPredicate; |
| WrapFlagsTy WrapFlags; |
| DisjointFlagsTy DisjointFlags; |
| ExactFlagsTy ExactFlags; |
| GEPNoWrapFlags GEPFlags; |
| NonNegFlagsTy NonNegFlags; |
| FastMathFlagsTy FMFs; |
| unsigned AllFlags; |
| }; |
| |
| protected: |
| void transferFlags(VPRecipeWithIRFlags &Other) { |
| OpType = Other.OpType; |
| AllFlags = Other.AllFlags; |
| } |
| |
| public: |
| VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| DebugLoc DL = {}) |
| : VPSingleDefRecipe(SC, Operands, DL) { |
| OpType = OperationType::Other; |
| AllFlags = 0; |
| } |
| |
| VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| Instruction &I) |
| : VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()) { |
| if (auto *Op = dyn_cast<CmpInst>(&I)) { |
| OpType = OperationType::Cmp; |
| CmpPredicate = Op->getPredicate(); |
| } else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) { |
| OpType = OperationType::DisjointOp; |
| DisjointFlags.IsDisjoint = Op->isDisjoint(); |
| } else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) { |
| OpType = OperationType::OverflowingBinOp; |
| WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()}; |
| } else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) { |
| OpType = OperationType::PossiblyExactOp; |
| ExactFlags.IsExact = Op->isExact(); |
| } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| OpType = OperationType::GEPOp; |
| GEPFlags = GEP->getNoWrapFlags(); |
| } else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) { |
| OpType = OperationType::NonNegOp; |
| NonNegFlags.NonNeg = PNNI->hasNonNeg(); |
| } else if (auto *Op = dyn_cast<FPMathOperator>(&I)) { |
| OpType = OperationType::FPMathOp; |
| FMFs = Op->getFastMathFlags(); |
| } else { |
| OpType = OperationType::Other; |
| AllFlags = 0; |
| } |
| } |
| |
| VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| CmpInst::Predicate Pred, DebugLoc DL = {}) |
| : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::Cmp), |
| CmpPredicate(Pred) {} |
| |
| VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| WrapFlagsTy WrapFlags, DebugLoc DL = {}) |
| : VPSingleDefRecipe(SC, Operands, DL), |
| OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {} |
| |
| VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| FastMathFlags FMFs, DebugLoc DL = {}) |
| : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::FPMathOp), |
| FMFs(FMFs) {} |
| |
| VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| DisjointFlagsTy DisjointFlags, DebugLoc DL = {}) |
| : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::DisjointOp), |
| DisjointFlags(DisjointFlags) {} |
| |
| protected: |
| VPRecipeWithIRFlags(const unsigned char SC, ArrayRef<VPValue *> Operands, |
| GEPNoWrapFlags GEPFlags, DebugLoc DL = {}) |
| : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::GEPOp), |
| GEPFlags(GEPFlags) {} |
| |
| public: |
| static inline bool classof(const VPRecipeBase *R) { |
| return R->getVPDefID() == VPRecipeBase::VPInstructionSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenGEPSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenCallSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenCastSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenIntrinsicSC || |
| R->getVPDefID() == VPRecipeBase::VPReductionSC || |
| R->getVPDefID() == VPRecipeBase::VPReductionEVLSC || |
| R->getVPDefID() == VPRecipeBase::VPReplicateSC || |
| R->getVPDefID() == VPRecipeBase::VPVectorEndPointerSC || |
| R->getVPDefID() == VPRecipeBase::VPVectorPointerSC; |
| } |
| |
| static inline bool classof(const VPUser *U) { |
| auto *R = dyn_cast<VPRecipeBase>(U); |
| return R && classof(R); |
| } |
| |
| static inline bool classof(const VPValue *V) { |
| auto *R = dyn_cast_or_null<VPRecipeBase>(V->getDefiningRecipe()); |
| return R && classof(R); |
| } |
| |
| /// Drop all poison-generating flags. |
| void dropPoisonGeneratingFlags() { |
| // NOTE: This needs to be kept in-sync with |
| // Instruction::dropPoisonGeneratingFlags. |
| switch (OpType) { |
| case OperationType::OverflowingBinOp: |
| WrapFlags.HasNUW = false; |
| WrapFlags.HasNSW = false; |
| break; |
| case OperationType::DisjointOp: |
| DisjointFlags.IsDisjoint = false; |
| break; |
| case OperationType::PossiblyExactOp: |
| ExactFlags.IsExact = false; |
| break; |
| case OperationType::GEPOp: |
| GEPFlags = GEPNoWrapFlags::none(); |
| break; |
| case OperationType::FPMathOp: |
| FMFs.NoNaNs = false; |
| FMFs.NoInfs = false; |
| break; |
| case OperationType::NonNegOp: |
| NonNegFlags.NonNeg = false; |
| break; |
| case OperationType::Cmp: |
| case OperationType::Other: |
| break; |
| } |
| } |
| |
| /// Apply the IR flags to \p I. |
| void applyFlags(Instruction &I) const { |
| switch (OpType) { |
| case OperationType::OverflowingBinOp: |
| I.setHasNoUnsignedWrap(WrapFlags.HasNUW); |
| I.setHasNoSignedWrap(WrapFlags.HasNSW); |
| break; |
| case OperationType::DisjointOp: |
| cast<PossiblyDisjointInst>(&I)->setIsDisjoint(DisjointFlags.IsDisjoint); |
| break; |
| case OperationType::PossiblyExactOp: |
| I.setIsExact(ExactFlags.IsExact); |
| break; |
| case OperationType::GEPOp: |
| cast<GetElementPtrInst>(&I)->setNoWrapFlags(GEPFlags); |
| break; |
| case OperationType::FPMathOp: |
| I.setHasAllowReassoc(FMFs.AllowReassoc); |
| I.setHasNoNaNs(FMFs.NoNaNs); |
| I.setHasNoInfs(FMFs.NoInfs); |
| I.setHasNoSignedZeros(FMFs.NoSignedZeros); |
| I.setHasAllowReciprocal(FMFs.AllowReciprocal); |
| I.setHasAllowContract(FMFs.AllowContract); |
| I.setHasApproxFunc(FMFs.ApproxFunc); |
| break; |
| case OperationType::NonNegOp: |
| I.setNonNeg(NonNegFlags.NonNeg); |
| break; |
| case OperationType::Cmp: |
| case OperationType::Other: |
| break; |
| } |
| } |
| |
| CmpInst::Predicate getPredicate() const { |
| assert(OpType == OperationType::Cmp && |
| "recipe doesn't have a compare predicate"); |
| return CmpPredicate; |
| } |
| |
| void setPredicate(CmpInst::Predicate Pred) { |
| assert(OpType == OperationType::Cmp && |
| "recipe doesn't have a compare predicate"); |
| CmpPredicate = Pred; |
| } |
| |
| GEPNoWrapFlags getGEPNoWrapFlags() const { return GEPFlags; } |
| |
| /// Returns true if the recipe has fast-math flags. |
| bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; } |
| |
| FastMathFlags getFastMathFlags() const; |
| |
| bool hasNoUnsignedWrap() const { |
| assert(OpType == OperationType::OverflowingBinOp && |
| "recipe doesn't have a NUW flag"); |
| return WrapFlags.HasNUW; |
| } |
| |
| bool hasNoSignedWrap() const { |
| assert(OpType == OperationType::OverflowingBinOp && |
| "recipe doesn't have a NSW flag"); |
| return WrapFlags.HasNSW; |
| } |
| |
| bool isDisjoint() const { |
| assert(OpType == OperationType::DisjointOp && |
| "recipe cannot have a disjoing flag"); |
| return DisjointFlags.IsDisjoint; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void printFlags(raw_ostream &O) const; |
| #endif |
| }; |
| |
| /// Helper to access the operand that contains the unroll part for this recipe |
| /// after unrolling. |
| template <unsigned PartOpIdx> class VPUnrollPartAccessor { |
| protected: |
| /// Return the VPValue operand containing the unroll part or null if there is |
| /// no such operand. |
| VPValue *getUnrollPartOperand(VPUser &U) const; |
| |
| /// Return the unroll part. |
| unsigned getUnrollPart(VPUser &U) const; |
| }; |
| |
| /// This is a concrete Recipe that models a single VPlan-level instruction. |
| /// While as any Recipe it may generate a sequence of IR instructions when |
| /// executed, these instructions would always form a single-def expression as |
| /// the VPInstruction is also a single def-use vertex. |
| class VPInstruction : public VPRecipeWithIRFlags, |
| public VPUnrollPartAccessor<1> { |
| friend class VPlanSlp; |
| |
| public: |
| /// VPlan opcodes, extending LLVM IR with idiomatics instructions. |
| enum { |
| FirstOrderRecurrenceSplice = |
| Instruction::OtherOpsEnd + 1, // Combines the incoming and previous |
| // values of a first-order recurrence. |
| Not, |
| SLPLoad, |
| SLPStore, |
| ActiveLaneMask, |
| ExplicitVectorLength, |
| /// Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan. |
| /// The first operand is the incoming value from the predecessor in VPlan, |
| /// the second operand is the incoming value for all other predecessors |
| /// (which are currently not modeled in VPlan). |
| ResumePhi, |
| CalculateTripCountMinusVF, |
| // Increment the canonical IV separately for each unrolled part. |
| CanonicalIVIncrementForPart, |
| BranchOnCount, |
| BranchOnCond, |
| Broadcast, |
| ComputeFindLastIVResult, |
| ComputeReductionResult, |
| // Extracts the last lane from its operand if it is a vector, or the last |
| // part if scalar. In the latter case, the recipe will be removed during |
| // unrolling. |
| ExtractLastElement, |
| // Extracts the second-to-last lane from its operand or the second-to-last |
| // part if it is scalar. In the latter case, the recipe will be removed |
| // during unrolling. |
| ExtractPenultimateElement, |
| LogicalAnd, // Non-poison propagating logical And. |
| // Add an offset in bytes (second operand) to a base pointer (first |
| // operand). Only generates scalar values (either for the first lane only or |
| // for all lanes, depending on its uses). |
| PtrAdd, |
| // Returns a scalar boolean value, which is true if any lane of its (only |
| // boolean) vector operand is true. |
| AnyOf, |
| // Calculates the first active lane index of the vector predicate operand. |
| FirstActiveLane, |
| |
| // The opcodes below are used for VPInstructionWithType. |
| // |
| /// Scale the first operand (vector step) by the second operand |
| /// (scalar-step). Casts both operands to the result type if needed. |
| WideIVStep, |
| |
| }; |
| |
| private: |
| typedef unsigned char OpcodeTy; |
| OpcodeTy Opcode; |
| |
| /// An optional name that can be used for the generated IR instruction. |
| const std::string Name; |
| |
| /// Returns true if this VPInstruction generates scalar values for all lanes. |
| /// Most VPInstructions generate a single value per part, either vector or |
| /// scalar. VPReplicateRecipe takes care of generating multiple (scalar) |
| /// values per all lanes, stemming from an original ingredient. This method |
| /// identifies the (rare) cases of VPInstructions that do so as well, w/o an |
| /// underlying ingredient. |
| bool doesGeneratePerAllLanes() const; |
| |
| /// Returns true if we can generate a scalar for the first lane only if |
| /// needed. |
| bool canGenerateScalarForFirstLane() const; |
| |
| /// Utility methods serving execute(): generates a single vector instance of |
| /// the modeled instruction. \returns the generated value. . In some cases an |
| /// existing value is returned rather than a generated one. |
| Value *generate(VPTransformState &State); |
| |
| /// Utility methods serving execute(): generates a scalar single instance of |
| /// the modeled instruction for a given lane. \returns the scalar generated |
| /// value for lane \p Lane. |
| Value *generatePerLane(VPTransformState &State, const VPLane &Lane); |
| |
| #if !defined(NDEBUG) |
| /// Return true if the VPInstruction is a floating point math operation, i.e. |
| /// has fast-math flags. |
| bool isFPMathOp() const; |
| #endif |
| |
| public: |
| VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL, |
| const Twine &Name = "") |
| : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL), |
| Opcode(Opcode), Name(Name.str()) {} |
| |
| VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, |
| DebugLoc DL = {}, const Twine &Name = "") |
| : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {} |
| |
| VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A, |
| VPValue *B, DebugLoc DL = {}, const Twine &Name = ""); |
| |
| VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, |
| WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "") |
| : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL), |
| Opcode(Opcode), Name(Name.str()) {} |
| |
| VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, |
| DisjointFlagsTy DisjointFlag, DebugLoc DL = {}, |
| const Twine &Name = "") |
| : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DisjointFlag, DL), |
| Opcode(Opcode), Name(Name.str()) { |
| assert(Opcode == Instruction::Or && "only OR opcodes can be disjoint"); |
| } |
| |
| VPInstruction(VPValue *Ptr, VPValue *Offset, GEPNoWrapFlags Flags, |
| DebugLoc DL = {}, const Twine &Name = "") |
| : VPRecipeWithIRFlags(VPDef::VPInstructionSC, |
| ArrayRef<VPValue *>({Ptr, Offset}), Flags, DL), |
| Opcode(VPInstruction::PtrAdd), Name(Name.str()) {} |
| |
| VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, |
| FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = ""); |
| |
| VP_CLASSOF_IMPL(VPDef::VPInstructionSC) |
| |
| VPInstruction *clone() override { |
| SmallVector<VPValue *, 2> Operands(operands()); |
| auto *New = new VPInstruction(Opcode, Operands, getDebugLoc(), Name); |
| New->transferFlags(*this); |
| return New; |
| } |
| |
| unsigned getOpcode() const { return Opcode; } |
