blob: 26e5c0572f12e02cc259dd9dca9f37efcd8169a6 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements pass that inlines CIR operations regions into the parent
// function region.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "clang/CIR/Dialect/IR/CIRDialect.h"
#include "clang/CIR/Dialect/Passes.h"
#include "clang/CIR/MissingFeatures.h"
using namespace mlir;
using namespace cir;
namespace {
/// Lowers operations with the terminator trait that have a single successor.
void lowerTerminator(mlir::Operation *op, mlir::Block *dest,
mlir::PatternRewriter &rewriter) {
assert(op->hasTrait<mlir::OpTrait::IsTerminator>() && "not a terminator");
mlir::OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(op);
rewriter.replaceOpWithNewOp<cir::BrOp>(op, dest);
}
/// Walks a region while skipping operations of type `Ops`. This ensures the
/// callback is not applied to said operations and its children.
template <typename... Ops>
void walkRegionSkipping(
mlir::Region &region,
mlir::function_ref<mlir::WalkResult(mlir::Operation *)> callback) {
region.walk<mlir::WalkOrder::PreOrder>([&](mlir::Operation *op) {
if (isa<Ops...>(op))
return mlir::WalkResult::skip();
return callback(op);
});
}
struct CIRFlattenCFGPass : public CIRFlattenCFGBase<CIRFlattenCFGPass> {
CIRFlattenCFGPass() = default;
void runOnOperation() override;
};
struct CIRIfFlattening : public mlir::OpRewritePattern<cir::IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(cir::IfOp ifOp,
mlir::PatternRewriter &rewriter) const override {
mlir::OpBuilder::InsertionGuard guard(rewriter);
mlir::Location loc = ifOp.getLoc();
bool emptyElse = ifOp.getElseRegion().empty();
mlir::Block *currentBlock = rewriter.getInsertionBlock();
mlir::Block *remainingOpsBlock =
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
mlir::Block *continueBlock;
if (ifOp->getResults().empty())
continueBlock = remainingOpsBlock;
else
llvm_unreachable("NYI");
// Inline the region
mlir::Block *thenBeforeBody = &ifOp.getThenRegion().front();
mlir::Block *thenAfterBody = &ifOp.getThenRegion().back();
rewriter.inlineRegionBefore(ifOp.getThenRegion(), continueBlock);
rewriter.setInsertionPointToEnd(thenAfterBody);
if (auto thenYieldOp =
dyn_cast<cir::YieldOp>(thenAfterBody->getTerminator())) {
rewriter.replaceOpWithNewOp<cir::BrOp>(thenYieldOp, thenYieldOp.getArgs(),
continueBlock);
}
rewriter.setInsertionPointToEnd(continueBlock);
// Has else region: inline it.
mlir::Block *elseBeforeBody = nullptr;
mlir::Block *elseAfterBody = nullptr;
if (!emptyElse) {
elseBeforeBody = &ifOp.getElseRegion().front();
elseAfterBody = &ifOp.getElseRegion().back();
rewriter.inlineRegionBefore(ifOp.getElseRegion(), continueBlock);
} else {
elseBeforeBody = elseAfterBody = continueBlock;
}
rewriter.setInsertionPointToEnd(currentBlock);
rewriter.create<cir::BrCondOp>(loc, ifOp.getCondition(), thenBeforeBody,
elseBeforeBody);
if (!emptyElse) {
rewriter.setInsertionPointToEnd(elseAfterBody);
if (auto elseYieldOP =
dyn_cast<cir::YieldOp>(elseAfterBody->getTerminator())) {
rewriter.replaceOpWithNewOp<cir::BrOp>(
elseYieldOP, elseYieldOP.getArgs(), continueBlock);
}
}
rewriter.replaceOp(ifOp, continueBlock->getArguments());
return mlir::success();
}
};
class CIRScopeOpFlattening : public mlir::OpRewritePattern<cir::ScopeOp> {
public:
using OpRewritePattern<cir::ScopeOp>::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(cir::ScopeOp scopeOp,
mlir::PatternRewriter &rewriter) const override {
mlir::OpBuilder::InsertionGuard guard(rewriter);
mlir::Location loc = scopeOp.getLoc();
// Empty scope: just remove it.