| |
| /// Generate the instruction. |
| /// TODO: We currently execute only per-part unless a specific instance is |
| /// provided. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPInstruction. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the VPInstruction to \p O. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| |
| /// Print the VPInstruction to dbgs() (for debugging). |
| LLVM_DUMP_METHOD void dump() const; |
| #endif |
| |
| bool hasResult() const { |
| // CallInst may or may not have a result, depending on the called function. |
| // Conservatively return calls have results for now. |
| switch (getOpcode()) { |
| case Instruction::Ret: |
| case Instruction::Br: |
| case Instruction::Store: |
| case Instruction::Switch: |
| case Instruction::IndirectBr: |
| case Instruction::Resume: |
| case Instruction::CatchRet: |
| case Instruction::Unreachable: |
| case Instruction::Fence: |
| case Instruction::AtomicRMW: |
| case VPInstruction::BranchOnCond: |
| case VPInstruction::BranchOnCount: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /// Returns true if the underlying opcode may read from or write to memory. |
| bool opcodeMayReadOrWriteFromMemory() const; |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override; |
| |
| /// Returns true if the recipe only uses the first part of operand \p Op. |
| bool onlyFirstPartUsed(const VPValue *Op) const override; |
| |
| /// Returns true if this VPInstruction produces a scalar value from a vector, |
| /// e.g. by performing a reduction or extracting a lane. |
| bool isVectorToScalar() const; |
| |
| /// Returns true if this VPInstruction's operands are single scalars and the |
| /// result is also a single scalar. |
| bool isSingleScalar() const; |
| |
| /// Returns the symbolic name assigned to the VPInstruction. |
| StringRef getName() const { return Name; } |
| }; |
| |
| /// A specialization of VPInstruction augmenting it with a dedicated result |
| /// type, to be used when the opcode and operands of the VPInstruction don't |
| /// directly determine the result type. Note that there is no separate VPDef ID |
| /// for VPInstructionWithType; it shares the same ID as VPInstruction and is |
| /// distinguished purely by the opcode. |
| class VPInstructionWithType : public VPInstruction { |
| /// Scalar result type produced by the recipe. |
| Type *ResultTy; |
| |
| public: |
| VPInstructionWithType(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| Type *ResultTy, DebugLoc DL, const Twine &Name = "") |
| : VPInstruction(Opcode, Operands, DL, Name), ResultTy(ResultTy) {} |
| VPInstructionWithType(unsigned Opcode, |
| std::initializer_list<VPValue *> Operands, |
| Type *ResultTy, FastMathFlags FMFs, DebugLoc DL = {}, |
| const Twine &Name = "") |
| : VPInstruction(Opcode, Operands, FMFs, DL, Name), ResultTy(ResultTy) {} |
| |
| static inline bool classof(const VPRecipeBase *R) { |
| // VPInstructionWithType are VPInstructions with specific opcodes requiring |
| // type information. |
| if (R->isScalarCast()) |
| return true; |
| auto *VPI = dyn_cast<VPInstruction>(R); |
| return VPI && VPI->getOpcode() == VPInstruction::WideIVStep; |
| } |
| |
| static inline bool classof(const VPUser *R) { |
| return isa<VPInstructionWithType>(cast<VPRecipeBase>(R)); |
| } |
| |
| VPInstruction *clone() override { |
| SmallVector<VPValue *, 2> Operands(operands()); |
| auto *New = new VPInstructionWithType( |
| getOpcode(), Operands, getResultType(), getDebugLoc(), getName()); |
| New->setUnderlyingValue(getUnderlyingValue()); |
| return New; |
| } |
| |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPInstruction. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| Type *getResultType() const { return ResultTy; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe to wrap on original IR instruction not to be modified during |
| /// execution, except for PHIs. PHIs are modeled via the VPIRPhi subclass. |
| /// Expect PHIs, VPIRInstructions cannot have any operands. |
| class VPIRInstruction : public VPRecipeBase { |
| Instruction &I; |
| |
| protected: |
| /// VPIRInstruction::create() should be used to create VPIRInstructions, as |
| /// subclasses may need to be created, e.g. VPIRPhi. |
| VPIRInstruction(Instruction &I) |
| : VPRecipeBase(VPDef::VPIRInstructionSC, ArrayRef<VPValue *>()), I(I) {} |
| |
| public: |
| ~VPIRInstruction() override = default; |
| |
| /// Create a new VPIRPhi for \p \I, if it is a PHINode, otherwise create a |
| /// VPIRInstruction. |
| static VPIRInstruction *create(Instruction &I); |
| |
| VP_CLASSOF_IMPL(VPDef::VPIRInstructionSC) |
| |
| VPIRInstruction *clone() override { |
| auto *R = create(I); |
| for (auto *Op : operands()) |
| R->addOperand(Op); |
| return R; |
| } |
| |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPIRInstruction. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| Instruction &getInstruction() const { return I; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| bool onlyFirstPartUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Update the recipes first operand to the last lane of the operand using \p |
| /// Builder. Must only be used for VPIRInstructions with at least one operand |
| /// wrapping a PHINode. |
| void extractLastLaneOfFirstOperand(VPBuilder &Builder); |
| }; |
| |
| /// An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use |
| /// cast/dyn_cast/isa and execute() implementation. A single VPValue operand is |
| /// allowed, and it is used to add a new incoming value for the single |
| /// predecessor VPBB. |
| struct VPIRPhi : public VPIRInstruction { |
| VPIRPhi(PHINode &PN) : VPIRInstruction(PN) {} |
| |
| static inline bool classof(const VPRecipeBase *U) { |
| auto *R = dyn_cast<VPIRInstruction>(U); |
| return R && isa<PHINode>(R->getInstruction()); |
| } |
| |
| PHINode &getIRPhi() { return cast<PHINode>(getInstruction()); } |
| |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// Helper to manage IR metadata for recipes. It filters out metadata that |
| /// cannot be propagated. |
| class VPIRMetadata { |
| SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| |
| protected: |
| VPIRMetadata() {} |
| VPIRMetadata(Instruction &I) { getMetadataToPropagate(&I, Metadata); } |
| |
| public: |
| /// Add all metadata to \p I. |
| void applyMetadata(Instruction &I) const; |
| }; |
| |
| /// VPWidenRecipe is a recipe for producing a widened instruction using the |
| /// opcode and operands of the recipe. This recipe covers most of the |
| /// traditional vectorization cases where each recipe transforms into a |
| /// vectorized version of itself. |
| class VPWidenRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| unsigned Opcode; |
| |
| protected: |
| VPWidenRecipe(unsigned VPDefOpcode, Instruction &I, |
| ArrayRef<VPValue *> Operands) |
| : VPRecipeWithIRFlags(VPDefOpcode, Operands, I), VPIRMetadata(I), |
| Opcode(I.getOpcode()) {} |
| |
| public: |
| VPWidenRecipe(Instruction &I, ArrayRef<VPValue *> Operands) |
| : VPWidenRecipe(VPDef::VPWidenSC, I, Operands) {} |
| |
| ~VPWidenRecipe() override = default; |
| |
| VPWidenRecipe *clone() override { |
| auto *R = new VPWidenRecipe(*getUnderlyingInstr(), operands()); |
| R->transferFlags(*this); |
| return R; |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenSC) |
| |
| /// Produce a widened instruction using the opcode and operands of the recipe, |
| /// processing State.VF elements. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| unsigned getOpcode() const { return Opcode; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// VPWidenCastRecipe is a recipe to create vector cast instructions. |
| class VPWidenCastRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| /// Cast instruction opcode. |
| Instruction::CastOps Opcode; |
| |
| /// Result type for the cast. |
| Type *ResultTy; |
| |
| public: |
| VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, |
| CastInst &UI) |
| : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), VPIRMetadata(UI), |
| Opcode(Opcode), ResultTy(ResultTy) { |
| assert(UI.getOpcode() == Opcode && |
| "opcode of underlying cast doesn't match"); |
| } |
| |
| VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy) |
| : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), VPIRMetadata(), |
| Opcode(Opcode), ResultTy(ResultTy) {} |
| |
| ~VPWidenCastRecipe() override = default; |
| |
| VPWidenCastRecipe *clone() override { |
| if (auto *UV = getUnderlyingValue()) |
| return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy, |
| *cast<CastInst>(UV)); |
| |
| return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenCastSC) |
| |
| /// Produce widened copies of the cast. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenCastRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| Instruction::CastOps getOpcode() const { return Opcode; } |
| |
| /// Returns the result type of the cast. |
| Type *getResultType() const { return ResultTy; } |
| }; |
| |
| /// A recipe for widening vector intrinsics. |
| class VPWidenIntrinsicRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| /// ID of the vector intrinsic to widen. |
| Intrinsic::ID VectorIntrinsicID; |
| |
| /// Scalar return type of the intrinsic. |
| Type *ResultTy; |
| |
| /// True if the intrinsic may read from memory. |
| bool MayReadFromMemory; |
| |
| /// True if the intrinsic may read write to memory. |
| bool MayWriteToMemory; |
| |
| /// True if the intrinsic may have side-effects. |
| bool MayHaveSideEffects; |
| |
| public: |
| VPWidenIntrinsicRecipe(CallInst &CI, Intrinsic::ID VectorIntrinsicID, |
| ArrayRef<VPValue *> CallArguments, Type *Ty, |
| DebugLoc DL = {}) |
| : VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments, CI), |
| VPIRMetadata(CI), VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty), |
| MayReadFromMemory(CI.mayReadFromMemory()), |
| MayWriteToMemory(CI.mayWriteToMemory()), |
| MayHaveSideEffects(CI.mayHaveSideEffects()) {} |
| |
| VPWidenIntrinsicRecipe(Intrinsic::ID VectorIntrinsicID, |
| ArrayRef<VPValue *> CallArguments, Type *Ty, |
| DebugLoc DL = {}) |
| : VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments, DL), |
| VPIRMetadata(), VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty) { |
| LLVMContext &Ctx = Ty->getContext(); |
| AttributeSet Attrs = Intrinsic::getFnAttributes(Ctx, VectorIntrinsicID); |
| MemoryEffects ME = Attrs.getMemoryEffects(); |
| MayReadFromMemory = !ME.onlyWritesMemory(); |
| MayWriteToMemory = !ME.onlyReadsMemory(); |
| MayHaveSideEffects = MayWriteToMemory || |
| !Attrs.hasAttribute(Attribute::NoUnwind) || |
| !Attrs.hasAttribute(Attribute::WillReturn); |
| } |
| |
| ~VPWidenIntrinsicRecipe() override = default; |
| |
| VPWidenIntrinsicRecipe *clone() override { |
| if (Value *CI = getUnderlyingValue()) |
| return new VPWidenIntrinsicRecipe(*cast<CallInst>(CI), VectorIntrinsicID, |
| {op_begin(), op_end()}, ResultTy, |
| getDebugLoc()); |
| return new VPWidenIntrinsicRecipe(VectorIntrinsicID, {op_begin(), op_end()}, |
| ResultTy, getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenIntrinsicSC) |
| |
| /// Produce a widened version of the vector intrinsic. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this vector intrinsic. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| /// Return the ID of the intrinsic. |
| Intrinsic::ID getVectorIntrinsicID() const { return VectorIntrinsicID; } |
| |
| /// Return the scalar return type of the intrinsic. |
| Type *getResultType() const { return ResultTy; } |
| |
| /// Return to name of the intrinsic as string. |
| StringRef getIntrinsicName() const; |
| |
| /// Returns true if the intrinsic may read from memory. |
| bool mayReadFromMemory() const { return MayReadFromMemory; } |
| |
| /// Returns true if the intrinsic may write to memory. |
| bool mayWriteToMemory() const { return MayWriteToMemory; } |
| |
| /// Returns true if the intrinsic may have side-effects. |
| bool mayHaveSideEffects() const { return MayHaveSideEffects; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| bool onlyFirstLaneUsed(const VPValue *Op) const override; |
| }; |
| |
| /// A recipe for widening Call instructions using library calls. |
| class VPWidenCallRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| /// Variant stores a pointer to the chosen function. There is a 1:1 mapping |
| /// between a given VF and the chosen vectorized variant, so there will be a |
| /// different VPlan for each VF with a valid variant. |
| Function *Variant; |
| |
| public: |
| VPWidenCallRecipe(Value *UV, Function *Variant, |
| ArrayRef<VPValue *> CallArguments, DebugLoc DL = {}) |
| : VPRecipeWithIRFlags(VPDef::VPWidenCallSC, CallArguments, |
| *cast<Instruction>(UV)), |
| VPIRMetadata(*cast<Instruction>(UV)), Variant(Variant) { |
| assert( |
| isa<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue()) && |
| "last operand must be the called function"); |
| } |
| |
| ~VPWidenCallRecipe() override = default; |
| |
| VPWidenCallRecipe *clone() override { |
| return new VPWidenCallRecipe(getUnderlyingValue(), Variant, |
| {op_begin(), op_end()}, getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenCallSC) |
| |
| /// Produce a widened version of the call instruction. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenCallRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| Function *getCalledScalarFunction() const { |
| return cast<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue()); |
| } |
| |
| operand_range arg_operands() { |
| return make_range(op_begin(), op_begin() + getNumOperands() - 1); |
| } |
| const_operand_range arg_operands() const { |
| return make_range(op_begin(), op_begin() + getNumOperands() - 1); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe representing a sequence of load -> update -> store as part of |
| /// a histogram operation. This means there may be aliasing between vector |
| /// lanes, which is handled by the llvm.experimental.vector.histogram family |
| /// of intrinsics. The only update operations currently supported are |
| /// 'add' and 'sub' where the other term is loop-invariant. |
| class VPHistogramRecipe : public VPRecipeBase { |
| /// Opcode of the update operation, currently either add or sub. |
| unsigned Opcode; |
| |
| public: |
| VPHistogramRecipe(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| DebugLoc DL = {}) |
| : VPRecipeBase(VPDef::VPHistogramSC, Operands, DL), Opcode(Opcode) {} |
| |
| ~VPHistogramRecipe() override = default; |
| |
| VPHistogramRecipe *clone() override { |
| return new VPHistogramRecipe(Opcode, operands(), getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPHistogramSC); |
| |
| /// Produce a vectorized histogram operation. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPHistogramRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| unsigned getOpcode() const { return Opcode; } |
| |
| /// Return the mask operand if one was provided, or a null pointer if all |
| /// lanes should be executed unconditionally. |
| VPValue *getMask() const { |
| return getNumOperands() == 3 ? getOperand(2) : nullptr; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe for widening select instructions. |
| struct VPWidenSelectRecipe : public VPRecipeWithIRFlags, public VPIRMetadata { |
| VPWidenSelectRecipe(SelectInst &I, ArrayRef<VPValue *> Operands) |
| : VPRecipeWithIRFlags(VPDef::VPWidenSelectSC, Operands, I), |
| VPIRMetadata(I) {} |
| |
| ~VPWidenSelectRecipe() override = default; |
| |
| VPWidenSelectRecipe *clone() override { |
| return new VPWidenSelectRecipe(*cast<SelectInst>(getUnderlyingInstr()), |
| operands()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC) |
| |
| /// Produce a widened version of the select instruction. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenSelectRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| VPValue *getCond() const { |
| return getOperand(0); |
| } |
| |
| bool isInvariantCond() const { |
| return getCond()->isDefinedOutsideLoopRegions(); |
| } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return Op == getCond() && isInvariantCond(); |
| } |
| }; |
| |
| /// A recipe for handling GEP instructions. |
| class VPWidenGEPRecipe : public VPRecipeWithIRFlags { |
| bool isPointerLoopInvariant() const { |
| return getOperand(0)->isDefinedOutsideLoopRegions(); |
| } |
| |
| bool isIndexLoopInvariant(unsigned I) const { |
| return getOperand(I + 1)->isDefinedOutsideLoopRegions(); |
| } |
| |
| bool areAllOperandsInvariant() const { |
| return all_of(operands(), [](VPValue *Op) { |
| return Op->isDefinedOutsideLoopRegions(); |
| }); |
| } |
| |
| public: |
| VPWidenGEPRecipe(GetElementPtrInst *GEP, ArrayRef<VPValue *> Operands) |
| : VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) { |
| SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| (void)Metadata; |
| getMetadataToPropagate(GEP, Metadata); |
| assert(Metadata.empty() && "unexpected metadata on GEP"); |
| } |
| |
| ~VPWidenGEPRecipe() override = default; |
| |
| VPWidenGEPRecipe *clone() override { |
| return new VPWidenGEPRecipe(cast<GetElementPtrInst>(getUnderlyingInstr()), |
| operands()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC) |
| |
| /// Generate the gep nodes. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenGEPRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return Op == getOperand(0) && isPointerLoopInvariant(); |
| } |
| }; |
| |
| /// A recipe to compute a pointer to the last element of each part of a widened |
| /// memory access for widened memory accesses of IndexedTy. Used for |
| /// VPWidenMemoryRecipes that are reversed. |
| class VPVectorEndPointerRecipe : public VPRecipeWithIRFlags, |
| public VPUnrollPartAccessor<2> { |
| Type *IndexedTy; |
| |
| public: |
| VPVectorEndPointerRecipe(VPValue *Ptr, VPValue *VF, Type *IndexedTy, |
| GEPNoWrapFlags GEPFlags, DebugLoc DL) |
| : VPRecipeWithIRFlags(VPDef::VPVectorEndPointerSC, |
| ArrayRef<VPValue *>({Ptr, VF}), GEPFlags, DL), |
| IndexedTy(IndexedTy) {} |
| |
| VP_CLASSOF_IMPL(VPDef::VPVectorEndPointerSC) |
| |
| VPValue *getVFValue() { return getOperand(1); } |
| const VPValue *getVFValue() const { return getOperand(1); } |
| |
| void execute(VPTransformState &State) override; |
| |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Return the cost of this VPVectorPointerRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| /// Returns true if the recipe only uses the first part of operand \p Op. |
| bool onlyFirstPartUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| assert(getNumOperands() <= 2 && "must have at most two operands"); |
| return true; |
| } |
| |
| VPVectorEndPointerRecipe *clone() override { |
| return new VPVectorEndPointerRecipe(getOperand(0), getVFValue(), IndexedTy, |
| getGEPNoWrapFlags(), getDebugLoc()); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe to compute the pointers for widened memory accesses of IndexTy. |
| class VPVectorPointerRecipe : public VPRecipeWithIRFlags, |
| public VPUnrollPartAccessor<1> { |
| Type *IndexedTy; |
| |
| public: |
| VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, GEPNoWrapFlags GEPFlags, |
| DebugLoc DL) |
| : VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr), |
| GEPFlags, DL), |
| IndexedTy(IndexedTy) {} |
| |
| VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC) |
| |
| void execute(VPTransformState &State) override; |
| |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Returns true if the recipe only uses the first part of operand \p Op. |
| bool onlyFirstPartUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| assert(getNumOperands() <= 2 && "must have at most two operands"); |
| return true; |
| } |
| |
| VPVectorPointerRecipe *clone() override { |
| return new VPVectorPointerRecipe(getOperand(0), IndexedTy, |
| getGEPNoWrapFlags(), getDebugLoc()); |
| } |
| |
| /// Return the cost of this VPHeaderPHIRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A pure virtual base class for all recipes modeling header phis, including |
| /// phis for first order recurrences, pointer inductions and reductions. The |
| /// start value is the first operand of the recipe and the incoming value from |
| /// the backedge is the second operand. |
| /// |
| /// Inductions are modeled using the following sub-classes: |
| /// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop, |
| /// starting at a specified value (zero for the main vector loop, the resume |
| /// value for the epilogue vector loop) and stepping by 1. The induction |
| /// controls exiting of the vector loop by comparing against the vector trip |
| /// count. Produces a single scalar PHI for the induction value per |
| /// iteration. |
| /// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and |
| /// floating point inductions with arbitrary start and step values. Produces |
| /// a vector PHI per-part. |
| /// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding |
| /// value of an IV with different start and step values. Produces a single |
| /// scalar value per iteration |
| /// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a |
| /// canonical or derived induction. |
| /// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a |
| /// pointer induction. Produces either a vector PHI per-part or scalar values |
| /// per-lane based on the canonical induction. |
| class VPHeaderPHIRecipe : public VPSingleDefRecipe { |
| protected: |
| VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr, |
| VPValue *Start, DebugLoc DL = {}) |
| : VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>({Start}), UnderlyingInstr, DL) { |
| } |
| |
| public: |
| ~VPHeaderPHIRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *B) { |
| return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC && |
| B->getVPDefID() <= VPDef::VPLastHeaderPHISC; |
| } |
| static inline bool classof(const VPValue *V) { |
| auto *B = V->getDefiningRecipe(); |
| return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC && |
| B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC; |
| } |
| |
| /// Generate the phi nodes. |
| void execute(VPTransformState &State) override = 0; |
| |
| /// Return the cost of this header phi recipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override = 0; |
| #endif |
| |
| /// Returns the start value of the phi, if one is set. |
| VPValue *getStartValue() { |
| return getNumOperands() == 0 ? nullptr : getOperand(0); |
| } |
| VPValue *getStartValue() const { |
| return getNumOperands() == 0 ? nullptr : getOperand(0); |
| } |
| |
| /// Update the start value of the recipe. |
| void setStartValue(VPValue *V) { setOperand(0, V); } |
| |
| /// Returns the incoming value from the loop backedge. |
| virtual VPValue *getBackedgeValue() { |
| return getOperand(1); |
| } |
| |
| /// Returns the backedge value as a recipe. The backedge value is guaranteed |
| /// to be a recipe. |
| virtual VPRecipeBase &getBackedgeRecipe() { |
| return *getBackedgeValue()->getDefiningRecipe(); |
| } |
| }; |
| |
| /// Base class for widened induction (VPWidenIntOrFpInductionRecipe and |
| /// VPWidenPointerInductionRecipe), providing shared functionality, including |
| /// retrieving the step value, induction descriptor and original phi node. |
| class VPWidenInductionRecipe : public VPHeaderPHIRecipe { |
| const InductionDescriptor &IndDesc; |
| |
| public: |
| VPWidenInductionRecipe(unsigned char Kind, PHINode *IV, VPValue *Start, |
| VPValue *Step, const InductionDescriptor &IndDesc, |
| DebugLoc DL) |
| : VPHeaderPHIRecipe(Kind, IV, Start, DL), IndDesc(IndDesc) { |
| addOperand(Step); |
| } |
| |
| static inline bool classof(const VPRecipeBase *R) { |
| return R->getVPDefID() == VPDef::VPWidenIntOrFpInductionSC || |
| R->getVPDefID() == VPDef::VPWidenPointerInductionSC; |
| } |
| |
| static inline bool classof(const VPValue *V) { |
| auto *R = V->getDefiningRecipe(); |
| return R && classof(R); |
| } |
| |
| static inline bool classof(const VPHeaderPHIRecipe *R) { |
| return classof(static_cast<const VPRecipeBase *>(R)); |
| } |
| |
| virtual void execute(VPTransformState &State) override = 0; |
| |
| /// Returns the step value of the induction. |
| VPValue *getStepValue() { return getOperand(1); } |
| const VPValue *getStepValue() const { return getOperand(1); } |
| |
| /// Update the step value of the recipe. |
| void setStepValue(VPValue *V) { setOperand(1, V); } |
| |
| PHINode *getPHINode() const { return cast<PHINode>(getUnderlyingValue()); } |
| |
| /// Returns the induction descriptor for the recipe. |
| const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } |
| |
| VPValue *getBackedgeValue() override { |
| // TODO: All operands of base recipe must exist and be at same index in |
| // derived recipe. |
| llvm_unreachable( |
| "VPWidenIntOrFpInductionRecipe generates its own backedge value"); |
| } |
| |
| VPRecipeBase &getBackedgeRecipe() override { |
| // TODO: All operands of base recipe must exist and be at same index in |
| // derived recipe. |
| llvm_unreachable( |
| "VPWidenIntOrFpInductionRecipe generates its own backedge value"); |
| } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| // The recipe creates its own wide start value, so it only requests the |
| // first lane of the operand. |
| // TODO: Remove once creating the start value is modeled separately. |
| return Op == getStartValue() || Op == getStepValue(); |
| } |
| }; |
| |
| /// A recipe for handling phi nodes of integer and floating-point inductions, |
| /// producing their vector values. |
| class VPWidenIntOrFpInductionRecipe : public VPWidenInductionRecipe { |
| TruncInst *Trunc; |
| |
| // If this recipe is unrolled it will have 2 additional operands. |
| bool isUnrolled() const { return getNumOperands() == 5; } |
| |
| public: |
| VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, |
| VPValue *VF, const InductionDescriptor &IndDesc, |
| DebugLoc DL) |
| : VPWidenInductionRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start, |
| Step, IndDesc, DL), |
| Trunc(nullptr) { |
| addOperand(VF); |
| } |
| |
| VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, |
| VPValue *VF, const InductionDescriptor &IndDesc, |
| TruncInst *Trunc, DebugLoc DL) |
| : VPWidenInductionRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start, |
| Step, IndDesc, DL), |
| Trunc(Trunc) { |
| addOperand(VF); |
| SmallVector<std::pair<unsigned, MDNode *>> Metadata; |
| (void)Metadata; |
| if (Trunc) |
| getMetadataToPropagate(Trunc, Metadata); |
| assert(Metadata.empty() && "unexpected metadata on Trunc"); |
| } |
| |
| ~VPWidenIntOrFpInductionRecipe() override = default; |
| |
| VPWidenIntOrFpInductionRecipe *clone() override { |
| return new VPWidenIntOrFpInductionRecipe( |
| getPHINode(), getStartValue(), getStepValue(), getVFValue(), |
| getInductionDescriptor(), Trunc, getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC) |
| |
| /// Generate the vectorized and scalarized versions of the phi node as |
| /// needed by their users. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| VPValue *getVFValue() { return getOperand(2); } |
| const VPValue *getVFValue() const { return getOperand(2); } |
| |
| VPValue *getSplatVFValue() { |
| // If the recipe has been unrolled return the VPValue for the induction |
| // increment. |
| return isUnrolled() ? getOperand(getNumOperands() - 2) : nullptr; |
| } |
| |
| /// Returns the first defined value as TruncInst, if it is one or nullptr |
| /// otherwise. |
| TruncInst *getTruncInst() { return Trunc; } |
| const TruncInst *getTruncInst() const { return Trunc; } |
| |
| /// Returns true if the induction is canonical, i.e. starting at 0 and |
| /// incremented by UF * VF (= the original IV is incremented by 1) and has the |
| /// same type as the canonical induction. |
| bool isCanonical() const; |
| |
| /// Returns the scalar type of the induction. |
| Type *getScalarType() const { |
| return Trunc ? Trunc->getType() : getPHINode()->getType(); |
| } |
| |
| /// Returns the VPValue representing the value of this induction at |
| /// the last unrolled part, if it exists. Returns itself if unrolling did not |
| /// take place. |
| VPValue *getLastUnrolledPartOperand() { |
| return isUnrolled() ? getOperand(getNumOperands() - 1) : this; |
| } |
| }; |
| |
| class VPWidenPointerInductionRecipe : public VPWidenInductionRecipe, |
| public VPUnrollPartAccessor<3> { |
| bool IsScalarAfterVectorization; |
| |
| public: |
| /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p |
| /// Start. |
| VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step, |
| const InductionDescriptor &IndDesc, |
| bool IsScalarAfterVectorization, DebugLoc DL) |
| : VPWidenInductionRecipe(VPDef::VPWidenPointerInductionSC, Phi, Start, |
| Step, IndDesc, DL), |
| IsScalarAfterVectorization(IsScalarAfterVectorization) {} |
| |
| ~VPWidenPointerInductionRecipe() override = default; |
| |
| VPWidenPointerInductionRecipe *clone() override { |
| return new VPWidenPointerInductionRecipe( |
| cast<PHINode>(getUnderlyingInstr()), getOperand(0), getOperand(1), |
| getInductionDescriptor(), IsScalarAfterVectorization, getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC) |
| |
| /// Generate vector values for the pointer induction. |
| void execute(VPTransformState &State) override; |
| |
| /// Returns true if only scalar values will be generated. |
| bool onlyScalarsGenerated(bool IsScalable); |
| |
| /// Returns the VPValue representing the value of this induction at |
| /// the first unrolled part, if it exists. Returns itself if unrolling did not |
| /// take place. |
| VPValue *getFirstUnrolledPartOperand() { |
| return getUnrollPart(*this) == 0 ? this : getOperand(2); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe for widened phis. Incoming values are operands of the recipe and |
| /// their operand index corresponds to the incoming predecessor block. If the |
| /// recipe is placed in an entry block to a (non-replicate) region, it must have |
| /// exactly 2 incoming values, the first from the predecessor of the region and |
| /// the second from the exiting block of the region. |
| class VPWidenPHIRecipe : public VPSingleDefRecipe { |
| /// Name to use for the generated IR instruction for the widened phi. |
| std::string Name; |
| |
| public: |
| /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start and |
| /// debug location \p DL. |
| VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr, DebugLoc DL = {}, |
| const Twine &Name = "") |
| : VPSingleDefRecipe(VPDef::VPWidenPHISC, ArrayRef<VPValue *>(), Phi, DL), |
| Name(Name.str()) { |
| if (Start) |
| addOperand(Start); |
| } |
| |
| VPWidenPHIRecipe *clone() override { |
| llvm_unreachable("cloning not implemented yet"); |
| } |
| |
| ~VPWidenPHIRecipe() override = default; |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenPHISC) |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns the \p I th incoming VPBasicBlock. |
| VPBasicBlock *getIncomingBlock(unsigned I); |
| |
| /// Returns the \p I th incoming VPValue. |
| VPValue *getIncomingValue(unsigned I) { return getOperand(I); } |
| }; |
| |
| /// A recipe for handling first-order recurrence phis. The start value is the |
| /// first operand of the recipe and the incoming value from the backedge is the |
| /// second operand. |
| struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { |
| VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) |
| : VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {} |
| |
| VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC) |
| |
| VPFirstOrderRecurrencePHIRecipe *clone() override { |
| return new VPFirstOrderRecurrencePHIRecipe( |
| cast<PHINode>(getUnderlyingInstr()), *getOperand(0)); |
| } |
| |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this first-order recurrence phi recipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return Op == getStartValue(); |
| } |
| }; |
| |
| /// A recipe for handling reduction phis. The start value is the first operand |
| /// of the recipe and the incoming value from the backedge is the second |
| /// operand. |
| class VPReductionPHIRecipe : public VPHeaderPHIRecipe, |
| public VPUnrollPartAccessor<2> { |
| /// Descriptor for the reduction. |
| const RecurrenceDescriptor &RdxDesc; |
| |
| /// The phi is part of an in-loop reduction. |
| bool IsInLoop; |
| |
| /// The phi is part of an ordered reduction. Requires IsInLoop to be true. |
| bool IsOrdered; |
| |
| /// When expanding the reduction PHI, the plan's VF element count is divided |
| /// by this factor to form the reduction phi's VF. |
| unsigned VFScaleFactor = 1; |
| |
| public: |
| /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p |
| /// RdxDesc. |
| VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, |
| VPValue &Start, bool IsInLoop = false, |
| bool IsOrdered = false, unsigned VFScaleFactor = 1) |
| : VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start), |
| RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered), |
| VFScaleFactor(VFScaleFactor) { |
| assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); |
| } |
| |
| ~VPReductionPHIRecipe() override = default; |
| |
| VPReductionPHIRecipe *clone() override { |
| auto *R = new VPReductionPHIRecipe(cast<PHINode>(getUnderlyingInstr()), |
| RdxDesc, *getOperand(0), IsInLoop, |
| IsOrdered, VFScaleFactor); |
| R->addOperand(getBackedgeValue()); |
| return R; |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPReductionPHISC) |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| /// Get the factor that the VF of this recipe's output should be scaled by. |
| unsigned getVFScaleFactor() const { return VFScaleFactor; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| const RecurrenceDescriptor &getRecurrenceDescriptor() const { |
| return RdxDesc; |
| } |
| |
| /// Returns true, if the phi is part of an ordered reduction. |
| bool isOrdered() const { return IsOrdered; } |
| |
| /// Returns true, if the phi is part of an in-loop reduction. |
| bool isInLoop() const { return IsInLoop; } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return Op == getStartValue(); |
| } |
| }; |
| |
| /// A recipe for vectorizing a phi-node as a sequence of mask-based select |
| /// instructions. |
| class VPBlendRecipe : public VPSingleDefRecipe { |
| public: |
| /// The blend operation is a User of the incoming values and of their |
| /// respective masks, ordered [I0, M0, I1, M1, I2, M2, ...]. Note that M0 can |
| /// be omitted (implied by passing an odd number of operands) in which case |
| /// all other incoming values are merged into it. |
| VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) |
| : VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) { |
| assert(Operands.size() > 0 && "Expected at least one operand!"); |
| } |
| |
| VPBlendRecipe *clone() override { |
| SmallVector<VPValue *> Ops(operands()); |
| return new VPBlendRecipe(cast<PHINode>(getUnderlyingValue()), Ops); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPBlendSC) |
| |
| /// A normalized blend is one that has an odd number of operands, whereby the |
| /// first operand does not have an associated mask. |
| bool isNormalized() const { return getNumOperands() % 2; } |
| |
| /// Return the number of incoming values, taking into account when normalized |
| /// the first incoming value will have no mask. |
| unsigned getNumIncomingValues() const { |
| return (getNumOperands() + isNormalized()) / 2; |
| } |
| |
| /// Return incoming value number \p Idx. |
| VPValue *getIncomingValue(unsigned Idx) const { |
| return Idx == 0 ? getOperand(0) : getOperand(Idx * 2 - isNormalized()); |
| } |
| |
| /// Return mask number \p Idx. |
| VPValue *getMask(unsigned Idx) const { |
| assert((Idx > 0 || !isNormalized()) && "First index has no mask!"); |
| return Idx == 0 ? getOperand(1) : getOperand(Idx * 2 + !isNormalized()); |
| } |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenMemoryRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| // Recursing through Blend recipes only, must terminate at header phi's the |
| // latest. |
| return all_of(users(), |
| [this](VPUser *U) { return U->onlyFirstLaneUsed(this); }); |
| } |
| }; |
| |
| /// VPInterleaveRecipe is a recipe for transforming an interleave group of load |
| /// or stores into one wide load/store and shuffles. The first operand of a |
| /// VPInterleave recipe is the address, followed by the stored values, followed |
| /// by an optional mask. |
| class VPInterleaveRecipe : public VPRecipeBase { |
| const InterleaveGroup<Instruction> *IG; |
| |
| /// Indicates if the interleave group is in a conditional block and requires a |
| /// mask. |
| bool HasMask = false; |
| |
| /// Indicates if gaps between members of the group need to be masked out or if |
| /// unusued gaps can be loaded speculatively. |
| bool NeedsMaskForGaps = false; |
| |
| public: |
| VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, |
| ArrayRef<VPValue *> StoredValues, VPValue *Mask, |
| bool NeedsMaskForGaps, DebugLoc DL) |
| : VPRecipeBase(VPDef::VPInterleaveSC, {Addr}, |
| DL), |
| |
| IG(IG), NeedsMaskForGaps(NeedsMaskForGaps) { |
| for (unsigned i = 0; i < IG->getFactor(); ++i) |
| if (Instruction *I = IG->getMember(i)) { |
| if (I->getType()->isVoidTy()) |
| continue; |
| new VPValue(I, this); |
| } |
| |
| for (auto *SV : StoredValues) |
| addOperand(SV); |
| if (Mask) { |
| HasMask = true; |
| addOperand(Mask); |
| } |
| } |
| ~VPInterleaveRecipe() override = default; |
| |
| VPInterleaveRecipe *clone() override { |
| return new VPInterleaveRecipe(IG, getAddr(), getStoredValues(), getMask(), |
| NeedsMaskForGaps, getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPInterleaveSC) |
| |
| /// Return the address accessed by this recipe. |
| VPValue *getAddr() const { |
| return getOperand(0); // Address is the 1st, mandatory operand. |
| } |
| |
| /// Return the mask used by this recipe. Note that a full mask is represented |
| /// by a nullptr. |
| VPValue *getMask() const { |
| // Mask is optional and therefore the last, currently 2nd operand. |
| return HasMask ? getOperand(getNumOperands() - 1) : nullptr; |
| } |
| |
| /// Return the VPValues stored by this interleave group. If it is a load |
| /// interleave group, return an empty ArrayRef. |
| ArrayRef<VPValue *> getStoredValues() const { |
| // The first operand is the address, followed by the stored values, followed |
| // by an optional mask. |
| return ArrayRef<VPValue *>(op_begin(), getNumOperands()) |
| .slice(1, getNumStoreOperands()); |
| } |
| |
| /// Generate the wide load or store, and shuffles. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPInterleaveRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } |
| |
| /// Returns the number of stored operands of this interleave group. Returns 0 |
| /// for load interleave groups. |
| unsigned getNumStoreOperands() const { |
| return getNumOperands() - (HasMask ? 2 : 1); |
| } |
| |
| /// The recipe only uses the first lane of the address. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op); |
| } |
| |
| Instruction *getInsertPos() const { return IG->getInsertPos(); } |