// TODO: Remove this logic once CIR uses MLIR infrastructure to remove
// trivially dead operations. MLIR canonicalizer is too aggressive and we
// need to either (a) make sure all our ops model all side-effects and/or
// (b) have more options in the canonicalizer in MLIR to temper
// aggressiveness level.
if (scopeOp.isEmpty()) {
rewriter.eraseOp(scopeOp);
return mlir::success();
}
// Split the current block before the ScopeOp to create the inlining
// point.
mlir::Block *currentBlock = rewriter.getInsertionBlock();
mlir::Block *continueBlock =
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
if (scopeOp.getNumResults() > 0)
continueBlock->addArguments(scopeOp.getResultTypes(), loc);
// Inline body region.
mlir::Block *beforeBody = &scopeOp.getScopeRegion().front();
mlir::Block *afterBody = &scopeOp.getScopeRegion().back();
rewriter.inlineRegionBefore(scopeOp.getScopeRegion(), continueBlock);
// Save stack and then branch into the body of the region.
rewriter.setInsertionPointToEnd(currentBlock);
assert(!cir::MissingFeatures::stackSaveOp());
rewriter.create<cir::BrOp>(loc, mlir::ValueRange(), beforeBody);
// Replace the scopeop return with a branch that jumps out of the body.
// Stack restore before leaving the body region.
rewriter.setInsertionPointToEnd(afterBody);
if (auto yieldOp = dyn_cast<cir::YieldOp>(afterBody->getTerminator())) {
rewriter.replaceOpWithNewOp<cir::BrOp>(yieldOp, yieldOp.getArgs(),
continueBlock);
}
// Replace the op with values return from the body region.
rewriter.replaceOp(scopeOp, continueBlock->getArguments());
return mlir::success();
}
};
class CIRSwitchOpFlattening : public mlir::OpRewritePattern<cir::SwitchOp> {
public:
using OpRewritePattern<cir::SwitchOp>::OpRewritePattern;
inline void rewriteYieldOp(mlir::PatternRewriter &rewriter,
cir::YieldOp yieldOp,
mlir::Block *destination) const {
rewriter.setInsertionPoint(yieldOp);
rewriter.replaceOpWithNewOp<cir::BrOp>(yieldOp, yieldOp.getOperands(),
destination);
}
// Return the new defaultDestination block.
Block *condBrToRangeDestination(cir::SwitchOp op,
mlir::PatternRewriter &rewriter,
mlir::Block *rangeDestination,
mlir::Block *defaultDestination,
const APInt &lowerBound,
const APInt &upperBound) const {
assert(lowerBound.sle(upperBound) && "Invalid range");
mlir::Block *resBlock = rewriter.createBlock(defaultDestination);
cir::IntType sIntType = cir::IntType::get(op.getContext(), 32, true);
cir::IntType uIntType = cir::IntType::get(op.getContext(), 32, false);
cir::ConstantOp rangeLength = rewriter.create<cir::ConstantOp>(
op.getLoc(), cir::IntAttr::get(sIntType, upperBound - lowerBound));
cir::ConstantOp lowerBoundValue = rewriter.create<cir::ConstantOp>(
op.getLoc(), cir::IntAttr::get(sIntType, lowerBound));
cir::BinOp diffValue =
rewriter.create<cir::BinOp>(op.getLoc(), sIntType, cir::BinOpKind::Sub,
op.getCondition(), lowerBoundValue);
// Use unsigned comparison to check if the condition is in the range.
cir::CastOp uDiffValue = rewriter.create<cir::CastOp>(
op.getLoc(), uIntType, CastKind::integral, diffValue);
cir::CastOp uRangeLength = rewriter.create<cir::CastOp>(
op.getLoc(), uIntType, CastKind::integral, rangeLength);
cir::CmpOp cmpResult = rewriter.create<cir::CmpOp>(
op.getLoc(), cir::BoolType::get(op.getContext()), cir::CmpOpKind::le,
uDiffValue, uRangeLength);
rewriter.create<cir::BrCondOp>(op.getLoc(), cmpResult, rangeDestination,
defaultDestination);
return resBlock;
}
mlir::LogicalResult
matchAndRewrite(cir::SwitchOp op,
mlir::PatternRewriter &rewriter) const override {
llvm::SmallVector<CaseOp> cases;
op.collectCases(cases);
// Empty switch statement: just erase it.
if (cases.empty()) {
rewriter.eraseOp(op);
return mlir::success();
}
// Create exit block from the next node of cir.switch op.
mlir::Block *exitBlock = rewriter.splitBlock(
rewriter.getBlock(), op->getNextNode()->getIterator());
// We lower cir.switch op in the following process:
// 1. Inline the region from the switch op after switch op.