| }; |
| |
| /// A recipe to represent inloop reduction operations, performing a reduction on |
| /// a vector operand into a scalar value, and adding the result to a chain. |
| /// The Operands are {ChainOp, VecOp, [Condition]}. |
| class VPReductionRecipe : public VPRecipeWithIRFlags { |
| /// The recurrence kind for the reduction in question. |
| RecurKind RdxKind; |
| bool IsOrdered; |
| /// Whether the reduction is conditional. |
| bool IsConditional = false; |
| |
| protected: |
| VPReductionRecipe(const unsigned char SC, RecurKind RdxKind, |
| FastMathFlags FMFs, Instruction *I, |
| ArrayRef<VPValue *> Operands, VPValue *CondOp, |
| bool IsOrdered, DebugLoc DL) |
| : VPRecipeWithIRFlags(SC, Operands, FMFs, DL), RdxKind(RdxKind), |
| IsOrdered(IsOrdered) { |
| if (CondOp) { |
| IsConditional = true; |
| addOperand(CondOp); |
| } |
| setUnderlyingValue(I); |
| } |
| |
| public: |
| VPReductionRecipe(RecurKind RdxKind, FastMathFlags FMFs, Instruction *I, |
| VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, |
| bool IsOrdered, DebugLoc DL = {}) |
| : VPReductionRecipe(VPDef::VPReductionSC, RdxKind, FMFs, I, |
| ArrayRef<VPValue *>({ChainOp, VecOp}), CondOp, |
| IsOrdered, DL) {} |
| |
| ~VPReductionRecipe() override = default; |
| |
| VPReductionRecipe *clone() override { |
| return new VPReductionRecipe(RdxKind, getFastMathFlags(), |
| getUnderlyingInstr(), getChainOp(), getVecOp(), |
| getCondOp(), IsOrdered, getDebugLoc()); |
| } |
| |
| static inline bool classof(const VPRecipeBase *R) { |
| return R->getVPDefID() == VPRecipeBase::VPReductionSC || |
| R->getVPDefID() == VPRecipeBase::VPReductionEVLSC; |
| } |
| |
| static inline bool classof(const VPUser *U) { |
| auto *R = dyn_cast<VPRecipeBase>(U); |
| return R && classof(R); |
| } |
| |
| /// Generate the reduction in the loop. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of VPReductionRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Return the recurrence kind for the in-loop reduction. |
| RecurKind getRecurrenceKind() const { return RdxKind; } |
| /// Return true if the in-loop reduction is ordered. |
| bool isOrdered() const { return IsOrdered; }; |
| /// Return true if the in-loop reduction is conditional. |
| bool isConditional() const { return IsConditional; }; |
| /// The VPValue of the scalar Chain being accumulated. |
| VPValue *getChainOp() const { return getOperand(0); } |
| /// The VPValue of the vector value to be reduced. |
| VPValue *getVecOp() const { return getOperand(1); } |
| /// The VPValue of the condition for the block. |
| VPValue *getCondOp() const { |
| return isConditional() ? getOperand(getNumOperands() - 1) : nullptr; |
| } |
| }; |
| |
| /// A recipe for forming partial reductions. In the loop, an accumulator and |
| /// vector operand are added together and passed to the next iteration as the |
| /// next accumulator. After the loop body, the accumulator is reduced to a |
| /// scalar value. |
| class VPPartialReductionRecipe : public VPReductionRecipe { |
| unsigned Opcode; |
| |
| /// The divisor by which the VF of this recipe's output should be divided |
| /// during execution. |
| unsigned VFScaleFactor; |
| |
| public: |
| VPPartialReductionRecipe(Instruction *ReductionInst, VPValue *Op0, |
| VPValue *Op1, VPValue *Cond, unsigned VFScaleFactor) |
| : VPPartialReductionRecipe(ReductionInst->getOpcode(), Op0, Op1, Cond, |
| VFScaleFactor, ReductionInst) {} |
| VPPartialReductionRecipe(unsigned Opcode, VPValue *Op0, VPValue *Op1, |
| VPValue *Cond, unsigned ScaleFactor, |
| Instruction *ReductionInst = nullptr) |
| : VPReductionRecipe(VPDef::VPPartialReductionSC, RecurKind::Add, |
| FastMathFlags(), ReductionInst, |
| ArrayRef<VPValue *>({Op0, Op1}), Cond, false, {}), |
| Opcode(Opcode), VFScaleFactor(ScaleFactor) { |
| [[maybe_unused]] auto *AccumulatorRecipe = |
| getChainOp()->getDefiningRecipe(); |
| assert((isa<VPReductionPHIRecipe>(AccumulatorRecipe) || |
| isa<VPPartialReductionRecipe>(AccumulatorRecipe)) && |
| "Unexpected operand order for partial reduction recipe"); |
| } |
| ~VPPartialReductionRecipe() override = default; |
| |
| VPPartialReductionRecipe *clone() override { |
| return new VPPartialReductionRecipe(Opcode, getOperand(0), getOperand(1), |
| getCondOp(), VFScaleFactor, |
| getUnderlyingInstr()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPPartialReductionSC) |
| |
| /// Generate the reduction in the loop. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPPartialReductionRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| /// Get the binary op's opcode. |
| unsigned getOpcode() const { return Opcode; } |
| |
| /// Get the factor that the VF of this recipe's output should be scaled by. |
| unsigned getVFScaleFactor() const { return VFScaleFactor; } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe to represent inloop reduction operations with vector-predication |
| /// intrinsics, performing a reduction on a vector operand with the explicit |
| /// vector length (EVL) into a scalar value, and adding the result to a chain. |
| /// The Operands are {ChainOp, VecOp, EVL, [Condition]}. |
| class VPReductionEVLRecipe : public VPReductionRecipe { |
| public: |
| VPReductionEVLRecipe(VPReductionRecipe &R, VPValue &EVL, VPValue *CondOp, |
| DebugLoc DL = {}) |
| : VPReductionRecipe( |
| VPDef::VPReductionEVLSC, R.getRecurrenceKind(), |
| R.getFastMathFlags(), |
| cast_or_null<Instruction>(R.getUnderlyingValue()), |
| ArrayRef<VPValue *>({R.getChainOp(), R.getVecOp(), &EVL}), CondOp, |
| R.isOrdered(), DL) {} |
| |
| ~VPReductionEVLRecipe() override = default; |
| |
| VPReductionEVLRecipe *clone() override { |
| llvm_unreachable("cloning not implemented yet"); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPReductionEVLSC) |
| |
| /// Generate the reduction in the loop |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// The VPValue of the explicit vector length. |
| VPValue *getEVL() const { return getOperand(2); } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return Op == getEVL(); |
| } |
| }; |
| |
| /// VPReplicateRecipe replicates a given instruction producing multiple scalar |
| /// copies of the original scalar type, one per lane, instead of producing a |
| /// single copy of widened type for all lanes. If the instruction is known to be |
| /// uniform only one copy, per lane zero, will be generated. |
| class VPReplicateRecipe : public VPRecipeWithIRFlags { |
| /// Indicator if only a single replica per lane is needed. |
| bool IsUniform; |
| |
| /// Indicator if the replicas are also predicated. |
| bool IsPredicated; |
| |
| public: |
| VPReplicateRecipe(Instruction *I, ArrayRef<VPValue *> Operands, |
| bool IsUniform, VPValue *Mask = nullptr) |
| : VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I), |
| IsUniform(IsUniform), IsPredicated(Mask) { |
| if (Mask) |
| addOperand(Mask); |
| } |
| |
| ~VPReplicateRecipe() override = default; |
| |
| VPReplicateRecipe *clone() override { |
| auto *Copy = |
| new VPReplicateRecipe(getUnderlyingInstr(), operands(), IsUniform, |
| isPredicated() ? getMask() : nullptr); |
| Copy->transferFlags(*this); |
| return Copy; |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPReplicateSC) |
| |
| /// Generate replicas of the desired Ingredient. Replicas will be generated |
| /// for all parts and lanes unless a specific part and lane are specified in |
| /// the \p State. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPReplicateRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| bool isUniform() const { return IsUniform; } |
| |
| bool isPredicated() const { return IsPredicated; } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return isUniform(); |
| } |
| |
| /// Returns true if the recipe uses scalars of operand \p Op. |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Returns true if the recipe is used by a widened recipe via an intervening |
| /// VPPredInstPHIRecipe. In this case, the scalar values should also be packed |
| /// in a vector. |
| bool shouldPack() const; |
| |
| /// Return the mask of a predicated VPReplicateRecipe. |
| VPValue *getMask() { |
| assert(isPredicated() && "Trying to get the mask of a unpredicated recipe"); |
| return getOperand(getNumOperands() - 1); |
| } |
| |
| unsigned getOpcode() const { return getUnderlyingInstr()->getOpcode(); } |
| }; |
| |
| /// A recipe for generating conditional branches on the bits of a mask. |
| class VPBranchOnMaskRecipe : public VPRecipeBase { |
| public: |
| VPBranchOnMaskRecipe(VPValue *BlockInMask, DebugLoc DL) |
| : VPRecipeBase(VPDef::VPBranchOnMaskSC, {BlockInMask}, DL) {} |
| |
| VPBranchOnMaskRecipe *clone() override { |
| return new VPBranchOnMaskRecipe(getOperand(0), getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC) |
| |
| /// Generate the extraction of the appropriate bit from the block mask and the |
| /// conditional branch. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPBranchOnMaskRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override { |
| O << Indent << "BRANCH-ON-MASK "; |
| printOperands(O, SlotTracker); |
| } |
| #endif |
| |
| /// Returns true if the recipe uses scalars of operand \p Op. |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when |
| /// control converges back from a Branch-on-Mask. The phi nodes are needed in |
| /// order to merge values that are set under such a branch and feed their uses. |
| /// The phi nodes can be scalar or vector depending on the users of the value. |
| /// This recipe works in concert with VPBranchOnMaskRecipe. |
| class VPPredInstPHIRecipe : public VPSingleDefRecipe { |
| public: |
| /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi |
| /// nodes after merging back from a Branch-on-Mask. |
| VPPredInstPHIRecipe(VPValue *PredV, DebugLoc DL) |
| : VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV, DL) {} |
| ~VPPredInstPHIRecipe() override = default; |
| |
| VPPredInstPHIRecipe *clone() override { |
| return new VPPredInstPHIRecipe(getOperand(0), getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC) |
| |
| /// Generates phi nodes for live-outs (from a replicate region) as needed to |
| /// retain SSA form. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPPredInstPHIRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe uses scalars of operand \p Op. |
| bool usesScalars(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// A common base class for widening memory operations. An optional mask can be |
| /// provided as the last operand. |
| class VPWidenMemoryRecipe : public VPRecipeBase, public VPIRMetadata { |
| protected: |
| Instruction &Ingredient; |
| |
| /// Whether the accessed addresses are consecutive. |
| bool Consecutive; |
| |
| /// Whether the consecutive accessed addresses are in reverse order. |
| bool Reverse; |
| |
| /// Whether the memory access is masked. |
| bool IsMasked = false; |
| |
| void setMask(VPValue *Mask) { |
| assert(!IsMasked && "cannot re-set mask"); |
| if (!Mask) |
| return; |
| addOperand(Mask); |
| IsMasked = true; |
| } |
| |
| VPWidenMemoryRecipe(const char unsigned SC, Instruction &I, |
| std::initializer_list<VPValue *> Operands, |
| bool Consecutive, bool Reverse, DebugLoc DL) |
| : VPRecipeBase(SC, Operands, DL), VPIRMetadata(I), Ingredient(I), |
| Consecutive(Consecutive), Reverse(Reverse) { |
| assert((Consecutive || !Reverse) && "Reverse implies consecutive"); |
| } |
| |
| public: |
| VPWidenMemoryRecipe *clone() override { |
| llvm_unreachable("cloning not supported"); |
| } |
| |
| static inline bool classof(const VPRecipeBase *R) { |
| return R->getVPDefID() == VPRecipeBase::VPWidenLoadSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenStoreSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenLoadEVLSC || |
| R->getVPDefID() == VPRecipeBase::VPWidenStoreEVLSC; |
| } |
| |
| static inline bool classof(const VPUser *U) { |
| auto *R = dyn_cast<VPRecipeBase>(U); |
| return R && classof(R); |
| } |
| |
| /// Return whether the loaded-from / stored-to addresses are consecutive. |
| bool isConsecutive() const { return Consecutive; } |
| |
| /// Return whether the consecutive loaded/stored addresses are in reverse |
| /// order. |
| bool isReverse() const { return Reverse; } |
| |
| /// Return the address accessed by this recipe. |
| VPValue *getAddr() const { return getOperand(0); } |
| |
| /// Returns true if the recipe is masked. |
| bool isMasked() const { return IsMasked; } |
| |
| /// Return the mask used by this recipe. Note that a full mask is represented |
| /// by a nullptr. |
| VPValue *getMask() const { |
| // Mask is optional and therefore the last operand. |
| return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; |
| } |
| |
| /// Generate the wide load/store. |
| void execute(VPTransformState &State) override { |
| llvm_unreachable("VPWidenMemoryRecipe should not be instantiated."); |
| } |
| |
| /// Return the cost of this VPWidenMemoryRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| Instruction &getIngredient() const { return Ingredient; } |
| }; |
| |
| /// A recipe for widening load operations, using the address to load from and an |
| /// optional mask. |
| struct VPWidenLoadRecipe final : public VPWidenMemoryRecipe, public VPValue { |
| VPWidenLoadRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, |
| bool Consecutive, bool Reverse, DebugLoc DL) |
| : VPWidenMemoryRecipe(VPDef::VPWidenLoadSC, Load, {Addr}, Consecutive, |
| Reverse, DL), |
| VPValue(this, &Load) { |
| setMask(Mask); |
| } |
| |
| VPWidenLoadRecipe *clone() override { |
| return new VPWidenLoadRecipe(cast<LoadInst>(Ingredient), getAddr(), |
| getMask(), Consecutive, Reverse, |
| getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenLoadSC); |
| |
| /// Generate a wide load or gather. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| // Widened, consecutive loads operations only demand the first lane of |
| // their address. |
| return Op == getAddr() && isConsecutive(); |
| } |
| }; |
| |
| /// A recipe for widening load operations with vector-predication intrinsics, |
| /// using the address to load from, the explicit vector length and an optional |
| /// mask. |
| struct VPWidenLoadEVLRecipe final : public VPWidenMemoryRecipe, public VPValue { |
| VPWidenLoadEVLRecipe(VPWidenLoadRecipe &L, VPValue &EVL, VPValue *Mask) |
| : VPWidenMemoryRecipe(VPDef::VPWidenLoadEVLSC, L.getIngredient(), |
| {L.getAddr(), &EVL}, L.isConsecutive(), |
| L.isReverse(), L.getDebugLoc()), |
| VPValue(this, &getIngredient()) { |
| setMask(Mask); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenLoadEVLSC) |
| |
| /// Return the EVL operand. |
| VPValue *getEVL() const { return getOperand(1); } |
| |
| /// Generate the wide load or gather. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenLoadEVLRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| // Widened loads only demand the first lane of EVL and consecutive loads |
| // only demand the first lane of their address. |
| return Op == getEVL() || (Op == getAddr() && isConsecutive()); |
| } |
| }; |
| |
| /// A recipe for widening store operations, using the stored value, the address |
| /// to store to and an optional mask. |
| struct VPWidenStoreRecipe final : public VPWidenMemoryRecipe { |
| VPWidenStoreRecipe(StoreInst &Store, VPValue *Addr, VPValue *StoredVal, |
| VPValue *Mask, bool Consecutive, bool Reverse, DebugLoc DL) |
| : VPWidenMemoryRecipe(VPDef::VPWidenStoreSC, Store, {Addr, StoredVal}, |
| Consecutive, Reverse, DL) { |
| setMask(Mask); |
| } |
| |
| VPWidenStoreRecipe *clone() override { |
| return new VPWidenStoreRecipe(cast<StoreInst>(Ingredient), getAddr(), |
| getStoredValue(), getMask(), Consecutive, |
| Reverse, getDebugLoc()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenStoreSC); |
| |
| /// Return the value stored by this recipe. |
| VPValue *getStoredValue() const { return getOperand(1); } |
| |
| /// Generate a wide store or scatter. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| // Widened, consecutive stores only demand the first lane of their address, |
| // unless the same operand is also stored. |
| return Op == getAddr() && isConsecutive() && Op != getStoredValue(); |
| } |
| }; |
| |
| /// A recipe for widening store operations with vector-predication intrinsics, |
| /// using the value to store, the address to store to, the explicit vector |
| /// length and an optional mask. |
| struct VPWidenStoreEVLRecipe final : public VPWidenMemoryRecipe { |
| VPWidenStoreEVLRecipe(VPWidenStoreRecipe &S, VPValue &EVL, VPValue *Mask) |
| : VPWidenMemoryRecipe(VPDef::VPWidenStoreEVLSC, S.getIngredient(), |
| {S.getAddr(), S.getStoredValue(), &EVL}, |
| S.isConsecutive(), S.isReverse(), S.getDebugLoc()) { |
| setMask(Mask); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenStoreEVLSC) |
| |
| /// Return the address accessed by this recipe. |
| VPValue *getStoredValue() const { return getOperand(1); } |
| |
| /// Return the EVL operand. |
| VPValue *getEVL() const { return getOperand(2); } |
| |
| /// Generate the wide store or scatter. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenStoreEVLRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| if (Op == getEVL()) { |
| assert(getStoredValue() != Op && "unexpected store of EVL"); |
| return true; |
| } |
| // Widened, consecutive memory operations only demand the first lane of |
| // their address, unless the same operand is also stored. That latter can |
| // happen with opaque pointers. |
| return Op == getAddr() && isConsecutive() && Op != getStoredValue(); |
| } |
| }; |
| |
| /// Recipe to expand a SCEV expression. |
| class VPExpandSCEVRecipe : public VPSingleDefRecipe { |
| const SCEV *Expr; |
| ScalarEvolution &SE; |
| |
| public: |
| VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE) |
| : VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {} |
| |
| ~VPExpandSCEVRecipe() override = default; |
| |
| VPExpandSCEVRecipe *clone() override { |
| return new VPExpandSCEVRecipe(Expr, SE); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC) |
| |
| /// Generate a canonical vector induction variable of the vector loop, with |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPExpandSCEVRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| const SCEV *getSCEV() const { return Expr; } |
| }; |
| |
| /// Canonical scalar induction phi of the vector loop. Starting at the specified |
| /// start value (either 0 or the resume value when vectorizing the epilogue |
| /// loop). VPWidenCanonicalIVRecipe represents the vector version of the |
| /// canonical induction variable. |
| class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { |
| public: |
| VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) |
| : VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {} |
| |
| ~VPCanonicalIVPHIRecipe() override = default; |
| |
| VPCanonicalIVPHIRecipe *clone() override { |
| auto *R = new VPCanonicalIVPHIRecipe(getOperand(0), getDebugLoc()); |
| R->addOperand(getBackedgeValue()); |
| return R; |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC) |
| |
| void execute(VPTransformState &State) override { |
| llvm_unreachable("cannot execute this recipe, should be replaced by a " |
| "scalar phi recipe"); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| /// Returns the scalar type of the induction. |
| Type *getScalarType() const { |
| return getStartValue()->getLiveInIRValue()->getType(); |
| } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Returns true if the recipe only uses the first part of operand \p Op. |
| bool onlyFirstPartUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| /// Return the cost of this VPCanonicalIVPHIRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // For now, match the behavior of the legacy cost model. |
| return 0; |
| } |
| }; |
| |
| /// A recipe for generating the active lane mask for the vector loop that is |
| /// used to predicate the vector operations. |
| /// TODO: It would be good to use the existing VPWidenPHIRecipe instead and |
| /// remove VPActiveLaneMaskPHIRecipe. |
| class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe { |
| public: |
| VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL) |
| : VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask, |
| DL) {} |
| |
| ~VPActiveLaneMaskPHIRecipe() override = default; |
| |
| VPActiveLaneMaskPHIRecipe *clone() override { |
| auto *R = new VPActiveLaneMaskPHIRecipe(getOperand(0), getDebugLoc()); |
| if (getNumOperands() == 2) |
| R->addOperand(getOperand(1)); |
| return R; |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC) |
| |
| /// Generate the active lane mask phi of the vector loop. |
| void execute(VPTransformState &State) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe for generating the phi node for the current index of elements, |
| /// adjusted in accordance with EVL value. It starts at the start value of the |
| /// canonical induction and gets incremented by EVL in each iteration of the |
| /// vector loop. |
| class VPEVLBasedIVPHIRecipe : public VPHeaderPHIRecipe { |
| public: |
| VPEVLBasedIVPHIRecipe(VPValue *StartIV, DebugLoc DL) |
| : VPHeaderPHIRecipe(VPDef::VPEVLBasedIVPHISC, nullptr, StartIV, DL) {} |
| |
| ~VPEVLBasedIVPHIRecipe() override = default; |
| |
| VPEVLBasedIVPHIRecipe *clone() override { |
| llvm_unreachable("cloning not implemented yet"); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPEVLBasedIVPHISC) |
| |
| void execute(VPTransformState &State) override { |
| llvm_unreachable("cannot execute this recipe, should be replaced by a " |
| "scalar phi recipe"); |
| } |
| |
| /// Return the cost of this VPEVLBasedIVPHIRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // For now, match the behavior of the legacy cost model. |
| return 0; |
| } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A Recipe for widening the canonical induction variable of the vector loop. |
| class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe, |
| public VPUnrollPartAccessor<1> { |
| public: |
| VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) |
| : VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {} |
| |
| ~VPWidenCanonicalIVRecipe() override = default; |
| |
| VPWidenCanonicalIVRecipe *clone() override { |
| return new VPWidenCanonicalIVRecipe( |
| cast<VPCanonicalIVPHIRecipe>(getOperand(0))); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC) |
| |
| /// Generate a canonical vector induction variable of the vector loop, with |
| /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and |
| /// step = <VF*UF, VF*UF, ..., VF*UF>. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPWidenCanonicalIVPHIRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| }; |
| |
| /// A recipe for converting the input value \p IV value to the corresponding |
| /// value of an IV with different start and step values, using Start + IV * |
| /// Step. |
| class VPDerivedIVRecipe : public VPSingleDefRecipe { |
| /// Kind of the induction. |
| const InductionDescriptor::InductionKind Kind; |
| /// If not nullptr, the floating point induction binary operator. Must be set |
| /// for floating point inductions. |
| const FPMathOperator *FPBinOp; |
| |
| /// Name to use for the generated IR instruction for the derived IV. |
| std::string Name; |
| |
| public: |
| VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start, |
| VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, |
| const Twine &Name = "") |
| : VPDerivedIVRecipe( |
| IndDesc.getKind(), |
| dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp()), |
| Start, CanonicalIV, Step, Name) {} |
| |
| VPDerivedIVRecipe(InductionDescriptor::InductionKind Kind, |
| const FPMathOperator *FPBinOp, VPValue *Start, VPValue *IV, |
| VPValue *Step, const Twine &Name = "") |
| : VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, IV, Step}), Kind(Kind), |
| FPBinOp(FPBinOp), Name(Name.str()) {} |
| |
| ~VPDerivedIVRecipe() override = default; |
| |
| VPDerivedIVRecipe *clone() override { |
| return new VPDerivedIVRecipe(Kind, FPBinOp, getStartValue(), getOperand(1), |
| getStepValue()); |
| } |
| |
| VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC) |
| |
| /// Generate the transformed value of the induction at offset StartValue (1. |
| /// operand) + IV (2. operand) * StepValue (3, operand). |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPDerivedIVRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| Type *getScalarType() const { |
| return getStartValue()->getLiveInIRValue()->getType(); |
| } |
| |
| VPValue *getStartValue() const { return getOperand(0); } |
| VPValue *getStepValue() const { return getOperand(2); } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// A recipe for handling phi nodes of integer and floating-point inductions, |
| /// producing their scalar values. |
| class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags, |
| public VPUnrollPartAccessor<3> { |
| Instruction::BinaryOps InductionOpcode; |
| |
| public: |
| VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step, VPValue *VF, |
| Instruction::BinaryOps Opcode, FastMathFlags FMFs, |
| DebugLoc DL) |
| : VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC, |
| ArrayRef<VPValue *>({IV, Step, VF}), FMFs, DL), |
| InductionOpcode(Opcode) {} |
| |
| VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV, |
| VPValue *Step, VPValue *VF, DebugLoc DL = {}) |
| : VPScalarIVStepsRecipe( |
| IV, Step, VF, IndDesc.getInductionOpcode(), |
| dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp()) |
| ? IndDesc.getInductionBinOp()->getFastMathFlags() |
| : FastMathFlags(), |
| DL) {} |
| |
| ~VPScalarIVStepsRecipe() override = default; |
| |
| VPScalarIVStepsRecipe *clone() override { |
| return new VPScalarIVStepsRecipe( |
| getOperand(0), getOperand(1), getOperand(2), InductionOpcode, |
| hasFastMathFlags() ? getFastMathFlags() : FastMathFlags(), |
| getDebugLoc()); |
| } |
| |
| /// Return true if this VPScalarIVStepsRecipe corresponds to part 0. Note that |