// 2. Traverse each cir.case op:
// a. Record the entry block, block arguments and condition for every
// case. b. Inline the case region after the case op.
// 3. Replace the empty cir.switch.op with the new cir.switchflat op by the
// recorded block and conditions.
// inline everything from switch body between the switch op and the exit
// block.
{
cir::YieldOp switchYield = nullptr;
// Clear switch operation.
for (mlir::Block &block :
llvm::make_early_inc_range(op.getBody().getBlocks()))
if (auto yieldOp = dyn_cast<cir::YieldOp>(block.getTerminator()))
switchYield = yieldOp;
assert(!op.getBody().empty());
mlir::Block *originalBlock = op->getBlock();
mlir::Block *swopBlock =
rewriter.splitBlock(originalBlock, op->getIterator());
rewriter.inlineRegionBefore(op.getBody(), exitBlock);
if (switchYield)
rewriteYieldOp(rewriter, switchYield, exitBlock);
rewriter.setInsertionPointToEnd(originalBlock);
rewriter.create<cir::BrOp>(op.getLoc(), swopBlock);
}
// Allocate required data structures (disconsider default case in
// vectors).
llvm::SmallVector<mlir::APInt, 8> caseValues;
llvm::SmallVector<mlir::Block *, 8> caseDestinations;
llvm::SmallVector<mlir::ValueRange, 8> caseOperands;
llvm::SmallVector<std::pair<APInt, APInt>> rangeValues;
llvm::SmallVector<mlir::Block *> rangeDestinations;
llvm::SmallVector<mlir::ValueRange> rangeOperands;
// Initialize default case as optional.
mlir::Block *defaultDestination = exitBlock;
mlir::ValueRange defaultOperands = exitBlock->getArguments();
// Digest the case statements values and bodies.
for (cir::CaseOp caseOp : cases) {
mlir::Region &region = caseOp.getCaseRegion();
// Found default case: save destination and operands.
switch (caseOp.getKind()) {
case cir::CaseOpKind::Default:
defaultDestination = &region.front();
defaultOperands = defaultDestination->getArguments();
break;
case cir::CaseOpKind::Range:
assert(caseOp.getValue().size() == 2 &&
"Case range should have 2 case value");
rangeValues.push_back(
{cast<cir::IntAttr>(caseOp.getValue()[0]).getValue(),
cast<cir::IntAttr>(caseOp.getValue()[1]).getValue()});
rangeDestinations.push_back(&region.front());
rangeOperands.push_back(rangeDestinations.back()->getArguments());
break;
case cir::CaseOpKind::Anyof:
case cir::CaseOpKind::Equal:
// AnyOf cases kind can have multiple values, hence the loop below.
for (const mlir::Attribute &value : caseOp.getValue()) {
caseValues.push_back(cast<cir::IntAttr>(value).getValue());
caseDestinations.push_back(&region.front());
caseOperands.push_back(caseDestinations.back()->getArguments());
}
break;
}
// Handle break statements.
walkRegionSkipping<cir::LoopOpInterface, cir::SwitchOp>(
region, [&](mlir::Operation *op) {
if (!isa<cir::BreakOp>(op))
return mlir::WalkResult::advance();
lowerTerminator(op, exitBlock, rewriter);
return mlir::WalkResult::skip();
});
// Track fallthrough in cases.
for (mlir::Block &blk : region.getBlocks()) {
if (blk.getNumSuccessors())
continue;
if (auto yieldOp = dyn_cast<cir::YieldOp>(blk.getTerminator())) {
mlir::Operation *nextOp = caseOp->getNextNode();
assert(nextOp && "caseOp is not expected to be the last op");
mlir::Block *oldBlock = nextOp->getBlock();
mlir::Block *newBlock =
rewriter.splitBlock(oldBlock, nextOp->getIterator());
rewriter.setInsertionPointToEnd(oldBlock);
rewriter.create<cir::BrOp>(nextOp->getLoc(), mlir::ValueRange(),
newBlock);
rewriteYieldOp(rewriter, yieldOp, newBlock);
}
}
mlir::Block *oldBlock = caseOp->getBlock();
mlir::Block *newBlock =
rewriter.splitBlock(oldBlock, caseOp->getIterator());
mlir::Block &entryBlock = caseOp.getCaseRegion().front();
rewriter.inlineRegionBefore(caseOp.getCaseRegion(), newBlock);
// Create a branch to the entry of the inlined region.
rewriter.setInsertionPointToEnd(oldBlock);
rewriter.create<cir::BrOp>(caseOp.getLoc(), &entryBlock);
}
// Remove all cases since we've inlined the regions.
for (cir::CaseOp caseOp : cases) {
mlir::Block *caseBlock = caseOp->getBlock();
// Erase the block with no predecessors here to make the generated code
// simpler a little bit.
if (caseBlock->hasNoPredecessors())
rewriter.eraseBlock(caseBlock);
else
rewriter.eraseOp(caseOp);
}
for (auto [rangeVal, operand, destination] :
llvm::zip(rangeValues, rangeOperands, rangeDestinations)) {
APInt lowerBound = rangeVal.first;
APInt upperBound = rangeVal.second;
// The case range is unreachable, skip it.
if (lowerBound.sgt(upperBound))
continue;
// If range is small, add multiple switch instruction cases.
// This magical number is from the original CGStmt code.
constexpr int kSmallRangeThreshold = 64;
if ((upperBound - lowerBound)
.ult(llvm::APInt(32, kSmallRangeThreshold))) {
for (APInt iValue = lowerBound; iValue.sle(upperBound); ++iValue) {
caseValues.push_back(iValue);
caseOperands.push_back(operand);
caseDestinations.push_back(destination);
}
continue;
}
defaultDestination =
condBrToRangeDestination(op, rewriter, destination,
defaultDestination, lowerBound, upperBound);
defaultOperands = operand;
}
// Set switch op to branch to the newly created blocks.
rewriter.setInsertionPoint(op);
rewriter.replaceOpWithNewOp<cir::SwitchFlatOp>(
op, op.getCondition(), defaultDestination, defaultOperands, caseValues,
caseDestinations, caseOperands);
return mlir::success();
}
};
class CIRLoopOpInterfaceFlattening
: public mlir::OpInterfaceRewritePattern<cir::LoopOpInterface> {
public:
using mlir::OpInterfaceRewritePattern<
cir::LoopOpInterface>::OpInterfaceRewritePattern;
inline void lowerConditionOp(cir::ConditionOp op, mlir::Block *body,
mlir::Block *exit,
mlir::PatternRewriter &rewriter) const {
mlir::OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(op);
rewriter.replaceOpWithNewOp<cir::BrCondOp>(op, op.getCondition(), body,
exit);
}
mlir::LogicalResult
matchAndRewrite(cir::LoopOpInterface op,
mlir::PatternRewriter &rewriter) const final {
// Setup CFG blocks.
mlir::Block *entry = rewriter.getInsertionBlock();
mlir::Block *exit =
rewriter.splitBlock(entry, rewriter.getInsertionPoint());
mlir::Block *cond = &op.getCond().front();
mlir::Block *body = &op.getBody().front();
mlir::Block *step =
(op.maybeGetStep() ? &op.maybeGetStep()->front() : nullptr);
// Setup loop entry branch.
rewriter.setInsertionPointToEnd(entry);
rewriter.create<cir::BrOp>(op.getLoc(), &op.getEntry().front());
// Branch from condition region to body or exit.
auto conditionOp = cast<cir::ConditionOp>(cond->getTerminator());
lowerConditionOp(conditionOp, body, exit, rewriter);
// TODO(cir): Remove the walks below. It visits operations unnecessarily.
// However, to solve this we would likely need a custom DialectConversion
// driver to customize the order that operations are visited.