| /// this is only accurate after the VPlan has been unrolled. |
| bool isPart0() { return getUnrollPart(*this) == 0; } |
| |
| VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC) |
| |
| /// Generate the scalarized versions of the phi node as needed by their users. |
| void execute(VPTransformState &State) override; |
| |
| /// Return the cost of this VPScalarIVStepsRecipe. |
| InstructionCost computeCost(ElementCount VF, |
| VPCostContext &Ctx) const override { |
| // TODO: Compute accurate cost after retiring the legacy cost model. |
| return 0; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| #endif |
| |
| VPValue *getStepValue() const { return getOperand(1); } |
| |
| /// Returns true if the recipe only uses the first lane of operand \p Op. |
| bool onlyFirstLaneUsed(const VPValue *Op) const override { |
| assert(is_contained(operands(), Op) && |
| "Op must be an operand of the recipe"); |
| return true; |
| } |
| }; |
| |
| /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It |
| /// holds a sequence of zero or more VPRecipe's each representing a sequence of |
| /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. |
| class VPBasicBlock : public VPBlockBase { |
| friend class VPlan; |
| |
| /// Use VPlan::createVPBasicBlock to create VPBasicBlocks. |
| VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) |
| : VPBlockBase(VPBasicBlockSC, Name.str()) { |
| if (Recipe) |
| appendRecipe(Recipe); |
| } |
| |
| public: |
| using RecipeListTy = iplist<VPRecipeBase>; |
| |
| protected: |
| /// The VPRecipes held in the order of output instructions to generate. |
| RecipeListTy Recipes; |
| |
| VPBasicBlock(const unsigned char BlockSC, const Twine &Name = "") |
| : VPBlockBase(BlockSC, Name.str()) {} |
| |
| public: |
| ~VPBasicBlock() override { |
| while (!Recipes.empty()) |
| Recipes.pop_back(); |
| } |
| |
| /// Instruction iterators... |
| using iterator = RecipeListTy::iterator; |
| using const_iterator = RecipeListTy::const_iterator; |
| using reverse_iterator = RecipeListTy::reverse_iterator; |
| using const_reverse_iterator = RecipeListTy::const_reverse_iterator; |
| |
| //===--------------------------------------------------------------------===// |
| /// Recipe iterator methods |
| /// |
| inline iterator begin() { return Recipes.begin(); } |
| inline const_iterator begin() const { return Recipes.begin(); } |
| inline iterator end() { return Recipes.end(); } |
| inline const_iterator end() const { return Recipes.end(); } |
| |
| inline reverse_iterator rbegin() { return Recipes.rbegin(); } |
| inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } |
| inline reverse_iterator rend() { return Recipes.rend(); } |
| inline const_reverse_iterator rend() const { return Recipes.rend(); } |
| |
| inline size_t size() const { return Recipes.size(); } |
| inline bool empty() const { return Recipes.empty(); } |
| inline const VPRecipeBase &front() const { return Recipes.front(); } |
| inline VPRecipeBase &front() { return Recipes.front(); } |
| inline const VPRecipeBase &back() const { return Recipes.back(); } |
| inline VPRecipeBase &back() { return Recipes.back(); } |
| |
| /// Returns a reference to the list of recipes. |
| RecipeListTy &getRecipeList() { return Recipes; } |
| |
| /// Returns a pointer to a member of the recipe list. |
| static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { |
| return &VPBasicBlock::Recipes; |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPBlockBase *V) { |
| return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC || |
| V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC; |
| } |
| |
| void insert(VPRecipeBase *Recipe, iterator InsertPt) { |
| assert(Recipe && "No recipe to append."); |
| assert(!Recipe->Parent && "Recipe already in VPlan"); |
| Recipe->Parent = this; |
| Recipes.insert(InsertPt, Recipe); |
| } |
| |
| /// Augment the existing recipes of a VPBasicBlock with an additional |
| /// \p Recipe as the last recipe. |
| void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPBasicBlock, thereby "executing" the VPlan. |
| void execute(VPTransformState *State) override; |
| |
| /// Return the cost of this VPBasicBlock. |
| InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override; |
| |
| /// Return the position of the first non-phi node recipe in the block. |
| iterator getFirstNonPhi(); |
| |
| /// Returns an iterator range over the PHI-like recipes in the block. |
| iterator_range<iterator> phis() { |
| return make_range(begin(), getFirstNonPhi()); |
| } |
| |
| /// Split current block at \p SplitAt by inserting a new block between the |
| /// current block and its successors and moving all recipes starting at |
| /// SplitAt to the new block. Returns the new block. |
| VPBasicBlock *splitAt(iterator SplitAt); |
| |
| VPRegionBlock *getEnclosingLoopRegion(); |
| const VPRegionBlock *getEnclosingLoopRegion() const; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p |
| /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. |
| /// |
| /// Note that the numbering is applied to the whole VPlan, so printing |
| /// individual blocks is consistent with the whole VPlan printing. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| #endif |
| |
| /// If the block has multiple successors, return the branch recipe terminating |
| /// the block. If there are no or only a single successor, return nullptr; |
| VPRecipeBase *getTerminator(); |
| const VPRecipeBase *getTerminator() const; |
| |
| /// Returns true if the block is exiting it's parent region. |
| bool isExiting() const; |
| |
| /// Clone the current block and it's recipes, without updating the operands of |
| /// the cloned recipes. |
| VPBasicBlock *clone() override; |
| |
| protected: |
| /// Execute the recipes in the IR basic block \p BB. |
| void executeRecipes(VPTransformState *State, BasicBlock *BB); |
| |
| /// Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block |
| /// generated for this VPBB. |
| void connectToPredecessors(VPTransformState &State); |
| |
| private: |
| /// Create an IR BasicBlock to hold the output instructions generated by this |
| /// VPBasicBlock, and return it. Update the CFGState accordingly. |
| BasicBlock *createEmptyBasicBlock(VPTransformState &State); |
| }; |
| |
| /// A special type of VPBasicBlock that wraps an existing IR basic block. |
| /// Recipes of the block get added before the first non-phi instruction in the |
| /// wrapped block. |
| /// Note: At the moment, VPIRBasicBlock can only be used to wrap VPlan's |
| /// preheader block. |
| class VPIRBasicBlock : public VPBasicBlock { |
| friend class VPlan; |
| |
| BasicBlock *IRBB; |
| |
| /// Use VPlan::createVPIRBasicBlock to create VPIRBasicBlocks. |
| VPIRBasicBlock(BasicBlock *IRBB) |
| : VPBasicBlock(VPIRBasicBlockSC, |
| (Twine("ir-bb<") + IRBB->getName() + Twine(">")).str()), |
| IRBB(IRBB) {} |
| |
| public: |
| ~VPIRBasicBlock() override {} |
| |
| static inline bool classof(const VPBlockBase *V) { |
| return V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC; |
| } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPBasicBlock, thereby "executing" the VPlan. |
| void execute(VPTransformState *State) override; |
| |
| VPIRBasicBlock *clone() override; |
| |
| BasicBlock *getIRBasicBlock() const { return IRBB; } |
| }; |
| |
| /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks |
| /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG. |
| /// A VPRegionBlock may indicate that its contents are to be replicated several |
| /// times. This is designed to support predicated scalarization, in which a |
| /// scalar if-then code structure needs to be generated VF * UF times. Having |
| /// this replication indicator helps to keep a single model for multiple |
| /// candidate VF's. The actual replication takes place only once the desired VF |
| /// and UF have been determined. |
| class VPRegionBlock : public VPBlockBase { |
| friend class VPlan; |
| |
| /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. |
| VPBlockBase *Entry; |
| |
| /// Hold the Single Exiting block of the SESE region modelled by the |
| /// VPRegionBlock. |
| VPBlockBase *Exiting; |
| |
| /// An indicator whether this region is to generate multiple replicated |
| /// instances of output IR corresponding to its VPBlockBases. |
| bool IsReplicator; |
| |
| /// Use VPlan::createVPRegionBlock to create VPRegionBlocks. |
| VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, |
| const std::string &Name = "", bool IsReplicator = false) |
| : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting), |
| IsReplicator(IsReplicator) { |
| assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); |
| assert(Exiting->getSuccessors().empty() && "Exit block has successors."); |
| Entry->setParent(this); |
| Exiting->setParent(this); |
| } |
| VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) |
| : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr), |
| IsReplicator(IsReplicator) {} |
| |
| public: |
| ~VPRegionBlock() override {} |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPBlockBase *V) { |
| return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; |
| } |
| |
| const VPBlockBase *getEntry() const { return Entry; } |
| VPBlockBase *getEntry() { return Entry; } |
| |
| /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p |
| /// EntryBlock must have no predecessors. |
| void setEntry(VPBlockBase *EntryBlock) { |
| assert(EntryBlock->getPredecessors().empty() && |
| "Entry block cannot have predecessors."); |
| Entry = EntryBlock; |
| EntryBlock->setParent(this); |
| } |
| |
| const VPBlockBase *getExiting() const { return Exiting; } |
| VPBlockBase *getExiting() { return Exiting; } |
| |
| /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p |
| /// ExitingBlock must have no successors. |
| void setExiting(VPBlockBase *ExitingBlock) { |
| assert(ExitingBlock->getSuccessors().empty() && |
| "Exit block cannot have successors."); |
| Exiting = ExitingBlock; |
| ExitingBlock->setParent(this); |
| } |
| |
| /// Returns the pre-header VPBasicBlock of the loop region. |
| VPBasicBlock *getPreheaderVPBB() { |
| assert(!isReplicator() && "should only get pre-header of loop regions"); |
| return getSinglePredecessor()->getExitingBasicBlock(); |
| } |
| |
| /// An indicator whether this region is to generate multiple replicated |
| /// instances of output IR corresponding to its VPBlockBases. |
| bool isReplicator() const { return IsReplicator; } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPRegionBlock, thereby "executing" the VPlan. |
| void execute(VPTransformState *State) override; |
| |
| // Return the cost of this region. |
| InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with |
| /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using |
| /// consequtive numbers. |
| /// |
| /// Note that the numbering is applied to the whole VPlan, so printing |
| /// individual regions is consistent with the whole VPlan printing. |
| void print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const override; |
| using VPBlockBase::print; // Get the print(raw_stream &O) version. |
| #endif |
| |
| /// Clone all blocks in the single-entry single-exit region of the block and |
| /// their recipes without updating the operands of the cloned recipes. |
| VPRegionBlock *clone() override; |
| }; |
| |
| /// VPlan models a candidate for vectorization, encoding various decisions take |
| /// to produce efficient output IR, including which branches, basic-blocks and |
| /// output IR instructions to generate, and their cost. VPlan holds a |
| /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry |
| /// VPBasicBlock. |
| class VPlan { |
| friend class VPlanPrinter; |
| friend class VPSlotTracker; |
| |
| /// VPBasicBlock corresponding to the original preheader. Used to place |
| /// VPExpandSCEV recipes for expressions used during skeleton creation and the |
| /// rest of VPlan execution. |
| /// When this VPlan is used for the epilogue vector loop, the entry will be |
| /// replaced by a new entry block created during skeleton creation. |
| VPBasicBlock *Entry; |
| |
| /// VPIRBasicBlock wrapping the header of the original scalar loop. |
| VPIRBasicBlock *ScalarHeader; |
| |
| /// Immutable list of VPIRBasicBlocks wrapping the exit blocks of the original |
| /// scalar loop. Note that some exit blocks may be unreachable at the moment, |
| /// e.g. if the scalar epilogue always executes. |
| SmallVector<VPIRBasicBlock *, 2> ExitBlocks; |
| |
| /// Holds the VFs applicable to this VPlan. |
| SmallSetVector<ElementCount, 2> VFs; |
| |
| /// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for |
| /// any UF. |
| SmallSetVector<unsigned, 2> UFs; |
| |
| /// Holds the name of the VPlan, for printing. |
| std::string Name; |
| |
| /// Represents the trip count of the original loop, for folding |
| /// the tail. |
| VPValue *TripCount = nullptr; |
| |
| /// Represents the backedge taken count of the original loop, for folding |
| /// the tail. It equals TripCount - 1. |