// Lower continue statements.
mlir::Block *dest = (step ? step : cond);
op.walkBodySkippingNestedLoops([&](mlir::Operation *op) {
if (!isa<cir::ContinueOp>(op))
return mlir::WalkResult::advance();
lowerTerminator(op, dest, rewriter);
return mlir::WalkResult::skip();
});
// Lower break statements.
assert(!cir::MissingFeatures::switchOp());
walkRegionSkipping<cir::LoopOpInterface>(
op.getBody(), [&](mlir::Operation *op) {
if (!isa<cir::BreakOp>(op))
return mlir::WalkResult::advance();
lowerTerminator(op, exit, rewriter);
return mlir::WalkResult::skip();
});
// Lower optional body region yield.
for (mlir::Block &blk : op.getBody().getBlocks()) {
auto bodyYield = dyn_cast<cir::YieldOp>(blk.getTerminator());
if (bodyYield)
lowerTerminator(bodyYield, (step ? step : cond), rewriter);
}
// Lower mandatory step region yield.
if (step)
lowerTerminator(cast<cir::YieldOp>(step->getTerminator()), cond,
rewriter);
// Move region contents out of the loop op.
rewriter.inlineRegionBefore(op.getCond(), exit);
rewriter.inlineRegionBefore(op.getBody(), exit);
if (step)
rewriter.inlineRegionBefore(*op.maybeGetStep(), exit);
rewriter.eraseOp(op);
return mlir::success();
}
};
class CIRTernaryOpFlattening : public mlir::OpRewritePattern<cir::TernaryOp> {
public:
using OpRewritePattern<cir::TernaryOp>::OpRewritePattern;
mlir::LogicalResult
matchAndRewrite(cir::TernaryOp op,
mlir::PatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Block *condBlock = rewriter.getInsertionBlock();
Block::iterator opPosition = rewriter.getInsertionPoint();
Block *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
llvm::SmallVector<mlir::Location, 2> locs;
// Ternary result is optional, make sure to populate the location only
// when relevant.
if (op->getResultTypes().size())
locs.push_back(loc);
Block *continueBlock =
rewriter.createBlock(remainingOpsBlock, op->getResultTypes(), locs);
rewriter.create<cir::BrOp>(loc, remainingOpsBlock);
Region &trueRegion = op.getTrueRegion();
Block *trueBlock = &trueRegion.front();
mlir::Operation *trueTerminator = trueRegion.back().getTerminator();
rewriter.setInsertionPointToEnd(&trueRegion.back());
auto trueYieldOp = dyn_cast<cir::YieldOp>(trueTerminator);
rewriter.replaceOpWithNewOp<cir::BrOp>(trueYieldOp, trueYieldOp.getArgs(),
continueBlock);
rewriter.inlineRegionBefore(trueRegion, continueBlock);
Block *falseBlock = continueBlock;
Region &falseRegion = op.getFalseRegion();
falseBlock = &falseRegion.front();
mlir::Operation *falseTerminator = falseRegion.back().getTerminator();
rewriter.setInsertionPointToEnd(&falseRegion.back());
auto falseYieldOp = dyn_cast<cir::YieldOp>(falseTerminator);
rewriter.replaceOpWithNewOp<cir::BrOp>(falseYieldOp, falseYieldOp.getArgs(),
continueBlock);
rewriter.inlineRegionBefore(falseRegion, continueBlock);
rewriter.setInsertionPointToEnd(condBlock);
rewriter.create<cir::BrCondOp>(loc, op.getCond(), trueBlock, falseBlock);
rewriter.replaceOp(op, continueBlock->getArguments());
// Ok, we're done!
return mlir::success();
}
};
void populateFlattenCFGPatterns(RewritePatternSet &patterns) {
patterns
.add<CIRIfFlattening, CIRLoopOpInterfaceFlattening, CIRScopeOpFlattening,
CIRSwitchOpFlattening, CIRTernaryOpFlattening>(
patterns.getContext());
}
void CIRFlattenCFGPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
populateFlattenCFGPatterns(patterns);
// Collect operations to apply patterns.
llvm::SmallVector<Operation *, 16> ops;
getOperation()->walk<mlir::WalkOrder::PostOrder>([&](Operation *op) {
assert(!cir::MissingFeatures::ifOp());
assert(!cir::MissingFeatures::switchOp());
assert(!cir::MissingFeatures::tryOp());
if (isa<IfOp, ScopeOp, SwitchOp, LoopOpInterface, TernaryOp>(op))
ops.push_back(op);
});
// Apply patterns.
if (applyOpPatternsGreedily(ops, std::move(patterns)).failed())
signalPassFailure();
}
} // namespace
namespace mlir {
std::unique_ptr<Pass> createCIRFlattenCFGPass() {
return std::make_unique<CIRFlattenCFGPass>();
}
} // namespace mlir