| VPValue *BackedgeTakenCount = nullptr; |
| |
| /// Represents the vector trip count. |
| VPValue VectorTripCount; |
| |
| /// Represents the vectorization factor of the loop. |
| VPValue VF; |
| |
| /// Represents the loop-invariant VF * UF of the vector loop region. |
| VPValue VFxUF; |
| |
| /// Holds a mapping between Values and their corresponding VPValue inside |
| /// VPlan. |
| Value2VPValueTy Value2VPValue; |
| |
| /// Contains all the external definitions created for this VPlan. External |
| /// definitions are VPValues that hold a pointer to their underlying IR. |
| SmallVector<VPValue *, 16> VPLiveIns; |
| |
| /// Mapping from SCEVs to the VPValues representing their expansions. |
| /// NOTE: This mapping is temporary and will be removed once all users have |
| /// been modeled in VPlan directly. |
| DenseMap<const SCEV *, VPValue *> SCEVToExpansion; |
| |
| /// Blocks allocated and owned by the VPlan. They will be deleted once the |
| /// VPlan is destroyed. |
| SmallVector<VPBlockBase *> CreatedBlocks; |
| |
| /// Construct a VPlan with \p Entry to the plan and with \p ScalarHeader |
| /// wrapping the original header of the scalar loop. |
| VPlan(VPBasicBlock *Entry, VPIRBasicBlock *ScalarHeader) |
| : Entry(Entry), ScalarHeader(ScalarHeader) { |
| Entry->setPlan(this); |
| assert(ScalarHeader->getNumSuccessors() == 0 && |
| "scalar header must be a leaf node"); |
| } |
| |
| public: |
| /// Construct a VPlan for \p L. This will create VPIRBasicBlocks wrapping the |
| /// original preheader and scalar header of \p L, to be used as entry and |
| /// scalar header blocks of the new VPlan. |
| VPlan(Loop *L); |
| |
| /// Construct a VPlan with a new VPBasicBlock as entry, a VPIRBasicBlock |
| /// wrapping \p ScalarHeaderBB and a trip count of \p TC. |
| VPlan(BasicBlock *ScalarHeaderBB, VPValue *TC) { |
| setEntry(createVPBasicBlock("preheader")); |
| ScalarHeader = createVPIRBasicBlock(ScalarHeaderBB); |
| TripCount = TC; |
| } |
| |
| ~VPlan(); |
| |
| void setEntry(VPBasicBlock *VPBB) { |
| Entry = VPBB; |
| VPBB->setPlan(this); |
| } |
| |
| /// Prepare the plan for execution, setting up the required live-in values. |
| void prepareToExecute(Value *TripCount, Value *VectorTripCount, |
| VPTransformState &State); |
| |
| /// Generate the IR code for this VPlan. |
| void execute(VPTransformState *State); |
| |
| /// Return the cost of this plan. |
| InstructionCost cost(ElementCount VF, VPCostContext &Ctx); |
| |
| VPBasicBlock *getEntry() { return Entry; } |
| const VPBasicBlock *getEntry() const { return Entry; } |
| |
| /// Returns the preheader of the vector loop region, if one exists, or null |
| /// otherwise. |
| VPBasicBlock *getVectorPreheader() { |
| VPRegionBlock *VectorRegion = getVectorLoopRegion(); |
| return VectorRegion |
| ? cast<VPBasicBlock>(VectorRegion->getSinglePredecessor()) |
| : nullptr; |
| } |
| |
| /// Returns the VPRegionBlock of the vector loop. |
| VPRegionBlock *getVectorLoopRegion(); |
| const VPRegionBlock *getVectorLoopRegion() const; |
| |
| /// Returns the 'middle' block of the plan, that is the block that selects |
| /// whether to execute the scalar tail loop or the exit block from the loop |
| /// latch. If there is an early exit from the vector loop, the middle block |
| /// conceptully has the early exit block as third successor, split accross 2 |
| /// VPBBs. In that case, the second VPBB selects whether to execute the scalar |
| /// tail loop or the exit bock. If the scalar tail loop or exit block are |
| /// known to always execute, the middle block may branch directly to that |
| /// block. This function cannot be called once the vector loop region has been |
| /// removed. |
| VPBasicBlock *getMiddleBlock() { |
| VPRegionBlock *LoopRegion = getVectorLoopRegion(); |
| assert( |
| LoopRegion && |
| "cannot call the function after vector loop region has been removed"); |
| auto *RegionSucc = cast<VPBasicBlock>(LoopRegion->getSingleSuccessor()); |
| if (RegionSucc->getSingleSuccessor() || |
| is_contained(RegionSucc->getSuccessors(), getScalarPreheader())) |
| return RegionSucc; |
| // There is an early exit. The successor of RegionSucc is the middle block. |
| return cast<VPBasicBlock>(RegionSucc->getSuccessors()[1]); |
| } |
| |
| const VPBasicBlock *getMiddleBlock() const { |
| return const_cast<VPlan *>(this)->getMiddleBlock(); |
| } |
| |
| /// Return the VPBasicBlock for the preheader of the scalar loop. |
| VPBasicBlock *getScalarPreheader() const { |
| return cast<VPBasicBlock>(getScalarHeader()->getSinglePredecessor()); |
| } |
| |
| /// Return the VPIRBasicBlock wrapping the header of the scalar loop. |
| VPIRBasicBlock *getScalarHeader() const { return ScalarHeader; } |
| |
| /// Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of |
| /// the original scalar loop. |
| ArrayRef<VPIRBasicBlock *> getExitBlocks() const { return ExitBlocks; } |
| |
| /// Return the VPIRBasicBlock corresponding to \p IRBB. \p IRBB must be an |
| /// exit block. |
| VPIRBasicBlock *getExitBlock(BasicBlock *IRBB) const; |
| |
| /// Returns true if \p VPBB is an exit block. |
| bool isExitBlock(VPBlockBase *VPBB); |
| |
| /// The trip count of the original loop. |
| VPValue *getTripCount() const { |
| assert(TripCount && "trip count needs to be set before accessing it"); |
| return TripCount; |
| } |
| |
| /// Set the trip count assuming it is currently null; if it is not - use |
| /// resetTripCount(). |
| void setTripCount(VPValue *NewTripCount) { |
| assert(!TripCount && NewTripCount && "TripCount should not be set yet."); |
| TripCount = NewTripCount; |
| } |
| |
| /// Resets the trip count for the VPlan. The caller must make sure all uses of |
| /// the original trip count have been replaced. |
| void resetTripCount(VPValue *NewTripCount) { |
| assert(TripCount && NewTripCount && TripCount->getNumUsers() == 0 && |
| "TripCount must be set when resetting"); |
| TripCount = NewTripCount; |
| } |
| |
| /// The backedge taken count of the original loop. |
| VPValue *getOrCreateBackedgeTakenCount() { |
| if (!BackedgeTakenCount) |
| BackedgeTakenCount = new VPValue(); |
| return BackedgeTakenCount; |
| } |
| |
| /// The vector trip count. |
| VPValue &getVectorTripCount() { return VectorTripCount; } |
| |
| /// Returns the VF of the vector loop region. |
| VPValue &getVF() { return VF; }; |
| |
| /// Returns VF * UF of the vector loop region. |
| VPValue &getVFxUF() { return VFxUF; } |
| |
| void addVF(ElementCount VF) { VFs.insert(VF); } |
| |
| void setVF(ElementCount VF) { |
| assert(hasVF(VF) && "Cannot set VF not already in plan"); |
| VFs.clear(); |
| VFs.insert(VF); |
| } |
| |
| bool hasVF(ElementCount VF) const { return VFs.count(VF); } |
| bool hasScalableVF() const { |
| return any_of(VFs, [](ElementCount VF) { return VF.isScalable(); }); |
| } |
| |
| /// Returns an iterator range over all VFs of the plan. |
| iterator_range<SmallSetVector<ElementCount, 2>::iterator> |
| vectorFactors() const { |
| return {VFs.begin(), VFs.end()}; |
| } |
| |
| bool hasScalarVFOnly() const { |
| bool HasScalarVFOnly = VFs.size() == 1 && VFs[0].isScalar(); |
| assert(HasScalarVFOnly == hasVF(ElementCount::getFixed(1)) && |
| "Plan with scalar VF should only have a single VF"); |
| return HasScalarVFOnly; |
| } |
| |
| bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); } |
| |
| unsigned getUF() const { |
| assert(UFs.size() == 1 && "Expected a single UF"); |
| return UFs[0]; |
| } |
| |
| void setUF(unsigned UF) { |
| assert(hasUF(UF) && "Cannot set the UF not already in plan"); |
| UFs.clear(); |
| UFs.insert(UF); |
| } |
| |
| /// Returns true if the VPlan already has been unrolled, i.e. it has a single |
| /// concrete UF. |
| bool isUnrolled() const { return UFs.size() == 1; } |
| |
| /// Return a string with the name of the plan and the applicable VFs and UFs. |
| std::string getName() const; |
| |
| void setName(const Twine &newName) { Name = newName.str(); } |
| |
| /// Gets the live-in VPValue for \p V or adds a new live-in (if none exists |
| /// yet) for \p V. |
| VPValue *getOrAddLiveIn(Value *V) { |
| assert(V && "Trying to get or add the VPValue of a null Value"); |
| auto [It, Inserted] = Value2VPValue.try_emplace(V); |
| if (Inserted) { |
| VPValue *VPV = new VPValue(V); |
| VPLiveIns.push_back(VPV); |
| assert(VPV->isLiveIn() && "VPV must be a live-in."); |
| It->second = VPV; |
| } |
| |
| assert(It->second->isLiveIn() && "Only live-ins should be in mapping"); |
| return It->second; |
| } |
| |
| /// Return the live-in VPValue for \p V, if there is one or nullptr otherwise. |
| VPValue *getLiveIn(Value *V) const { return Value2VPValue.lookup(V); } |
| |
| /// Return the list of live-in VPValues available in the VPlan. |
| ArrayRef<VPValue *> getLiveIns() const { |
| assert(all_of(Value2VPValue, |
| [this](const auto &P) { |
| return is_contained(VPLiveIns, P.second); |
| }) && |
| "all VPValues in Value2VPValue must also be in VPLiveIns"); |
| return VPLiveIns; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| /// Print the live-ins of this VPlan to \p O. |
| void printLiveIns(raw_ostream &O) const; |
| |
| /// Print this VPlan to \p O. |
| void print(raw_ostream &O) const; |
| |
| /// Print this VPlan in DOT format to \p O. |
| void printDOT(raw_ostream &O) const; |
| |
| /// Dump the plan to stderr (for debugging). |
| LLVM_DUMP_METHOD void dump() const; |
| #endif |
| |
| /// Returns the canonical induction recipe of the vector loop. |
| VPCanonicalIVPHIRecipe *getCanonicalIV() { |
| VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); |
| if (EntryVPBB->empty()) { |
| // VPlan native path. |
| EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor()); |
| } |
| return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin()); |
| } |
| |
| VPValue *getSCEVExpansion(const SCEV *S) const { |
| return SCEVToExpansion.lookup(S); |
| } |
| |
| void addSCEVExpansion(const SCEV *S, VPValue *V) { |
| assert(!SCEVToExpansion.contains(S) && "SCEV already expanded"); |
| SCEVToExpansion[S] = V; |
| } |
| |
| /// Clone the current VPlan, update all VPValues of the new VPlan and cloned |
| /// recipes to refer to the clones, and return it. |
| VPlan *duplicate(); |
| |
| /// Create a new VPBasicBlock with \p Name and containing \p Recipe if |
| /// present. The returned block is owned by the VPlan and deleted once the |
| /// VPlan is destroyed. |
| VPBasicBlock *createVPBasicBlock(const Twine &Name, |
| VPRecipeBase *Recipe = nullptr) { |
| auto *VPB = new VPBasicBlock(Name, Recipe); |
| CreatedBlocks.push_back(VPB); |
| return VPB; |
| } |
| |
| /// Create a new VPRegionBlock with \p Entry, \p Exiting and \p Name. If \p |
| /// IsReplicator is true, the region is a replicate region. The returned block |
| /// is owned by the VPlan and deleted once the VPlan is destroyed. |
| VPRegionBlock *createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, |
| const std::string &Name = "", |
| bool IsReplicator = false) { |
| auto *VPB = new VPRegionBlock(Entry, Exiting, Name, IsReplicator); |
| CreatedBlocks.push_back(VPB); |
| return VPB; |
| } |
| |
| /// Create a new VPRegionBlock with \p Name and entry and exiting blocks set |
| /// to nullptr. If \p IsReplicator is true, the region is a replicate region. |
| /// The returned block is owned by the VPlan and deleted once the VPlan is |
| /// destroyed. |
| VPRegionBlock *createVPRegionBlock(const std::string &Name = "", |
| bool IsReplicator = false) { |
| auto *VPB = new VPRegionBlock(Name, IsReplicator); |
| CreatedBlocks.push_back(VPB); |
| return VPB; |
| } |
| |
| /// Create a VPIRBasicBlock wrapping \p IRBB, but do not create |
| /// VPIRInstructions wrapping the instructions in t\p IRBB. The returned |
| /// block is owned by the VPlan and deleted once the VPlan is destroyed. |
| VPIRBasicBlock *createEmptyVPIRBasicBlock(BasicBlock *IRBB); |
| |
| /// Create a VPIRBasicBlock from \p IRBB containing VPIRInstructions for all |
| /// instructions in \p IRBB, except its terminator which is managed by the |
| /// successors of the block in VPlan. The returned block is owned by the VPlan |
| /// and deleted once the VPlan is destroyed. |
| VPIRBasicBlock *createVPIRBasicBlock(BasicBlock *IRBB); |
| |
| /// Returns true if the VPlan is based on a loop with an early exit. That is |
| /// the case if the VPlan has either more than one exit block or a single exit |
| /// block with multiple predecessors (one for the exit via the latch and one |
| /// via the other early exit). |
| bool hasEarlyExit() const { |
| return ExitBlocks.size() > 1 || ExitBlocks[0]->getNumPredecessors() > 1; |
| } |
| |
| /// Returns true if the scalar tail may execute after the vector loop. Note |
| /// that this relies on unneeded branches to the scalar tail loop being |
| /// removed. |
| bool hasScalarTail() const { |
| return getScalarPreheader()->getNumPredecessors() != 0; |
| } |
| }; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { |
| Plan.print(OS); |
| return OS; |
| } |
| #endif |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |